

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-99/0011 of 26 September 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Würth Fixanchor W-FAZ and W-FAZ-IG

Torque controlled expansion anchor for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12 -17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, Deutschland

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-99/0011

Page 2 of 32 | 26 September 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Würth Fixanchor W-FAZ and W-FAZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type W-FAZ with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type W-FAZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type W-FAZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type W-FAZ-IG B with internal thread, hexagon nut and washer B-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for W-FAZ	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for W-FAZ	See Annex C 6
Characteristic resistance for static and quasi static action for W-FAZ-IG	See Annex C 10 to C 12
Displacements under tension loads for W-FAZ	See Annex C 8
Displacements under shear loads for W-FAZ	See Annex C 9
Displacements under tension and shear loads for W-FAZ-IG	See Annex C 14

European Technical Assessment ETA-99/0011

Page 4 of 32 | 26 September 2014

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for W-FAZ	See Annex C 7
Resistance to fire for W-FAZ-IG	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

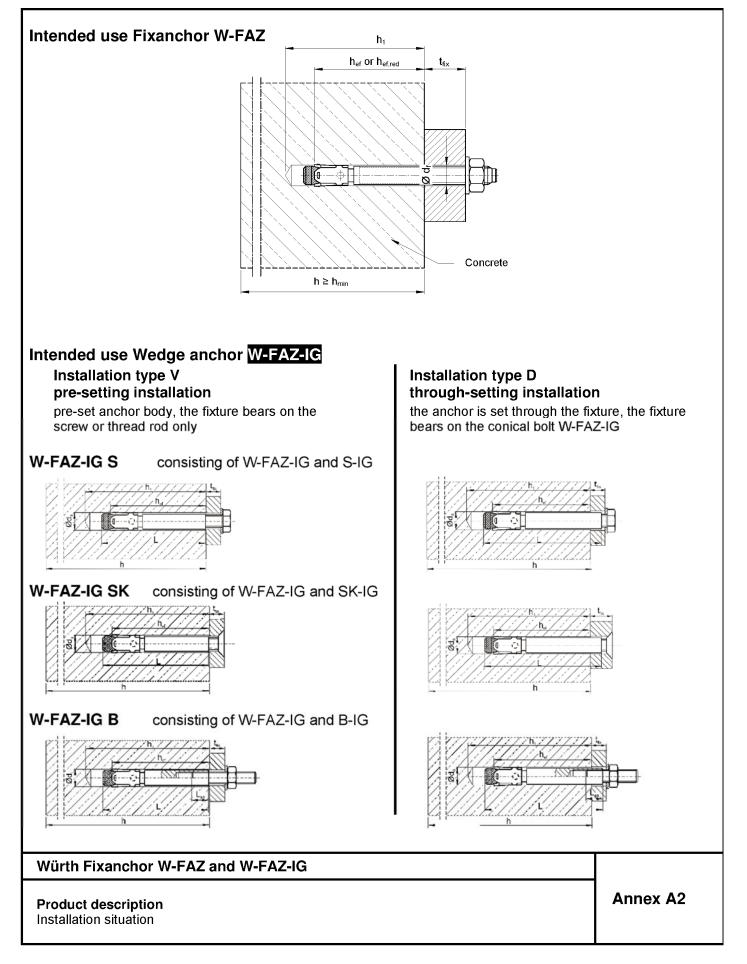
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

