

Allgemeine bauaufsichtliche Zulassung

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 23.06.2014 II 11-1.10.4-570/1

Zulassungsnummer:

Z-10.4-570

Antragsteller:

Hoesch Bausysteme GmbH Hammerstraße 11 57223 Kreuztal

Geltungsdauer

vom: 23. Juni 2014 bis: 23. Juni 2019

Zulassungsgegenstand:

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 14 Seiten und 43 Anlagen.

Seite 2 von 14 | 23. Juni 2014

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheiniqungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Seite 3 von 14 | 23. Juni 2014

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Die Sandwichelemente "Hoesch" bestehen aus einem Stützkern aus Polyurethan(PUR)-Hartschaum zwischen Deckschichten aus Metall. Sie werden in einer Baubreite bis 1200 mm und mit einer durchgehenden Kerndicke von mindestens 31 mm bis zu maximal 140 mm hergestellt. Als Deckschichten werden ebene, quasi-ebene, gewellte und trapezprofilierte Stahlbleche verwendet.

1.2 Anwendungsbereich

Die Sandwichelemente sind raumabschließende und wärmedämmende Außenwand- und Dachbauteile. Sie dürfen für die Nachweisführung von Stahlunterkonstruktionen in Form einer Drehbettung und kontinuierlich seitlichen Stützung (Schubsteifigkeit) herangezogen werden. Die Sandwichelemente fallen in die nach DIN EN 1993-1-3¹, Abschnitt 2(6) definierte Konstruktionsklasse II, das heißt, sie tragen zur Tragfähigkeit eines einzelnen Tragwerksteils bei. Eine weitergehende aussteifende Wirkung bezogen auf Gebäude, Gebäudeteile oder bauliche Anlagen ist nicht gegeben.

Die Sandwichelemente sind schwerentflammbar.

Als Dachbauteile dürfen nur Sandwichelemente mit trapezprofilierter und gewellter Außenseite verwendet werden. Sie sind widerstandsfähig gegen Flugfeuer und strahlende Wärme (harte Bedachung) nach DIN 4102-4 2 . Die Dachneigung muss mindestens 5 % ($riangle 3^\circ$) betragen.

2 Bestimmungen für die Bauprodukte

2.1 Allgemeines

Die Sandwichelemente und ihre Teile müssen den Besonderen Bestimmungen und den Anlagen dieses Bescheids sowie den beim Deutschen Institut für Bautechnik hinterlegten Angaben entsprechen.

2.2 Eigenschaften und Zusammensetzung

2.2.1 Deckschichten

Für die Deckschichten muss verzinkter Stahl S 280 GD+Z275, S 320 GD+Z275 oder S 350 GD+Z275 nach DIN EN 10346³ verwendet werden. Die Sichtseite muss der Zinkauflagegruppe 275 entsprechen; auf der dem Schaumstoff zugewandten Seite genügt eine Zinkauflage von 50 g/m².

Dem Korrosionsschutz durch Bandverzinkung gemäß Zinkauflagegruppe 275 nach DIN EN 10346 gilt der Korrosionsschutz durch Legierverzinkungen (ZA) und (AZ), in gleicher Schichtdicke wie die obengenannte Zinkauflage - aufgrund der geringeren Dichte gegenüber reinem Zink jedoch mit den entsprechend geringeren Mindestwerten 255 g/m² bzw. 150 g/m² - aufgebracht, als gleichwertig. Alternativ darf auch Korrosionsschutz durch eine andere Zinklegierung aufgebracht werden, unter Voraussetzung, dass der Korrosionsschutz der Stahlbänder über eine allgemeine bauaufsichtliche Zulassung geregelt ist.

DIN EN 1993-1-3:2010-12

² DIN 4102-4:1994-03

DIN EN 10346:2009-07

Allgemeine bauaufsichtliche Zulassung

Nr. Z-10.4-570

Seite 4 von 14 | 23. Juni 2014

Zur Verbesserung des Korrosionsschutzes dürfen die verzinkten Stahldeckschichten auf der dem Sandwichkern abgewandten Seite einen zusätzlichen Korrosionsschutz in Form einer Beschichtung nach DIN 55634⁴ erhalten.

Für die beschichteten verzinkten Stahlbleche muss mindestens der Nachweis der Schwerentflammbarkeit durch ein allgemeines bauaufsichtliches Prüfzeugnis oder durch eine allgemeine bauaufsichtliche Zulassung vorliegen.

