

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-14/0269 vom 13. Oktober 2014

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Deutsches Institut für Bautechnik

KALM Keilanker KDK-F

Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M8, M10, M12 und M16 zur Verankerung im ungerissenen Beton

KALM
Befestigungssysteme GmbH
Marie-Curie-Straße 5
67661 Kaiserslautern
DEUTSCHLAND

KALM Befestigungssysteme GmbH Marie-Curie-Straße 5 67661 Kaiserslautern

13 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", Fassung April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-14/0269

Seite 2 von 13 | 13. Oktober 2014

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z53503.14 8.06.01-225/14

Europäische Technische Bewertung ETA-14/0269

Seite 3 von 13 | 13. Oktober 2014

Besonderer Teil

1 Technische Beschreibung des Produkts

Der KALM Keilanker KDK-F in den Größen M8, M10, M12 und M16 ist ein Dübel aus feuerverzinktem Stahl, der in ein Bohrloch gesetzt wird und durch kraftkontrollierte Verspreizung verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Tragfähigkeit für Zugkraft	Siehe Anhang C 1
Rand- und Achsabstände	Siehe Anhang C 1
Charakteristische Tragfähigkeit für Querkraft	Siehe Anhang C 2
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 3

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung festgestellt (KLF)

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich der gefährlichen Stoffe, können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der EU-Bauproduktenverordnung zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Für die Grundanforderung Nutzungssicherheit gelten dieselben Anforderungen wie für die Grundanforderung mechanische Festigkeit und Standsicherheit.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

Z53503.14 8.06.01-225/14

Europäische Technische Bewertung ETA-14/0269

Seite 4 von 13 | 13. Oktober 2014

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Für die nachhaltige Nutzung der natürlichen Ressourcen wurde für dieses Produkt keine Leistung untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die besonderen Bestimmungen zum Verwendungszweck gemäß Anhang B.

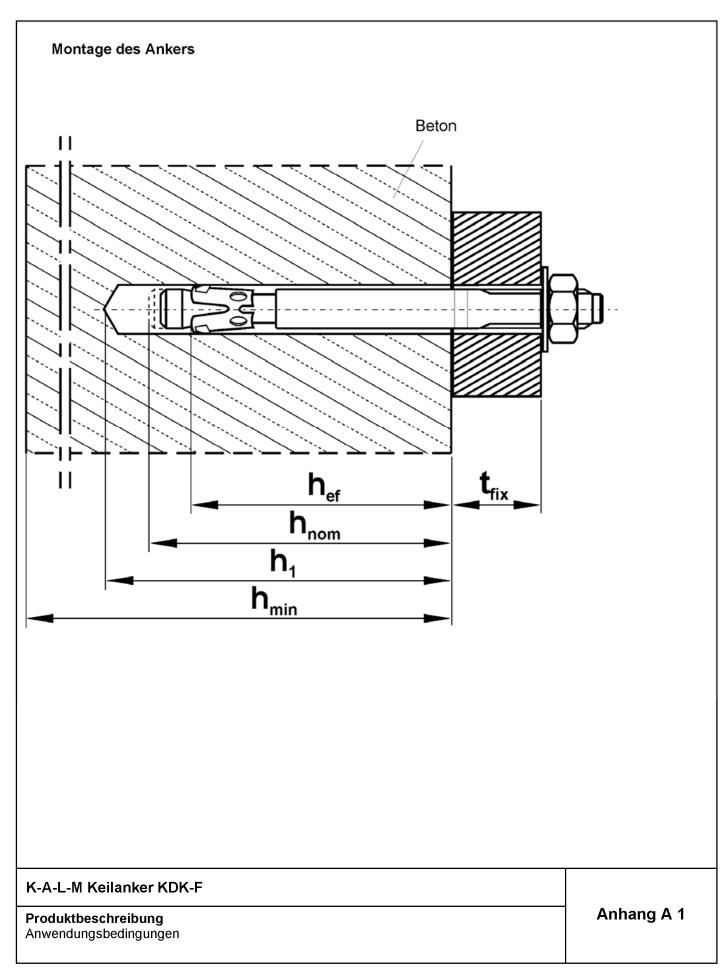
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung 96/582/EG der Kommission vom 24. Juni 1996 (ABI L 254 vom 08.10.1996 S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

