

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

ETA-14/0394 of 20 October 2014

Deutsches Institut für Bautechnik

G&B Fissaggi Injection system EPO PLUS RE for concrete

Bonded anchor for diamond coring for use in uncracked concrete

G&B FISSAGGI Corso Savona, 22 10029 Villatellone (TO) ITALIEN

G&B Fissaggi S.R.L., Plant 4

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-14/0394

Page 2 of 23 | 20 October 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The "G&B Fissaggi Injection System EPO PLUS RE for concrete for concrete" is a bonded anchor consisting of a cartridge with injection mortar EPO PLUS RE and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 4
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 5 to C 8
Displacements under tension and shear loads	See Annex C 9 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-14/0394

Page 4 of 23 | 20 October 2014

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

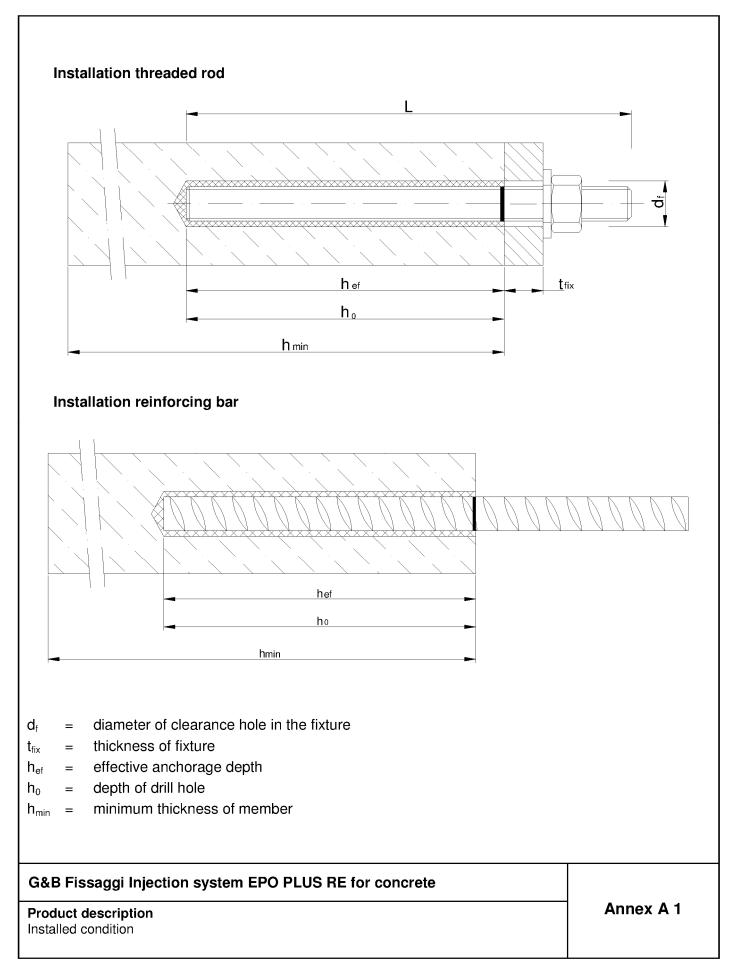
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