European Technical Assessment ETA-99/0011

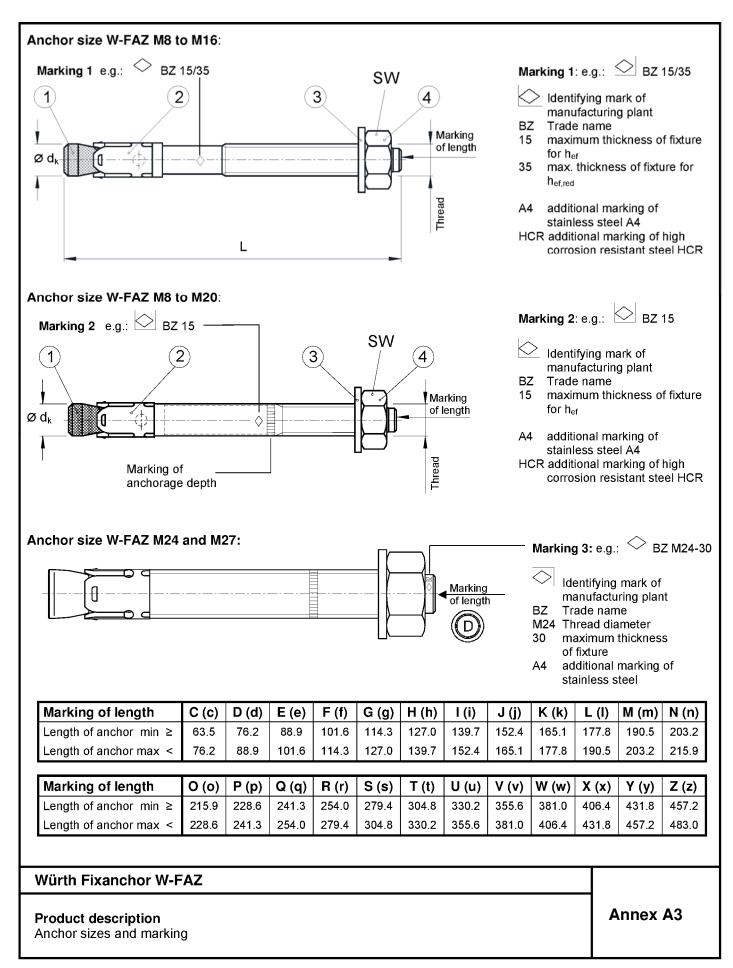
Page 5 of 32 | 26 September 2014

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

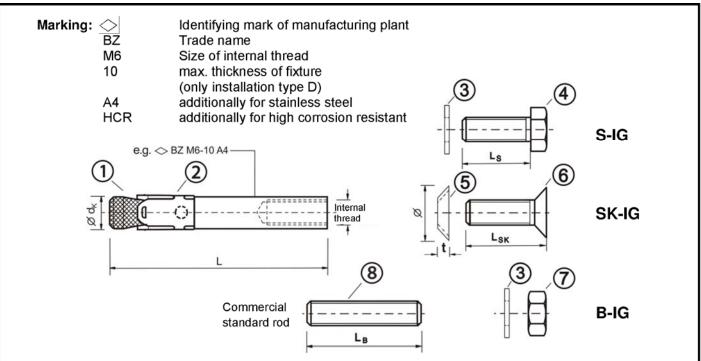

Issued in Berlin on 26 September 2014 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Fixanchor W-FAZ						
Conical bolt	Expansion sleeve	e V	Vasher	M8 to	o M16	
	<u> </u>	¢		M8 to	o M20	
				1.1	to M27 ' zinc plated only)	
Fixanchor W-FAZ-IC	G M6 to M12					
W-FAZ-IG S		[. - · - -	Washer	[]	Hexagon head screw	
W-FAZ-IG SK	onical bolt		Countersunk washer	[Countersunk head screw	
W-FAZ-IG B	pansion sleeve	Was 	her Hexagon nut	Commercial standard rod I		
Anchor version W-FAZ	Annex A Annex A3 – Annex		Annex B Annex B2 – Annex B4		Annex C ex C1 – Annex C9	
W-FAZ-IG	Annex A5 – Annex	A6	Annex B5 – Annex B7	Annex	C10 – Annex C14	
Würth Fixanchor W- Product description Anchor types	FAZ and W-FAZ-IG				Annex A1	

Page 8 of European Technical Assessment ETA-99/0011 of 26 September 2014

	Anchor	size		M8	M10	M12	M16	M20	M24	M27
1	Conical	bolt	Thread	M8	M10	M12	M16	M20	M24	M27
	Length of anchor		Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
		Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96.5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fb}
		A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96.5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
		red. anchorage depth	L _{hef,red}	54 + t _{fix}	60 + t _{fix}	76.5+t _{fix}	98+t _{fix}	-	-	-
2	Expansi	on sleeve				S	ee Table A	.2		
3	Washer	Washer				S	ee Table A	.2		
4	Hexagon nut SW		13	17	19	24	30	36	41	


Table A2:Materials W-FAZ

No.	Part	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401	Steel acc. to EN 10139-12:1997	Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088: 2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated

Würth Fixanchor W-FAZ

Product description Dimensions and materials Annex A4

Anchor dimensions W-FAZ-IG Table A3:

No.	Anchor size		M6	M8	M10	M12
	Conical bolt with Internal thread	$\oslash \mathbf{d_k}$	7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ble A4	
3	Washer			see ta	ble A4	
	Hexagon head screw	dth across flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D	Ls	14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk Ø cou	untersink	17.3	21.5	25.9	30.9
5	washer	t	3.9	5.0	5.7	6.7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Installation type V	L _{sk}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D	L _{sk}	16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
8	Commercial type V	$L_{B} \geq$	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
0	standard rod ¹⁾ type D	$L_B \geq$	21	28	34	41
¹⁾ ac	c. to specifications (Table A4)					Dimensions in mm
Würth	n Fixanchor W-FAZ-IG					
Produ	ct description					Annex A5

Anchor parts, marking and dimensions

No.	Part	Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt W-FAZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve W-FAZ-IG	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005
3	Washer S-IG / B-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
7	Hexagon nut B-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2005, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013-05 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009

Würth Fixanchor W-FAZ-IG

Product description Materials Annex A6

Fixanchor W-FAZ		M8	M10	M12	M16	M20	M24	M27
Static or quasi-static action					۲	1		
Seismic action	Zinc plated			v	(
Categorie C1 + C2 $^{1)}$	A4		-	v	/		-	
Categorie C1 + C2	HCR			v	/			
Reduced anchorage depth ²⁾			١	/			-	
Fire exposure ¹⁾					۲	/		
Cracked and non-cracked					۲	(
Fixanchor W-FAZ-IG	M6	M8	M10	M12				
Static or quasi-static action			√					
Seismic action			-					
Fire exposure			✓					
Cracked and non-cracked		,	√					

only for standard anchorage depth

²⁾ only for anchors with "marking 1" acc. to Annex A3

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions

(high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4: 2009, Annex D

(It must be ensured that local spalling of the concrete cover does not occur)

Würth Fixanchor W-FAZ and W-FAZ-IG

Intended use Specifications

Deutsches Institut für Bautechnik

Anchor size	•			M8	M10	M12	M16	M20	M24	M27
Nominal drill hole diameter		do	[mm]	8	10	12	16	20	24	28
Cutting diam	eter of drill bit	$d_{cut} \leq$	[mm]	8.45	10.45	12.5	16.5	20.55	24.55	28.55
Installation torque	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	300
	A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diameter of on the fixed background the second seco		$d_{\rm f} \leq$	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth									
Depth of drill hole	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
	A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Reduced an	chorage depth									
Depth of drill	hole	$h_{1,red} \geq$	[mm]	49	55	70	90	-	-	-
Reduced effe		h _{ef,red}	[mm]	35	40	50	65	-	-	-