Die Deckblechdicken sowie deren Geometrie müssen der Anlage 1 genügen; dabei sind folgende Maßangaben und Toleranzen zu berücksichtigen:

Deckblechdicken: DIN EN 10143⁵, Tabelle 2, "Eingeschränkte Grenzabmaße"

• Deckblechgeometrie: DIN EN 14509⁶, Tabelle 3

2.2.2 Kernwerkstoffe

Die Kernwerkstoffe aus Polyurethan(PUR)-Hartschaum müssen den Anforderungen nach Anlage 6.1 und 6.2 dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Als Schaumsysteme sind

- 2003 E (Treibmittel: Pentan),
- 2003 L (Treibmittel: Pentan),
- TK 2C-01 (Treibmittel: Pentan),
- TK 2D-02 (Treibmittel: Pentan) oder
- TK 1B-03 (Treibmittel: Pentan)

zu verwenden. Die Schaumrezepturen müssen mit der Hinterlegung beim Deutschen Institut für Bautechnik übereinstimmen.

Die Kernwerkstoffe dürfen nicht der Klasse F nach DIN EN 13501-1 entsprechen.

Für die Kernwerkstoffe, hergestellt aus den Schaumsystemen "2003 E" und "2003 L", dürfen die Wärmeleitfähigkeit bei Prüfung nach DIN EN 12667 bzw. nach DIN EN 12939 den Grenzwert der Wärmeleitfähigkeit vor Alterung $\lambda_{\text{grenz}} = 0,0231 \text{ W/(m·K)}$ nicht überschreiten.

Für die Kernwerkstoffe, hergestellt aus den Schaumsystemen "TK 2C-01" und "TK 2D-02", dürfen die Wärmeleitfähigkeit bei Prüfung nach DIN EN 12667 bzw. nach DIN EN 12939 nach Alterung entsprechend DIN EN 13165 9 , Abschnitt C.5.3 (einschließlich Alterungszuschlag), den Grenzwert der Wärmeleitfähigkeit λ_{grenz} = 0,0233 W/(m·K) nicht überschreiten.

Für den Kernwerkstoff, hergestellt aus dem Schaumsystem "TK 1B-03" darf die Wärmeleitfähigkeit bei Prüfung nach DIN EN 12667 bzw. nach DIN EN 12939 nach Alterung entsprechend DIN EN 13165, Abschnitt C.5.3 (einschließlich Alterungszuschlag), den Grenzwert der Wärmeleitfähigkeit λ_{αrenz} = 0,0242 W/(m·K) nicht überschreiten.

2.2.3 Fugenbänder

- Typ 1: "ISO BLOCO Coilband AH 120 TK", der Fa. ISO Chemie GmbH, D-Aalen, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-MPA-E-01-563
- Typ 2: "Illbruck Bauseal H+D", der Fa. Tremco Illbruck Produktion GmbH, D-Bodenwöhr, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-NDS04-391
- Typ 3: "ISO-COIL AV T01", der Fa. ISO Chemie GmbH, D-Aalen, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-261 30110-ift
- ⁴ DIN 55634:2010-04
- DIN EN 10143:2006-09
- 6 DIN EN14509:2007-02
- ⁷ DIN EN 12667:2001-05
- ⁸ DIN EN 12939:2001-02

DIN EN 13165:2013-03

Allgemeine bauaufsichtliche Zulassung

Nr. Z-10.4-570

Seite 5 von 14 | 23. Juni 2014

- Typ 4: "Norseal 2521", der Fa. Saint-Gobain Performance Plastics S.A., B-Chaineux, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-MPA-E-03-565
- Typ 5: "illbruck Paneel-Dichtband", der Fa. Tremco illbruck Produktion GmbH, D-Bodenwöhr, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. NDS04-529
- Typ 6: "VITOLEN 120 Soft Spulen nk", der Fa. VITO-Irmen GmbH & Co. KG, D Remagen
- Typ 7: "Illbruck TN 203 PUR-Seal", der Fa. Tremco Illbruck Produktion GmbH, D-Bodenwöhr, gemäß allgemeinem bauaufsichtlichen Prüfzeugnis Nr. P-NDS04-560

Die Abmessung und Rezeptur des Fugenbandes Typ 6 müssen mit der Hinterlegung beim Deutschen Institut für Bautechnik übereinstimmen.

Das Fugenband Typ 6 muss im eingebauten Zustand die Anforderungen an das Brandverhalten der Klasse E nach DIN EN 13501-1 erfüllen.