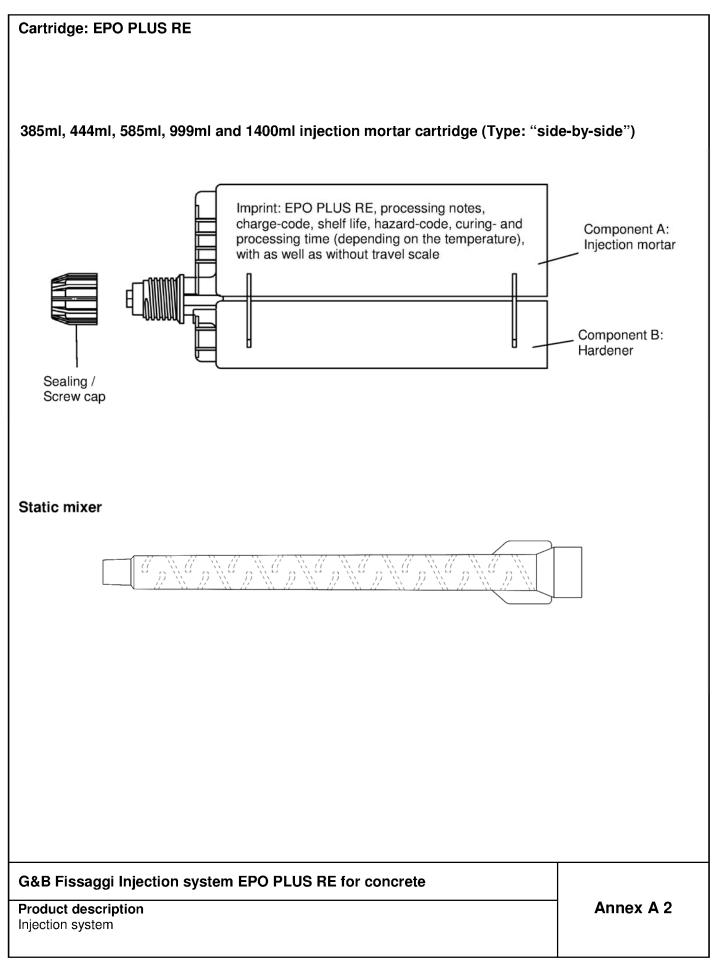
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 20 October 2014 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Baderschneider

5


Page 5 of European Technical Assessment ETA-14/0394 of 20 October 2014

English translation prepared by DIBt

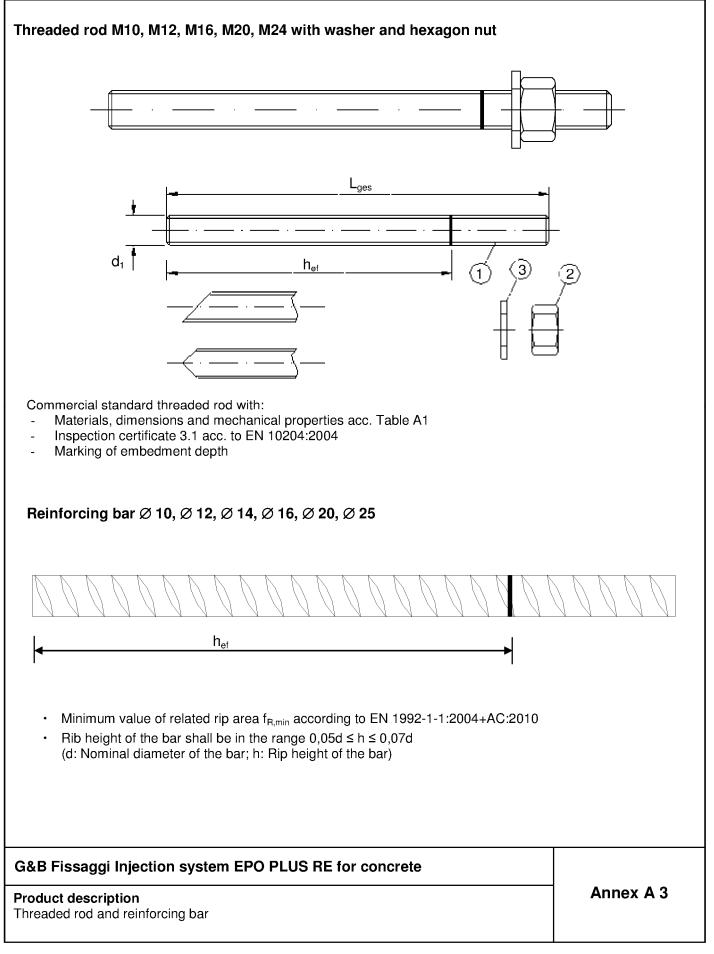


Table A1: Materials

Part	Designation	Material			
	, zinc plated \ge 5 µm acc. to EN ISO 4042:19 , hot-dip galvanised \ge 40 µm acc. to EN ISO		C:2009		
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-6)1		
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012, SO 898-2:2012,		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised			
Stain	less steel				
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 ≤ M24: Property class 70 EN ISO 3506-			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 ≤ M24: Property class 70 (for class 70 ro			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005		
High	corrosion resistance steel				
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, ≤ M24: Property class 70 EN ISO 3506-1:2009			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005		
Reinf	orcing bars				
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013		
	B Fissaggi Injection system EPO PLUS	S RE for concrete	Annex A 4		
Mate	•				