Table B2: Minimum spacings and edge distances, reduced anchorage depth, W-FAZ

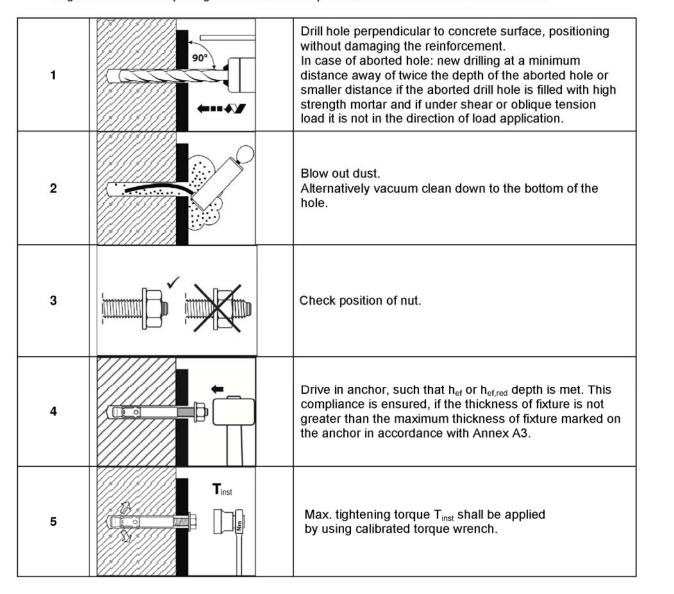
Anchor size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum cooping	S _{min}	[mm]	60	50	50	65
	for $c \ge$	[mm]	60	100	160	170
Minimum edge distance	C _{min}	[mm]	60	100	65	170
	for s \geq	[mm]	60	50	250	65
Non-cracked concrete						
Minimum cooping	S _{min}	[mm]	60	50	50	65
Minimum spacing	for c \geq	[mm]	60	100	160	170
Minimum odgo distanco	C _{min}	[mm]	60	100	160	170
Minimum spacing Minimum edge distance	for s \geq	[mm]	60	50	50	65

Würth Fixanchor W-FAZ

Installation parameters, Minimum spacings and edge distances for reduced anchorage depth

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	member	· · · ·		•			•		•
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Vinimum spacing	S _{min}	[mm]	40	45	60	60	95	100	125
	for $c \ge$	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
-	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete									1
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	for c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
5	for s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR				1		I.	I	I	1 -
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	_
Cracked concrete	• • (1001, 1	L							1
Minimum spacing	S _{min}	[mm]	40	50	60	60	95	125	-
g	for c ≥	[mm]	70	75	100	100	150	125	_
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	125	_
	for s ≥	[mm]	80	90	140	180	200	125	_
Non-cracked concrete	101 5 2				140	100	200	120	
Vinimum spacing	Smin	[mm]	40	50	60	65	90	125	-
	for c ≥	[mm]	80	75	120	120	180	125	-
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	125	-
winning euge distance	for s ≥	[mm]	100	120	150	150	240	125	-
Minimum thickness of concrete		[]	100	120	100	100	210	120	
Steel zinc plated and stainless		<u>CP</u>							
Minimum thickness of member	-	[mm]	80	100	120	140	-	-	-
Cracked concrete	h _{min,2}	[iiiii]	00	100	120	140	-	-	-
Minimum spacing	e .	[mm]	40	45	60	70	-	-	-
			70	90	100	160		-	
Minimum odgo distanco		[mm]	40	50	60	80	-	-	-
Minimum edge distance	C _{min}	[mm]				180	-	-	-
Non-orackod conorata	for s \geq	[mm]	80	115	140	100	-	-	-
Non-cracked concrete Minimum spacing		[mm]	40	60	60	00			
vinimum spacing	S _{min}	[mm]	40	60	60 120	80	-	-	-
linimum odgo distance	for $c \ge c$	[mm]	80	140	120	180	-	-	-
Minimum edge distance	C _{min}	[mm]	50	90	75	90	-	-	-
	for $s \ge$	[mm]	100	140	150	200	-	-	-
Fire exposure from one side									
Minimum spacing	S _{min,fi}	[mm]			See n	ormal amb	ient tempe	erature	
Minimum edge distance	C _{min,fi}	[mm]			See n	ormal amb	ient tempe	rature	
Fire exposure from more than o									
Minimum spacing	S _{min,fi}	[mm]			See n	ormal amb	pient tempe	rature	
vinninum spacing					· ·	≥ 300		-	
	Cmin fi	IUUUU	1			2 000			
Minimum spacing Minimum edge distance termediate values by linear interpol	C _{min,fi}	[mm]				2 300			

Intended use


Minimum spacings and edge distances for standard anchorage depth

Installation instructions W-FAZ

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
 Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Würth Fixanchor W-FAZ

Intended Use Installation instructions

Table B4: Installation parameters W-FAZ-IG

Anchor size				M6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{\text{cut}} \leq$	[mm]	8.45	10.45	12.5	16.5
Depth of drill hole		h₁ >	[mm]	60	75	90	105
Screwing depth of thread rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
Installation moment		S	[Nm]	10	30	30	55
Installation moment, zinc plated steel	T _{inst}	SK	[Nm]	10	25	40	50
בוווס אמנכע סנכבו	····· -	В	[Nm]	8	25	30	45
		S	[Nm]	15	40	50	100
Installation moment, stainless steel A4, HCR	T _{inst}		[Nm]	12	25	45	60
Staimess Steer A4, HCK		В	[Nm]	8	25	40	80
Installation type V (Pre-setting	installatio	n)					
Diameter of clearance hole in the	fixture	$d_{f} \leq$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-se	tting insta	allation)					
Diameter of clearance hole in the	fixture	d _f ≤	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture ¹⁾	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