2.2.4 Sandwichelemente

Die Sandwichelemente müssen aus einem Kernwerkstoff gemäß Abschnitt 2.2.2, Deckschichten gemäß Abschnitt 2.2.1 und Fugenbändern gemäß Abschnitt 2.2.3 bestehen sowie die Anforderungen der Anlagen erfüllen; dabei sind alle Elementdicken D Nennmaße, für die folgende Toleranzen gelten:

 \pm 2 mm für D \leq 100 mm \pm 3 mm für D > 100 mm

In Abhängigkeit des Sandwichelement-Typs muss folgendes Schaumsystem zur Anwendung kommen

		Schaumsystem						
Bezeichnung	Anlage	2003 E	2003 L	TK 2C-01	TK 2D-02	TK1B-03		
isowand integral		Х						
isowand integral FIREtec-TK 2C-01	1.1 und			Х				
isowand integral FIREtec-TK 2D-02	1.2.4 bis				х			
isowand integral- TK 1B-03	1.2.7					х		
isowand vario		Х						
isowand vario FIREtec-TK 2C-01	1.2			х				
isowand vario FIREtec-TK 2D-02					х			
isowand vario- TK 1B-03						х		
isowelle		Х						
isowelle FIREtec-TK 2C-01				х				
isowelle FIREtec-TK 2D-02	1.3				х			
isowelle- TK 1B-03						х		

Seite 6 von 14 | 23. Juni 2014

		Schaumsystem					
Bezeichnung	Anlage	2003 E	2003 L	TK 2C-01	TK 2D-02	TK1B-03	
Thermowand			Х				
Thermowand FIREtec-TK 2C-01	1.4			х			
Thermowand FIREtec-TK 2D-02					х		
Thermowand k	1.5		Х				
Thermowand TL			Х				
Thermowand TL FIREtec-TK 2C-01	1.6			Х			
Thermowand TL FIREtec-TK 2D-02					х		
Thermodach			Х				
Thermodach FIREtec-TK 2C-01	1.7			х			
Thermodach FIREtec-TK 2D-02					x		
isodach integral			Х				
isodach integral FIREtec-TK 2C-01	1.8 und			х			
isodach integral FIREtec-TK 2D-02	1.9.2				х		
isodach mono			Х				
isodach mono FIREtec-TK 2C-01	1.9			х			
isodach mono FIREtec-TK 2D-02					х		

Das Brandverhalten der Sandwichelemente muss ggf. einschließlich eines zusätzlichen Korrosionsschutzes folgende Anforderungen nach DIN EN 13501-1 erfüllen.

Bezeichnung	Fugenband	Klasse nach DIN EN 13501-1			
isowand integral		B - s3,d0			
isowand integral FIREtec-TK 2C-01	T. 10. 1	B - s2,d0			
isowand integral FIREtec-TK 2D-02	Тур 1	B - s2,d0			
isowand integral-TK 1B-03		B – s3,d0			
isowand vario, D = 60 mm	Typ 2 odor Typ 2	B - s3,d0			
isowand vario, 60 mm < D ≤ 100 mm	Typ 2 oder Typ 3	C - s3,d0			
isowand vario FIREtec-TK 2C-01		B - s2,d0			
isowand vario FIREtec-TK 2D-02	Тур 3	B – s2,d0			
isowand vario-TK 1B-03		C - s3,d0			

Seite 7 von 14 | 23. Juni 2014

Bezeichnung	Fugenband	Klasse nach DIN EN 13501-1
isowelle	Typ 2 oder Typ 3	C - s3,d0
Isowelle FIREtec-TK 2C-01	Тур 3	B - s2,d0
Isowelle FIREtec-TK 2D-02	Тур 3	B - s2,d0
isowelle-TK 1B-03	Тур 3	C - s3,d0
Thermowand	Typ 1 oder Typ 5 oder Typ 7	C - s3,d0
Thermowand FIREtec-TK 2C-01	Typ 5 oder Typ 7	B - s2,d0
Thermowand FIREtec-TK 2D-02	Typ 5 oder Typ 7	B - s2,d0
Thermowand k	Тур 1	C - s3,d0
Thermowand TL	Typ 1 oder Typ 5 oder Typ 7	C - s3,d0
Thermowand TL FIREtec-TK 2C-01	Typ 5 oder Typ 7	B – s2,d0
Thermowand TL FIREtec-TK 2D-02	Typ 5 oder Typ 7	B – s2,d0
Thermodach	Typ 1 oder Typ 4 und Typ 6	C - s3,d0
Thermodach FIREtec-TK 2C-01	Typ 4 und Typ 6	B - s2,d0
Thermodach FIREtec-TK 2D-02	Typ 4 und Typ 6	B - s2,d0
isodach integral	Typ 1 oder Typ 4 und Typ 6	C - s3,d0
isodach integral FIREtec-TK 2C-01	Typ 4 und Typ 6	B - s2,d0
isodach integral FIREtec-TK 2D-02	Typ 4 und Typ 6	B - s2,d0
isodach mono	Typ 1 oder Typ 4 und Typ 6	C - s3,d0
isodach mono FIREtec-TK 2C-01	Typ 4 und Typ 6	B - s2,d0
isodach mono FIREtec-TK 2D-02	Typ 4 und Typ 6	B - s2,d0