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M10 to M24, Rebar Ø10 to Ø25.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M10 to M24, Rebar Ø10 to Ø25.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

G&B Fissaggi Injection system EPO PLUS RE for concrete

Intended Use Specifications Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		M 10	M 12	M 16	M 20	M 24			
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28			
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96			
hole depth	h _{ef,max} [mm] =	200	240	320	400	480			
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14 18 22			26			
Diameter of steel brush	d _b [mm] ≥	14	16	20	26	30			
Torque moment	T _{inst} [Nm]	20	40	80	120	160			
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <			1500					
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀							
Minimum spacing	s _{min} [mm]	.] 50 60 80 100		120					
Minimum edge distance	c _{min} [mm]	50	60	80	100	120			

Table B2: Installation parameters for rebar

Rebar size		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	32
Embedment depth and bore	h _{ef,min} [mm] =	60	70	75	80	90	100
hole depth	h _{ef,max} [mm] =	200	240	280	320	400	500
Diameter of steel brush	d _⊳ [mm] ≥	16	18	20	22	26	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$		
Minimum spacing	s _{min} [mm]	50	60	70	80	100	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	125

G&B Fissaggi Injection system EPO PLUS RE for concrete

Intended Use Installation parameters Annex B 2

32,5

Steel brush								
Threaded Rod	Rebar	d₀ Drill bit - Ø	d _♭ Brush - Ø	d _{⊳,min} min. Brush - Ø	Piston plug			
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)			
M10		12	14	12,5				
M12	10	14	16	14,5	No			
	12	16	18	16,5	piston plug			
M16	14	18	20	18,5	required			
	16	20	22	20,5				
M20	20	24	26	24,5	# 24			
M24		28	30	28,5	# 28			

34

32

25

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

G&B Fissaggi Injection system EPO PLUS RE for concrete

Intended Use

Cleaning and setting tools

Annex B 3

32

Installation in	structions	
	1b. Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth
	2a. Rinsing with water until clear water comes out.	
<u>********</u> *** 2x	2b. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3).	d _{b,min} (Table B3) a
	2c. Rinsing again with water until clear water comes out.	
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.
2x	2d. Starting from the bottom or back of the bore hole, blow the hole clear (Annex B3) (min. 6 bar) a minimum of two times. If the bore hole greatension shall be used.	
2x	 22. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > o minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3). 21. Finally blow the hole clean again with compressed air acc. Annex E minimum of two times. If the bore hole ground is not reached an ex After cleaning, the bore hole has to be protected against re-co appropriate way, until dispensing the mortar in the bore hole. I cleaning has to be repeated directly before dispensing the mort must not contaminate the bore hole again. 	d _{b,min} (Table B3) a ne brush, a brush 33 (min. 6 bar) a tension shall be used. ntamination in an If necessary, the
	3. Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	
l+ her →I	 Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods. 	n of the embedment
min. 3 full stroke	5 Prior to dispensing into the anchor hole, squeeze out separately a n strokes and discard non-uniformly mixed adhesive components unti consistent grey colour. For foil tube cartridges is must be discarded strokes.	I the mortar shows a
G&B Fissaggi In	jection system EPO PLUS RE for concrete	
Intended Use		Annex B 4

Installation instructions

Installation inst	ructions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4.
	7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.
	The anchor should be free of dirt, grease, oil or other foreign material.
	8 Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
20°C e.g.	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