Table B5: Minimum spacings and edge distances W-FAZ-IG

Anchor size			M6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	for $c \ge$	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	for $s \ge$	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	for $c \ge$	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for $s \ge$	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]	:	See normal	temperature	e
Minimum edge distance	C _{min,fi}	[mm]	;	See normal	temperature	Э
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	e
Minimum edge distance	C _{min,fi}	[mm]		≥ 300	0 mm	

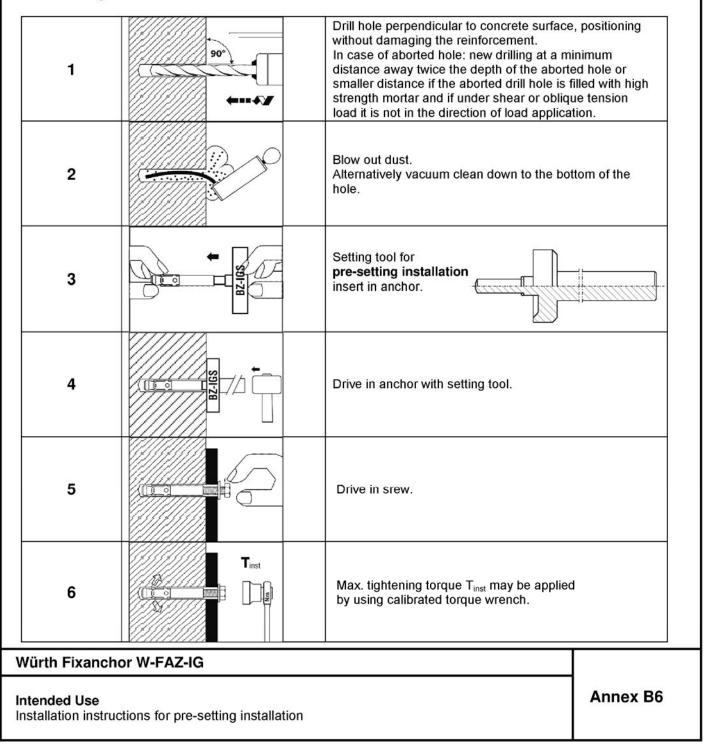
¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.

²⁾ see Annex A2

Würth Fixanchor W-FAZ-IG

Intended use

Installation parameters, minimum spacings and edge distances



Installation instructions W-FAZ-IG

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

	n instructions <mark>W-FAZ-IG</mark>		
1 nrougn-s	etting installation	Drill hole perpendicular to concrete surface without damaging the reinforcement. In case of aborted hole: new drilling at a mid distance away of twice the depth of the abor smaller distance if the aborted drill hole is f strength mortar and if under shear or obliquit it is not in the direction of load application.	inimum orted hole or illed with high
2		Blow out dust. Alternatively vacuum clean down to the bot hole.	tom of the
3	BZ-IGS	Setting tool for through-setting installation insert in anchor.	<u> </u>
4	► ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Drive in anchor with setting tool.	
5		Drive in screw.	
6		Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.	I
Intended Use	chor W-FAZ-IG	ion	Annex B7

Table C1: Characteristic va cracked concre design method A	e te, static a	and qu	uasi-sta	tic actio	on,	•	-	1	
Anchor size		9 ··· _	M8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ2	[-]				1.0			
Steel failure									
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ́мs	[-]	1.	53	1	.5	1.6	1	.5
Pullout									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	1)	1)
Increasing factor	ψc	[-]		$\left(\frac{f_{ck,cu}}{25}\right)$	$\left(\frac{be}{5}\right)^{0.5}$		-	-	-
Reduced anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7.5	1)	1)	-	-	-
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cu}}{25}\right)$	$\left(\frac{ube}{5}\right)^{0,5}$		-	-	-	-
Concrete cone failure									·
Effective anchorage depth	h _{ef} '	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35	40	50	65	-	-	-
Factor for cracked concrete	k _{cr}					7.2			

¹⁾ Pullout is not decisive.

Performance Characteristic values for tension loads, W-FAZ/S zinc plated cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C2: Characteristic valuecracked concrete,design method A act	static and	l quas	i-static a	ction,			92-4	
Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	γ2	[-]				1.0	·	
Steel failure								
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial safety factor	γ́мs	[-]		1	.5		1.68	1.5
Pullout								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	40
Increasing factor	ψς	[-]		$\left(\frac{f_{ck,ck}}{25}\right)$	$\left(\frac{ube}{5}\right)^{0,5}$		-	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	N _{Rk,p,red}	[kN]	5	7.5	1)	1)	-	-
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cub}}{25}\right)$	<u>e</u>) ^{0,5}	-	-	-	-
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	$\mathbf{h}_{\text{ef,red}}$	[mm]	35	40	50	65	-	-
Factor for cracked concrete	k _{cr}	[-]				7.2		

¹⁾ Pullout is not decisive.