2.3 Herstellung und Kennzeichnung

2.3.1 Herstellung

Die Sandwichelemente sind auf einer Anlage im kontinuierlichen Verfahren herzustellen. Die einzelnen Sandwichbauteile sind in Abhängigkeit vom Sandwichelement-Typ mit dem unter Abschnitt 2.2.4 angegebenen Fugenbandtyp herzustellen.

Die microprofilierten (Typ M) und V-profilierten (Typ V) Deckschichten dürfen nur untenliegend den Herstellungsprozess der Sandwichelemente durchlaufen.

2.3.2 Kennzeichnung

Die Sandwichelemente müssen vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Zusätzlich sind folgende Angaben anzubringen:

- Bezeichnung des Zulassungsgegenstandes
- Bemessungswert λ der Wärmeleitfähigkeit für den Kernwerkstoff
- "Brandverhalten siehe allgemeine bauaufsichtliche Zulassung"
- Stahlgüte der Deckschichten

Seite 8 von 14 | 23. Juni 2014

Außenseite der Elemente nach Anlage 1.1.1, 1.4 und 1.5

Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.4 Übereinstimmungsnachweis erfüllt sind.

2.4 Übereinstimmungsnachweis

2.4.1 Allgemeines

Die Bestätigung der Übereinstimmung der Sandwichelemente mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Sandwichelemente nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Sandwichelemente eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Sandwichelemente mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.4.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für die Durchführung der werkseigenen Produktionskontrolle hinsichtlich des Brandverhaltens sind die "Richtlinien zum Übereinstimmungsnachweis schwerentflammbarer Baustoffe (Baustoffklasse DIN 4102-B1) nach allgemeiner bauaufsichtlicher Zulassung¹⁰ sinngemäß anzuwenden.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- · Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Veröffentlicht in den "Mitteilungen" des Deutschen Instituts für Bautechnik.

Allgemeine bauaufsichtliche Zulassung

Nr. Z-10.4-570

Seite 9 von 14 | 23. Juni 2014

Im Rahmen der werkseigenen Produktionskontrolle sind mindestens die folgenden Prüfungen durchzuführen:

2.4.2.1 Deckschichten der Sandwichelemente

Vor der Kaltumformung sind von jedem Hauptcoil die Stahlkerndicke, die Dehngrenze, die Zugfestigkeit, die Bruchdehnung A_{80} , die Zinkschichtdicke und ggf. die Dicke des zusätzlichen Korrosionsschutzes nachzuweisen. Die Prüfungen sind nach Anlage 6.1 bzw. in Anlehnung an die dort genannten Normen durchzuführen.

Ist der Hersteller der Sandwichelemente nicht auch Hersteller der Deckschichten, so muss er vertraglich sicherstellen, dass die für die Sandwichelemente verwendeten Deckschichten einer zulassungsgerechten werkseigenen Produktionskontrolle sowie einer zulassungsgerechten Fremdüberwachung unterliegen.

Der Nachweis der Werkstoffeigenschaften, mit Ausnahme der Stahlkerndicke, darf dann auch durch Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 erbracht werden.

2.4.2.2 Kernwerkstoff der Sandwichelemente

Die Prüfungen des Kernwerkstoffs sind nach Anlage 6.1 durchzuführen.

2.4.2.3 Sandwichbauteile

Art und Häufigkeit der Prüfung siehe Anlage 6.1.

2.4.2.4 Beurteilung

Bei der Kontrolle der Schaumkennwerte darf kein Einzelwert unter den Werten der Anlage 6.1, Zeile 3 bis 9 liegen, andernfalls muss eine Auswertung der fortgeschriebenen Werte der Produktionsstreuung benutzt werden, um unter Berücksichtigung des großen Stichprobenumfangs den 5 %-Fraktilwert zu bestimmen. Ist der 5 %-Fraktilwert noch zu klein, müssen zusätzliche Prüfkörper entnommen, geprüft und erneut der 5 %-Fraktilwert bestimmt werden. Dieser darf nicht kleiner als der jeweils geforderte Wert sein, sonst muss das Bauteil als nicht brauchbar ausgesondert werden. Der k-Wert zur Berechnung des 5 %-Fraktilwertes darf in den genannten Fällen zu k = 1,65 angenommen werden.