G&B Fissaggi Injection system EPO PLUS RE for concrete

Intended Use Installation instructions (continuation) Curing time

Annex B 5

d			M 10	M 12	M 16	M 20	M24	
				I		•	1	
stance,	N _{Rk,s}	[kN]	23	34	63	98	141	
haracteristic tension resistance, teel, property class 5.8		[kN]	29	42	78	122	176	
stance,	N _{Rk,s}	[kN]	46	67	125	196	282	
stance, R,	N _{Rk,s}	[kN]	41	59	110	171	247	
oncrete cone failure								
ance in non-cracked concr	ete C20/2	5						
Temperature range I:		[N/mm ²]	11	10	10	9,5	9,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5	
dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,0	6,0	5,5	
flooded bore hole	TRk,ucr	[N/mm ²]	5,5	6,5	6,0	6,0	5,5	
dry and wet concrete	TRk,ucr	[N/mm ²]	6,0	6,0	5,5	5,0	5,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0	
	C30/37							
	050/60				1,10			
	C _{cr,sp}	[mm]	1,0) ⋅ h _{ef} ≤ 2 ⋅ l	$h_{ef}\left(2,5-\frac{1}{h}\right)$	$\left(\frac{h}{h_{ef}}\right) \le 2,4 \cdot$	h _{ef}	
	S _{cr,sp}	[mm]			2 c _{cr,sp}			
	γ2		1,0	1,2				
	Υ2		1,0		1	,2		
	stance, stance, stance, stance, stance, R, oncrete cone failure ance in non-cracked concr dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete	stance, NRk,s stance, NRk,s stance, NRk,s stance, R, NRk,s oncrete cone failure ance in non-cracked concrete C20/24 ance in non-cracked concrete TRK,ucr flooded bore hole TRK,ucr flooded bore hole TRK,ucr flooded bore hole TRK,ucr flooded bore hole TRK,ucr C30/37 C40/50 C50/60 ccr,sp	stance, NRk,s [kN] atres in non-cracked concrete C20/25 [N/mm²] flooded bore hole TRk,ucr [N/mm²] cta0/37 Ca0/37 Ca0/37 c	stance, $N_{Rk,s}$ $[kN]$ 23 stance, $N_{Rk,s}$ $[kN]$ 29 stance, $N_{Rk,s}$ $[kN]$ 46 stance, $N_{Rk,s}$ $[kN]$ 41 oncrete cone failure $N_{Rk,s}$ $[kN]$ 41 oncrete cone failure $T_{Rk,ucr}$ $[N/mm^2]$ 11 ance in non-cracked concrete $C20/25$ 11 flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,0 dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,0 flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,5 dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0 flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0 flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0 flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0 $C30/37$ $C40/50$ $C_{20/50}$ $C_{20/50}$ $C_{20/50}$ $C_{cr,sp}$ $[mm]$ $1,0$ $C_{20/50}$ $C_{20/50}$ $C_{20/50}$	stance, NRk,s [kN] 23 34 stance, NRk,s [kN] 29 42 stance, NRk,s [kN] 46 67 stance, NRk,s [kN] 41 59 oncrete cone failure IkN 41 59 oncrete cone failure IkN,s [kN] 41 59 oncrete cone failure IkN,s [kNm2] 11 10 flooded bore hole IkN,ser [N/mm2] 9,0 10 dry and wet concrete IkN,ser [N/mm2] 5,5 6,5 flooded bore hole IkN,ser [N/mm2] 5,0 6,0 flooded bore hole IkN,ser [N/mm2] 5,0 6,0 flooded bore hole IkN,ser [N/mm2] 5,0 6,0 IcOde IcOde IcOde IcOde	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table C2: Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to TR 029)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm		·					
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]			2,0		
Installation safety factor	γ2	1,0					
Concrete edge failure		L					
Installation safety factor	γ ₂				1,0		

G&B Fissaggi Injection system EPO PLUS RE for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

		acteristic value cracked concre						ion load	ls in	
Anchor size reinfor	rcing	bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure						•			•	I
Characteristic tensio	n resi	stance	N _{Rk,s}	[kN]	A _s • f _{uk}					
Combined pullout a	and c	oncrete cone failure	•							
Characteristic bond r	resista	ance in non-cracked o	concrete	C20/25						
Temperature range I	:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11	10	10	10	9,5	9,0
40°C/24°C		flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:		dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C		flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,0	6,0	5,5
dry and wet Temperature range III: concrete		τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0	
72°C/43°C		flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,5	5,5	5,0	5,0
			C30/37	7			1,	04	1	1
Increasing factor Ψ_c		C40/50)			1,	08			
Ψc			C50/60)			1,	10		
Splitting failure										
Edge distance			C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					
Axial distance			S _{cr,sp}	[mm]	2 c _{cr,sp}					
Installation safety fac	ctor		γ2		1,0 1,2					
Performances	-	tion system EPC					to		Annex	C 3