Würth Fixanchor W-FAZ

Performance Characteristic values for tension loads, W-FAZ/A4 / HCR, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

design method A accord	ding to I	ETAG 0	01, Anne	ex C or	CEN/TS	\$ 1992-4		
Anchor size		M8	M10	M12	M16	M20	M24	M27
nstallation safety factor	γ2 [-]				1.0			<u></u>
Steel failure		1						
Characteristic tension resistance N	Rk,s [kN]	16	27	40	60	86	126	196
Partial safety factor	γ _{Ms} [-]	1	.53	1	.5	1.6	1	.5
Pullout								
Standard anchorage depth								
haracteristic resistance in	Rk,p [kN]	12	16	25	35	1}	1)	1)
ncreasing factor	ψc [-]		$\left(\frac{f_{ck,c}}{2}\right)$			-	-	-
Reduced anchorage depth			2	5 /		1		
Characteristic resistance in non-cracked concrete C20/25	o,red [kN]	7.5	9	1)	1)	-	-	-
ncreasing factor	ψc [-]	$\left(\frac{f_{ck,c}}{2}\right)$		-	-	-	-	-
Splitting For the proof against splitting failure $N^0_{\ \scriptscriptstyle m F}$	_{k,c} has to b	e replaced t	by N ⁰ _{Rk,sp} wit	h considerat	tion of the n	nember thick	mess	
Standard anchorage depth								
Splitting for standard thickness of concrete							ed;	
he values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolate Standard thickness of concrete h_{min} .			ness n _{min} <	$\frac{n < n_{std}}{140}$	se 2);(ψ _{h,sp} = 170	200	230	250
Case 1		100	120	110	110	200	200	
Characteristic resistance in N ⁰ _R	k,sp [kN]	9	12	20	30	40	1)	50
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_{cr}	_{r,sp}) [mm]				3 h _{ef}			
Case 2		-						
Characteristic resistance N ⁰ _R		12	16	25	35	1)	1)	1)
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_{cr}			4	h _{ef}		4.4 h _{ef}	3 h _{ef}	5 h _{et}
Splitting for minimum thickness of concrete								
Ainimum thickness of concrete h _{min}		80	100	120	140	-	-	-
Characteristic resistance N ⁰ _F	Rk,sp [kN]	12	16	25	35	-	-	-
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_c	_{r,sp}) [mm]		5	h _{ef}		-	-	-
Reduced anchorage depth								
Ainimum thickness of concrete h _{min}	_{,3} ≥ [mm]	80	80	100	140	-	-	-
Characteristic resistance N ⁰ _F	Rk,sp [kN]	7.5	9	1)	1)	-	-	-
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_c	_{r,sp}) [mm]	200	200	250	300	-	-	-
Concrete cone failure								
Effective anchorage depth	h _{ef} [mm]	46	60	70	85	100	115	125
Reduced anchorage depth h_{ϵ}	ef,red [mm]	35	40	50	65	-	-	-
	k _{ucr} [-]				10.1			
¹⁾ Pullout is not decisive.								

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	γ2	[-]				1.0	_	
Steel failure	12							
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]			.5		1.68	1.5
Pullout	1413	.,						
Standard anchorage depth								
Characteristic resistance in							1)	1)
non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	0	"
Increasing factor	ψc	[-]		$\left(\frac{f_{ck,cl}}{2}\right)$	$\frac{ube}{2}$		-	-
Reduced anchorage depth				(2:	> /			I
Characteristic resistance in	No	[kN]	7.5	9	1)	1)	_	_
non-cracked concrete C20/25	N _{Rk,p,red}	[KN]		0.5				
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cu}}{2!}\right)$	ube	-	-	-	-
Splitting For the proof against splitting	failure N ⁰ _{Rk,c} has to) be repla	aced by N ⁰ _{Ri}	, _{sp} with consi	ideration of t	he member t	hickness	
Standard anchorage depth								
Splitting for standard thickness of							pplied;	
the values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly								050
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1 Characteristic resistance in				1	1	1		1
non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	-
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		1	3	h _{ef}	1	1
Case 2								
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	1)	1)
non-cracked concrete C20/25			230	250	280	400	440	500
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	230	250	200	400	440	500
Splitting for minimum thickness o Minimum thickness of concrete			80	100	120	140		
Characteristic resistance in	h _{min,2} ≥					140	-	-
non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	-	-
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}		-	-
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140	-	-
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	7.5	9	1)	1)	-	_
non-cracked concrete C20/25 Spacing (edge distance)			200	200	250	300	-	
,	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	200	200	250	300	-	-
Concrete cone failure Effective anchorage depth	h	[mm]	46	60	70	05	100	105
• •	h _{ef}	[mm]				85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35	40	50	65	-	-
Factor for non-cracked concrete Pullout is not decisive.	k _{ucr}	[-]				10.1		
Würth Fixanchor W-FAZ							T	

	acteristic values (ed and non-cr n method A acc	acked	conc	rete, st	atic or				-4	
Anchor size				M8	M10	M12	M16	M20	M24	M27
Installation safety fa	actor	γ2	[-]				1.0		•	
Steel failure witho	ut lever arm, Steel	zinc pla	ated							
Characteristic shea	r resistance	$V_{Rk,s}$	[kN]	12.2	20.1	30	55	69	114	169.4
Factor for ductility		k ₂	[-]							
Partial safety factor		γ́Ms	[-]	1.25				1.33	1.25	1.25
Steel failure witho	ut lever arm, Stain	less ste	el A4, l	HCR						
Characteristic shea	r resistance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123,6	-
Factor for ductility		k ₂	[-]	1.0						-
Partial safety factor		γ́Ms	[-]		1.	25		1.4	1.25	-
Steel failure with le	ever arm, Steel zin	c plated	1							
Characteristic bend	Characteristic bending resistance M ⁰ _{Rk}		[Nm]	23	47	82	216	363	898	1331.5
Partial safety factor		γ́Ms	[-]		1.	25		1.33	1.25	1.25
Steel failure with le	ever arm, Stainles	s steel A	4 , HCF	7						
Characteristic bend	ing resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	200	454	785,4	-
Partial safety factor		γ́Ms	[-]		1.	25		1.4	1.25	-
Concrete pryout fa	ailure									
k factor		k ₍₃₎	[-]		2.	.4			2.8	
Concrete edge fail	ure									
Effective length of	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
anchor in shear loading with h_{ef}	Stainless steel A4, HCR	۱ _f	[mm]	46	60	70	85	100	125	-
Effective length of	Steel zinc plated	I _{f,red}	[mm]	35	40	50	65	-	-	-
anchor in shear loading with h _{ef,red}	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35	40	50	65	-	-	-
Outside diameter of	fanchor	\mathbf{d}_{nom}	[mm]	8	10	12	16	20	24	27