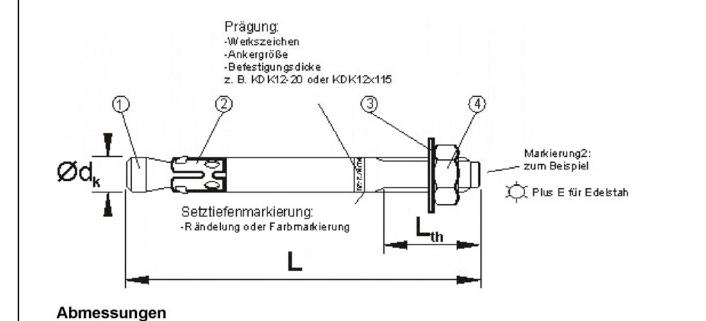
Produkt	Verwendungszweck	Stufe oder Klasse	System
Metalldübel zur Verwendung im Beton	Zur Befestigung und/oder Verankerung von Tragwerksteilen (die zur Standsicherheit des Bauwerks beitragen) oder schweren Elementen, z.B. Bekleidungen, sowie von Installationen.	-	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

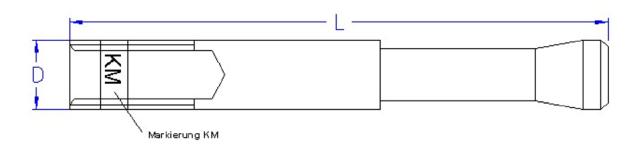
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 13. Oktober 2014 vom Deutschen Institut für Bautechnik

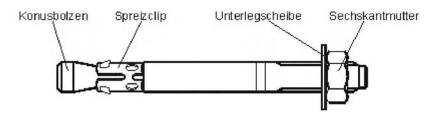
Andreas Kummerow i. V. Abteilungsleiter


Beglaubigt

Z53503.14 8.06.01-225/14



Dübel- größe	L [mm]		Gewinde	Gewinde		
	min.	max.	Größe	L _{th}		
M8	65	350	M8	25-120	8	
M10	70	410	M10	30-120	10	
M12	95	555	M12	35-120	12	
M16	115	515	M16	40-120	16	


Dübel- größe	Ø d _k	L [mm]
M8	10	50
M10	12	60
M12	16	75

K-A-L-M Keilanker KDK-F	
Produktbeschreibung Abmessungen des Ankers	Anhang A 2

Material

Teil	Bezeichnung	Material			
Version KDK-F – Stahl feuerverzinkt ≥ 40μm					
1	Konusbolzen	Stahl, Festigkeitsklasse 5.8, 8.8			
2	Spreizclip	Stahl EN 10149-2			
3	Unterlegscheibe	Stahl EN 10025-2			
4	Sechskantnuss	Festigkeitsklasse 8 EN 20 898-2			

Dübelgröße				M10	M12	M16
Nennwert der Streckgrenze f _{uk} [N/mm²]				620	570	570
Nennwert der Zugfestigkeit	f _{yk}	[N/mm²]	740	740	690	690

K-A-L-M Keilanker KDK-F	
Produktbeschreibung Werkstoffe	Anhang A 3

Spezifizierung des Anwendungsbereichs

Beanspruchung der Verankerung

· Statische und quasi-statische Lasten

Verankerungsgrund

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000-12
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000-12
- Ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen)

Bauteile unter Bedingungen trockener Innenräume

Bemessung

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerung und des Betonbaus erfahrenen Ingenieurs
- Unter Berrücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagen usw.)
- Die Bemessung der Verankerung erfolgt nach ETAG 001, Anhang C, Bemessungsmethode A, Fassung August 2010

Einbau

- Einbau durch geschultes Personal unter Aufsicht des Bauleiters
- Überprüfung der Verdichtung des Betons ohne größere Beschädigungen zu verursachen
- Bohrlöcher ohne Beschädigung der Bewehrung einbringen
- Im Fall eines neuen Bohrloches: Mindesabstand ist die doppelte Bohrlochtiefe der fehlbohrung, eine reduzierung des Abstandes ist bei eine Füllung der Fehlbohrung mit Mörtel möglich, unter der Voraussetzung, das die Hauptlastrichtung nicht in richtung der Fehlbohrung liegt.