(Design according to TR 029)

Table C4: Characteristic values of resistance for rebar under shear loads in non- cracked concrete (Design according to TR 029)												
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25				
Steel failure without lever arm		I					•	•				
Characteristic shear resistance	V _{Rk,s}	[kN]			0,50 ·	A _s ∙ f _{uk}						
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}									
Concrete pry-out failure	1											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	rt TR 029 for the k [-] 2,0											
Installation safety factor	γ2		1,0									
Concrete edge failure												
Installation safety factor	γ2				1,	,0						

Performances

Annex C 4

Electronic copy of the ETA by DIBt: ETA-14/0394

Anchor size threaded re	bd			M 10	M 12	M 16	M 20	M24	
Steel failure							•	1	
Characteristic tension res Steel, property class 4.6	sistance,	N _{Rk,s}	[kN]	23	34	63	98	141	
Characteristic tension res Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	29	42	78	122	176	
Characteristic tension res Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	46	67	125	196	282	
Characteristic tension res Stainless steel A4 and H0 property class 70	N _{Rk,s}	[kN]	41	59	110	171	247		
Combined pullout and o	concrete cone failure						•		
Characteristic bond resis	tance in non-cracked conc	rete C20/2	5						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11	10	10	9,5	9,0	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	9,5	9,5	8,5	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,0	6,0	5,5	
60°Ċ/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,0	6,0	5,5	
Temperature range III: 72°C/43°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	6,0	6,0	5,5	5,0	5,0	
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0	
Increasing factor		C30/37 1,04							
Ψc		C40/50		1,08					
Factor according to		C50/60		1,10					
CEN/TS 1992-4-5 Sectio	n 6.2.2.3	k ₈	[-]			10,1			
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Sectio	n 6.2.3.1	k _{ucr}	[-]			10,1			
Edge distance		C _{cr,N}	[mm]			1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0 h _{ef}			
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	1,0	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$			n _{ef}	
Axial distance		S _{cr,sp}	[mm]			2 c _{cr,sp}			
Installation safety factor		γ2		1,0 1,2					

G&B Fissaggi Injection system EPO PLUS RE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm				·			
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[KN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8				
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ _{Rk,s}	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃				2,0		
Installation safety factor	γ2				1,0		
Concrete edge failure							
Effective length of anchor	lf	[mm]		l _f =	= min(h _{ef} ; 8 d _n	om)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	25
Installation safety factor	γ2				1,0		

G&B Fissaggi Injection system EPO PLUS RE for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

	racteristic value							ls in	
Anchor size reinforcing	bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure			I						
Characteristic tension res	sistance	N _{Rk,s}	[KN]	A _s • f _{uk}					
Combined pullout and o	concrete cone failure	è	II						
Characteristic bond resis	tance in non-cracked	concrete	C20/25						
Temperature range I:	dry and wet concrete	TRk,ucr	[N/mm ²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	6,0	6,0	6,0	5,5	5,0	5,0
72°Ċ/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,5	5,5	5,0	5,0
		C30/37	7			1,	04		•
Increasing factor Ψ_c		C40/50)			1,	08		
	C50/60)			1,	10			
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3		k ₈	[-]	10,1					
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Sectio	n 6.2.3.1	k _{ucr}	[-]	10,1					
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}					
Splitting failure									
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef} :	$\leq 2 \cdot h_{ef} \left(2 \right)$	$5 - \frac{h}{h_{ef}} \le $	≤2,4 · h _{ef}	
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation safety factor		γ2		1,0			1,2		
G&B Fissaggi Inje	ction system EP	O PLU	S RE for	concrete	9			Annex	C 7

Table C8: Characteristic values of resistance for rebar under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)												
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25				
Steel failure without lever arm		I										
Characteristic shear resistance	V _{Rk,s}	[kN]	0,50 · A _s · f _{uk}									
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	ccording to -5 Section 6.3.2.1				0,	.8						
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1.2 • V	V _{el} • f _{uk}						
Concrete pry-out failure												
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃				2,	,0						
Installation safety factor				1,	,0							
Concrete edge failure												
Effective length of anchor If [mm]												
Outside diameter of anchor	d _{nom}	[mm]	10 12 14 16		16	20	25					
Installation safety factor	γ2				1,	,0						
G&B Fissaggi Injection sys	tom EBO BI		- for oon									