Würth Fixanchor W-FAZ

Performance Characteristic values for **shear loads**, **W-FAZ**, **cracked** and **non-cracked concrete**, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C6: Characteristic resistance for seismic loading, W-FAZ, standard anchorage depth,performance category C1 and C2, design according to TR045

Tension loads				
Anchor size			M12	M16
Installation safety factor	γ2	[-]	1.	.0
Steel failure, steel zinc plate	d			
Characteristic resistance C1	$N^0_{Rk,s,seis,C1}$	[kN]	40	60
Characteristic resistance C2	$N^0_{Rk,s,seis,C2}$	[kN]	40	60
Partial safety factor	γ́мs	[-]	1.	.5
Steel failure, stainless steel	,			
Characteristic resistance C1	$N^0_{Rk,s,seis,C1}$	[kN]	40	64
Characteristic resistance C2	$N^0_{Rk,s,seis,C2}$	[kN]	40	64
Partial safety factor	γ́мs	[-]	1.	.5
Pullout				
Characteristic resistance C1	$N^0_{Rk,p,seis,C1}$	[kN]	16	25
Characteristic resistance C2	$N^0_{Rk,p,seis,C2}$	[kN]	10.2	13.8

Shear loads										
Steel failure without lever arm, Steel zinc plated										
Characteristic resistance C1	$V^0_{Rk,s,seis,C1}$	[kN]	27	44						
Characteristic resistance C2	$V^0_{Rk,s,seis,C2}$	[kN]	16.2	35.7						
Partial safety factor	γ́мs	[-]	1.:	25						
Steel failure without lever ar	m, Stainless	steel	A4, HCR							
Characteristic resistance C1	$V^0_{Rk,s,seis,C1}$	[kN]	27	44						
Characteristic resistance C2	$V^0_{Rk,s,seis,C2}$	[kN]	16.2	35.7						
Partial safety factor	γ́мs	[-]	1.	25						

Würth Fixanchor W-FAZ

Performance

Characteristic resistance for **seismic loading**, **W-FAZ**, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045

de	sign acc. t	o TR 02	0 or CE	N/TS 1	992-4, A	nnex D				
Anchor size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel zinc plate	ed									
	R30			1.4	2.2	3.2	6.0	9.4	13.6	17.6
Characteristic	R60	-	-	1.1	1.8	2.8	5.2	8.2	11.8	15.3
resistance	R90	– N _{Rk,s,fi}	[kN]	0.8	1.4	2.4	4.4	6.9	10.0	13.0
	R120	-	-	0.7	1.2	2.2	4.0	6.3	9.1	11.8
Stainless steel										
	R30			3.8	6.9	11.5	21.5	33.5	48.2	_
Characteristic	R60	-		2.9	5.2	8.6	16	25.0	35.9	-
resistance	R90	– N _{Rk,s,fi}	[kN]	2.0	3.5	5.6	10.5	16.4	23.6	-
	R120	-		1.6	2.7	4.2	7.8	12.1	17.4	-
Shear load										
Steel failure wi	ithout lever	arm								
Steel zinc plate		ann								
	R30			1.6	2.6	3.8	7.0	11	16	20.6
Characteristic	R60	-	-	1.5	2.5	3.6	6.8	11	15	19.8
resistance	R90	- V _{Rk,s,fi}	[kN]	1.0	2.0	3.5	6.5	10	15	19.0
	R120	-	-	1.0	2.0	3.4	6.4	10	10	18.6
Stainless steel				1.0	2.0	0.1	0.1	10		10.0
	R30			3.8	6.9	11.5	21.5	33.5	48.2	_
Characteristic	R60	-	-	2.9	5.2	8.6	16	25.0	35.9	
resistance	R90	– V _{Rk,s,fi}	[kN]	2.0	3.5	5.6	10.5	16.4	23.6	_
	R120	-	-	1.6	2.7	4.2	7.8	12.1	17.4	_
Steel failure w		n					1.0			
Steel zinc plate										
	R30			1.7	3.3	5.9	15	29	50	75
Characteristic	R60	-	-	1.6	3.2	5.6	13	28	48	72
resistance	R90	– M ⁰ _{Rk,s,fi}	[Nm]	1.2	2.7	5.4	14	27	47	69
	R120	_	-	1.1	2.7	5.3	13	26	46	68
Stainless steel					2.5	1 0.0				
Stanness Steel	R30			3.8	9.0	17.9	45.5	88.8	153.5	-
Characteristic	R60	-		2.9	6.8	13.3	33.9	66.1	114.3	
Characteristic resistance	R90	– M ⁰ _{Rk,s,fi}	[Nm]	2.9	4.5	8.8	22.2	43.4	75.1	-
	R120	-	-	1.6	3.4	6.5	16.4	32.1	55.5	-