K-A-L-M Keilanker KDK-F	
Verwendungszweck Spezifizierung des Anwendungsbereichs	Anhang B 1

Installation parameters

Dübelgröße			М8	M10	M12	M16
Bohrnenndurchmesser	d ₀ =	mm	8	10	12	16
Bohrschneidedurchmesser	d _{cut} ≤	mm	8,45	10,45	12,5	16,5
Bohrlochtiefe	h₁ ≥	mm	65	70	90	110
Einbautiefe	h_{nom}	mm	55	60	80	100
Effektive Verankerungstiefe	h_{ef}	mm	45	50	65	80
Dicke des Anbauteils	t_fix	mm	1-64	1-80	1-96	1-128
Durchgangsbohrung am	d _f ≤	mm	9	12	14	18
Anbauteil						
Anzugsdrehmoment im	T _{inst} =	Nm	12	20	30	90
ungerissenen Beton						

Mindestdicke des Betonbauteils, Randabstand, Achsabstand

Dübelgröße			М8	M10	M12	M16
Ungerissener Beton						
Minimale Bauteildicke	h _{min}	mm	100	100	120	160
Minimaler Achsabstand	S _{min}	mm	60	70	120	120
Minimaler randabstand	C _{min}	mm	75	120	180	160

K-A-L-M Keilanker KDK-F

Verwendungszweck
Installationsparameter

Anhang B 2

Montageanweisung

- Loch bohren (siehe unter technische Daten)
- Bohrloch reinigen
- KDK durch das zu befestigende Element stecken und in das Bohrloch einschlagen
- Mutter mit einem Drehmomentschlüssel vorspannen (siehe unter technische Daten)

Ausblaspumpe ABK

K-A-L-M Keilanker KDK-F	
Verwendungszweck Montageanleitung, Reinigungswerkzeug	Anhang B 3

Charakteristische Werte unter Zugbeanspruchung (Bemessung nach ETAG 001, Anhang C, Bemessungsmethode A)

Dübelgröße			M8	M10	M12	M16	
Stahlversagen							
Charakteristischer Widerstand	$N_{Rk,S}$	[kN]	18	29	39	73	
Herausziehen							
Charakteristischer Widerstand in Beton C20/25	$N_{Rk,p}$	[kN]	7,5	12	16	20	
Teilsicherheitsbeiwert	γ2	[-]	1,2				
	C30/37		1,2				
Erhöhungsfaktor ψ _c für N _{Rk,p}	C40/50	[-]	1,41				
	C50/60		1,55				
Betonausbruch und Spalten							
Effektive Verankerungstiefe	h _{ef}	[mm]	45	50	65	80	
Achsabstand	S _{cr,N}	[mm]		3 x h _{ef}			
	S _{cr,sp}	[mm]	220	240	320	400	
Randabstand	_C _{cr,N}	[mm]		1,5 x h _{ef}			
	C _{cr,sp}	[mm]	110	120	160	200	
Teilsicherheistbeiwert	γ2	[-]	1,2				

K-A-L-M Keilanker KDK-F	
Leistungsmerkmal Charakteristische Werte unter Zugbeanspruchung im ungerissenen Beton (ETAG 001, Anhang C, Bemessungsmethode A)	Anhang C 1

Charakteristische Werte unter Querbeanspruchung (Bemessung nach ETAG 001, Anhang C, Bemessungsmethode A)

Dübelgröße			M8	M10	M12	M16
Stahlversagen ohne Hebelarm						
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	7	15	20	36
Stahlversagen mit hebelarm						
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	28	55	90	229
Betonausbruch auf der lastabgewandte	en Seite (Pryout)					
Faktor k	k	[-]	1,0 2,0			,0
Teilsicherheitsbeiwert	γ2	[-]	1,0			
Betonkantenausbruch						
Wirksame Dübellänge bei Querlast	l _f	[mm]	45	50	65	80
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	12	16
Teilsicherheitsbeiwert	γ 2	[-]	1,0			

K-A-L-M Keilanker KDK-F	
Leistungsmerkmal Charakteristische Werte unter Querbeanspruchung im ungerissenen Beton (ETAG 001, Anhang C, Bemessungsmethode A)	Anhang C 2

Verschiebung unter Zuglast

Dübelgröße		М8	M10	M12	M16	
Zuglast	N	[kN]	3,0	4,8	6,3	7,9
Verschiebung	δ_{N0}	[mm]	0,4	0,2	0,3	0,3
	δ _{N∞}	[mm]	0,5	1,0	1,5	1,4

Verschiebung unter Querlast

Dübelgröße		М8	M10	M12	M16	
Querlast	V	[kN]	3,2	7,0	9,3	17,4
Verschiebung	$\delta_{ee 0}$	[mm]	0,8	1,3	1,5	3,1
	δ _{V∞}	[mm]	1,2	2,0	2,3	4,7

K-A-L-M Keilanker KDK-F

Leistungsmerkmal
Verschiebung

Anhang C 3