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Annex C 8

Electronic copy of the ETA by DIBt: ETA-14/0394

Anchor size threa	M 10	M 12	M 16	M 20	M24						
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029				
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114				
Temperature rang	ge 72°C/43°C	and 60°C/43°C for non-	cracked concret	e C20/25			1				
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033				
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \ \tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Displacement	δνο	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	δ _{V∞}	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor \cdot V;

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor \cdot V;

G&B Fissaggi Injection system EPO PLUS RE for concrete

Performances Displacements (threaded rods)

Table C11: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinforcing bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25					
Temperature range 40°C/24°C for non-cracked concrete C20/25												
δ _{NO}	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,024	0,030					
δ _{N∞}	[mm/(N/mm ²)]	0,052	0,061	0,070	0,079	0,096	0,118					
inge 72°C/4	13°C and 60°C/43°C	for non-crac	ked concrete	C20/25								
δ _{N0}	[mm/(N/mm ²)]	0,015	0,018	0,020	0,023	0,028	0,034					
δ _{N∞}	[mm/(N/mm ²)]	0,060	0,070	0,081	0,091	0,111	0,136					
	nforcing b inge 40°C/2 δ _{N0} δ _{N∞} inge 72°C/2 δ _{N0}	nforcing bar ange 40°C/24°C for non-cracked δ _{N0} [mm/(N/mm²)] δ _{N∞} [mm/(N/mm²)] ange 72°C/43°C and 60°C/43°C δ _{N0} [mm/(N/mm²)]	\emptyset 10Inforcing bar \emptyset 10Inge 40°C/24°C for non-cracked concrete C δ_{N0} [mm/(N/mm²)]0,013 $\delta_{N\infty}$ [mm/(N/mm²)]0,052Inge 72°C/43°C and 60°C/43°C for non-cracked concrete C δ_{N0} [mm/(N/mm²)] δ_{N0} [mm/(N/mm²)]0,015	nforcing bar Ø 10 Ø 12 inge 40°C/24°C for non-cracked concrete C20/25 δ_{N0} [mm/(N/mm ²)] 0,013 0,015 $\delta_{N\infty}$ [mm/(N/mm ²)] 0,052 0,061 inge 72°C/43°C and 60°C/43°C for non-cracked concrete δ_{N0} [mm/(N/mm ²)] 0,015 0,018	mforcing bar Ø 10 Ø 12 Ø 14 inge 40°C/24°C for non-cracked concrete C20/25 δ _{N0} [mm/(N/mm²)] 0,013 0,015 0,018 δ _{N∞} [mm/(N/mm²)] 0,052 0,061 0,070 inge 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25 δ _{N0} [mm/(N/mm²)] 0,015 0,018 0,010 0,015 0,018 0,020	mforcing bar Ø 10 Ø 12 Ø 14 Ø 16 inge 40°C/24°C for non-cracked concrete C20/25 δ _{N0} [mm/(N/mm²)] 0,013 0,015 0,018 0,020 δ _{N∞} [mm/(N/mm²)] 0,052 0,061 0,070 0,079 inge 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25 0,018 0,020 0,023 δ _{N0} [mm/(N/mm²)] 0,015 0,018 0,020 0,023	mforcing bar Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 inge 40°C/24°C for non-cracked concrete C20/25 δN0 [mm/(N/mm²)] 0,013 0,015 0,018 0,020 0,024 δNo [mm/(N/mm²)] 0,052 0,061 0,070 0,079 0,096 inge 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25 0,018 0,020 0,023 0,028					

¹⁾ Calculation of the displacement

 $\delta_{\text{NO}} = \delta_{\text{NO}} \text{-factor} \ \cdot \ \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \cdot \ \tau;$

Table C12: Displacements under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Displacement	δνο	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δv∞	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \quad V;$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad \cdot \text{ V};$

G&B Fissaggi Injection system EPO PLUS RE for concrete

Performances Displacements (rebar)