Würth Fixanchor W-FAZ

Performance

Characteristic values **for tension and shear load** under **fire exposure, W-FAZ**, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	Ν	[kN]	2.4	4.3	7.6	11.9	17.1	21.1	24
Displacement	δ _{N0}	[mm]	0.6	1.0	0.4	1.0	0.9	0.7	0.9
	δ_{N^∞}	[mm]	1.4	1.2	1.4	1.3	1.0	1.2	1.4
Tension load in non-cracked concrete	N	[kN]	5.7	7.6	11.9	16.7	23.8	29.6	34
Displacement δ_{N0}		[mm]	0.4	0.5	0.7	0.3	0.4	0.5	0.3
$\delta_{N\infty}$		[mm]	0.	.8	1.4		0.8		1.4
Displacements under seismic tension lo									
Displacements for DLS δ_{N}	seis,C2(DLS)	[mm]	-	-	4.9	3.6	-	-	-
Displacements for ULS $\delta_{N_{s}}$	seis,C2(ULS)	[mm]	-	-	15.7	9.5	-	-	-
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2.4	4.3	7.6	11.9	17.1	19.0	-
Displacement	δ _{N0}	[mm]	0.7	1.8	0.4	0.7	0.9	0.5	-
	δ_{N^∞}	[mm]	1.2	1.4	1.4	1.4	1.0	1.8	-
Tension load in non-cracked concrete	N	[kN]	5.8	7.6	11.9	16.7	23.8	33.5	-
Displacement	δ _{N0}	[mm]	0.6	0.5	0.7	0.2	0.4	0.5	-
	δ_{N^∞}	[mm]	1.2	1.0	1.4	0.4	0.8	1.1	-
Displacements under seismic tension lo									
Displacements for DLS $\delta_{N,}$	seis,C2(DLS)	[mm]	-	-	4.9	3.6	-	-	-
	seis,C2(ULS)	[mm]	-	-	15.7	9.5	-	-	-
Reduced anchorage depth									
Tension load in cracked concrete	N	[kN]	2.4	3.6	6.1	9.0	-	-	-
Displacement	δ _{N0}	[mm]	0.8	0.7	0.5	1.0	-	-	-
	δ_{N^∞}	[mm]	1.2	1.0	0.8	1.1	-	-	-
Tension load in non-cracked concrete	N	[kN]	3.7	4.3	8.5	12.6	-	-	-
Displacement	δ _{N0}	[mm]	0.1	0.2	0.2	0.2	-	-	-
	δ _{N∞}	[mm]	0.7	0.7	0.7	0.7	-	-	-

Würth Fixanchor W-FAZ

Performance Displacements under tension load

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dept	h								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6.9	11.4	17.1	31.4	36.8	64.9	96.8
Displacement	δ _{vo}	[mm]	2.0	3.2	3.6	3.5	1.8	3.5	3.6
	δ_{V^∞}	[mm]	3.0	4.7	5.5	5.3	2.7	5.3	5.4
Displacements under seism	ic shear	loads C	2						
Displacements for DLS $\delta_{\rm V,se}$	is,C2(DLS)	[mm]	-	-	3.5	4.3	-	-	-
$\begin{array}{l} \text{Displacements} \\ \text{for ULS} \end{array} \delta_{\text{V,se}} \end{array}$	is,C2(ULS)	[mm]	-	-	9.5	9.6	-	-	I
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7.3	11.4	17.1	31.4	43.8	70.6	I
Displacement	δ_{V0}	[mm]	1.9	2.4	4.0	4.3	2.9	2.8	-
	δ_{V^∞}	[mm]	2.9	3.6	5.9	6.4	4.3	4.2	-
Displacements under seism	iic shear	loads C	2						
	is,C2(DLS)	[mm]	-	-	3.5	4.3	-	-	-
$\begin{array}{l} \text{Displacements} \\ \text{for ULS} \end{array} \delta_{\text{V,se}} \end{array}$	is,C2(ULS)	[mm]	-	-	9.5	9.6	-	-	-
Reduced anchorage dept	า								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6.9	11.4	17.1	31.4	-	-	-
Displacement	δ_{V0}	[mm]	2.0	3.2	3.6	3.5	-	-	-
	$\delta_{V^{\infty}}$	[mm]	3.0	4.7	5.5	5.3	-	-	-
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7.3	11.4	17.1	31.4	-	-	-
Displacement	δ_{V0}	[mm]	1.9	2.4	4.0	4.3	-	-	-
	δ _{V∞}	[mm]	2.9	3.6	5.9	6.4	-	-	-

Würth Fixanchor W-FAZ

Performance Displacements under shear load

Table C10: Characteristic values for tension loads, W-FAZ-IG, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4 Anchor size M6 M8 M10 M12 Installation safety factor 1.2 [-] γ₂ Steel failure Characteristic tension resistance. $N_{Rk,s}$ [kN] 22.6 26.0 56.6 16.1 steel zinc plated Partial safety factor [-] 1.5 γ́Ms Characteristic tension resistance, 14.1 35.8 [kN] 25.6 59.0 N_{Rk,s} stainless steel A4, HCR Partial safety factor 1.87 [-] γ́Ms Pullout failure Characteristic resistance in N_{Rk,p} [kN] 5 9 12 20 cracked concrete C20/25 0,5 (fck,cube Increasing factor ψc [-] 25 Concrete cone failure Effective anchorage depth 45 [mm] 58 65 80 h_{ef} Factor for cracked concrete [-] 7.2 k_{cr}

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for **tension loads**, W-FAZ-IC, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Cable C11: Characteristic values for tension loads, W-FAZ-IG,non-cracked concrete, static and quasi-static action,design method A according to ETAG 001, Annex C or CEN/TS 1992-4									
Anchor size			M6	M8	M10	M12			
Installation safety factor	γ2	[-]		1.	.2				
Steel failure									
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16.1	22.6	26.0	56.6			
Partial safety factor	γ́Ms	[-]		1	.5				
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14.1	25.6	35.8	59.0			
Partial safety factor	γ́Ms	1.87							
Pullout									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30			
Increasing factor	creasing factor ψc [-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$					
Splitting $(N^0_{Rk,c}$ has to be replace	ed by $N^0_{Rk,sp.}$ The hi	igher resis	tance of Case 1	and Case 2 ma	y be applied.)				
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160			
Case 1		1		1	1	1			
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	16	25			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	3 h _{ef}						
Case 2									
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30			
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	5 h _{ef}						
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80			
Factor for non-cracked concrete	k _{ucr}	[-]		10).1				

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for **tension loads**, **W-FAZ-IG**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			M6	M8	M10	M12	
Installation safety factor	γ2	[-]		1.	.2		
W-FAZ-IG, steel zinc plated							
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5.8	6.9	10.4	25.8	
Steel failure without lever arm, Installa	tion type I	2					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5.1	7.6	10.8	24.3	
Steel failure with lever arm, Installation							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12.2	30.0	59.8	104.6	
Steel failure with lever arm, Installation							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	36.0	53.2	76.0	207	
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γ́Ms	[-]		1.	25		
Factor of ductility	k ₂	[-]	1.0				
W-FAZ-IG, stainless steel A4, HCR							
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5.7	9.2	10.6	23.6	
Partial safety factor	γ́Ms	[-]		1.	25		
Steel failure without lever arm, Installa	tion type I	2			-	-	
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7.3	7.6	9.7	29.6	
Partial safety factor	γ́Ms	[-]		1.25			
Steel failure with lever arm, Installation							
Characteristic bending resistance	М ⁰ _{Rk,s}	[Nm]	10.7	26.2	52.3	91.6	
Partial safety factor	γ́Ms	[-]		1.	56		
Steel failure with lever arm, Installation				1	1	1	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	28.2	44.3	69.9	191.2	
Partial safety factor	γ́Ms	[-]		1.	25		
Factor of ductility	k ₂	[-]		1.	.0		
Concrete pryout failure				_			
k factor	k ₍₃₎	[-]	1.5	1.5	2.0	2.0	
Concrete edge failure							
Effective length of anchor in shear loading	l _f	[mm]	45	58	65	80	
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for **shear loads**, **W-FAZ-IG**, **cracked and non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

able C13: Ch					crete C20/25	•	ure,
	sign acc. to T					10 000/00,	
Anchor size				M6	M8	M10	M12
Tension load							
Steel failure							
Steel zinc plate	d						
	R30			0.7	1.4	2.5	3.7
Characteristic	R60	- N _{Rk,s,fi}		0.6	1.2	2.0	2.9
resistance	R90		[kN] -	0.5	0.9	1.5	2.2
	R120			0.4	0.8	1.3	1.8
Stainless steel	A4, HCR		. I.		1	1	
	R30			2.9	5.4	8.7	12.6
Characteristic	R60			1.9	3.8	6.3	9.2
resistance	R90	N _{Rk,s,fi}	[kN] -	1.0	2.1	3.9	5.7
	R120			0.5	1.3	2.7	4.0
Shear load			· · · · ·				
Steel failure wit	hout lever arm	ı					
Steel zinc plate	d						
	R30			0.7	1.4	2.5	3.7
Characteristic	R60			0.6	1.2	2.0	2.9
resistance	R90	$V_{Rk,s,fi}$	[kN] -	0.5	0.9	1.5	2.2
	R120			0.4	0.8	1.3	1.8
Stainless steel	A4, HCR		I		I	I	
				2.9	5.4	8.7	12.6
Characteristic	R60	.,		1.9	3.8	6.3	9.2
resistance	R90	$V_{Rk,s,fi}$	[kN] -	1.0	2.1	3.9	5.7
	R120			0.5	1.3	2.7	4.0
Steel failure wit					1	1	
Steel zinc plate							
	R30			0.5	1.4	3.3	5.7
Characteristic	R60	0		0.4	1.2	2.6	4.6
resistance	R90	$M^0_{Rk,s,fi}$	[Nm] -	0.4	0.9	2.0	3.4
	R120			0.3	0.8	1.6	2.8
Stainless steel					1	1	
	R30			2.2	5.5	11.2	19.6
Characteristic	Den			1.5	3.9	8.1	14.3
resistance	R90	$M^0_{Rk,s,fi}$	[Nm] -	0.7	2.2	5.1	8.9
	R120			0.4	1.3	3.5	6.2

The characteristic resistance for pullout failure, concrete cone failure, concrete pryout failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for **tension and shear loads** under **fire exposure**, **W-FAZ-IG** cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Table C14: Displacements under tension load, W-FAZ-IG

Anchor size			M6	M8	M10	M12
Tension load in cracked concrete	Ν	[kN]	2.0	3.6	4.8	8.0
Displacements	δ _{N0}	[mm]	0.6	0.6	0.8	1.0
	δ _{N∞}	[mm]	0.8	0.8	1.2	1.4
Tension load in non-cracked concrete	Ν	[kN]	4.8	6.4	8.0	12.0
Displacements	δ _{N0}	[mm]	0.4	0.5	0.7	0.8
	$\delta_{N^{\infty}}$	[mm]	0.8	0.8	1.2	1.4

Table C15: Displacements under shear load, W-FAZ-IG

Anchor size			M6	M8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4.2	5.3	6.2	16.9
Displacements	δ _{vo}	[mm]	2.8	2.9	2.5	3.6
	$\delta_{V\!\infty}$	[mm]	4.2	4.4	3.8	5.3

Würth Fixanchor W-FAZ-IG

Performance Displacements under tension load and under shear load