2.4.3 Fremdüberwachung

In jedem Herstellwerk der Sandwichelemente ist die werkseigene Produktionskontrolle regelmäßig, mindestens zweimal jährlich durch eine Fremdüberwachung zu überprüfen.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Sandwichelemente durchzuführen, sind Proben für den in Anlage 6.2 festgelegten Prüfplan zu entnehmen und zu prüfen und können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für die Durchführung der Überwachung und Prüfung hinsichtlich des Brandverhaltens der Sandwichelemente sind die "Richtlinien zum Übereinstimmungsnachweis schwerentflammbarer Baustoffe (Baustoffklasse DIN 4102-B1) nach allgemeiner bauaufsichtlicher Zulassung" sinngemäß anzuwenden.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Tragfähigkeit und Gebrauchstauglichkeit

3.1.1 Allgemeines

Die Nachweise für den Grenzzustand der Tragfähigkeit und Gebrauchstauglichkeit der Sandwichelemente sowie ihrer Anschlüsse und Verbindungen an der Unterkonstruktion sind nach dem Teilsicherheitskonzept unter Beachtung der Abschnitte 1 und 4 zu führen.

11

Allgemeine bauaufsichtliche Zulassung Nr. Z-10.4-570

Seite 10 von 14 | 23. Juni 2014

Die Rechenwerte zur Ermittlung der Schnittgrößen und Spannungen sind der Anlage 3.1 zu entnehmen.

Für die Befestigung der Sandwichelemente mit der Unterkonstruktion dürfen nur die Verbindungselemente nach allgemeiner bauaufsichtlicher Zulassung Nr. Z-14.4-407, soweit die Besonderen Bestimmungen jener Zulassung es gestatten, verwendet werden. Bei indirekter Befestigung ist die Anlage 2.1 zu beachten.

Der Nachweis der Sandwichelemente ist gemäß Abschnitt E.2, E.3.4, E.5 und E.7 der Norm DIN EN 14509⁶ vorzunehmen; Abschnitt E.4 und E.6 kommen nicht zur Anwendung. Die Durchbiegungsbegrenzungen nach DIN EN 14509, Abschnitt E.5.4 sind einzuhalten. Die charakteristischen Werte für die Knitterspannungen sowie die zu berücksichtigenden Abminderungsfaktoren der Knitterspannungen in Abhängigkeit vom Deckschichttyp und von der Deckschichtdicke sind der Anlage 3.2 zu entnehmen.

Die Knitterspannungen für die äußeren Deckschichten am Zwischenauflager (s. Anlage 3.2; Deckschichttyp: "L", "V" "M" und "E") gelten nur bei Befestigung mit bis zu maximal drei Schrauben pro Meter. Für eine größere Anzahl von Schrauben pro Meter sind diese Knitterspannungen mit dem Faktor

$$k = (11 - n) / 8$$
 (n = Anzahl der Schrauben pro Meter)

abzumindern.

Diese Festlegungen gelten, sofern in den folgenden Abschnitten nichts anderes bestimmt ist. Der Nachweis der Tragfähigkeit der Schrauben sowie der Schraubenkopfauslenkungen hat nach allgemeiner bauaufsichtlicher Zulassung Nr. Z-14.4-407 zu erfolgen, wobei die Einwirkungen und deren Kombinationen nach den bauaufsichtlich eingeführten Technischen Baubestimmungen¹¹ zu ermitteln sind. Bei der Ermittlung der Einwirkungen für die Befestigungen darf bei durchlaufenden Sandwichelementen der Ansatz von Knittergelenken über den Innenstützen (Traglastverfahren nach DIN EN 14509, E.7.2.1 und E.7.2.3) nicht angesetzt werden (keine Kette von Einfeldelementen).

Die charakteristischen Werte der Zugtragfähigkeit $N_{R,k}$ und die charakteristischen Werte der Querkrafttragfähigkeit $V_{R,k}$ der Verbindungen sind der Anlage 2 bzw. der allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407 zu entnehmen.

Die Kombinationsbeiwerte ψ und die Teilsicherheitsbeiwerte γ_F sind den bauaufsichtlich eingeführten Technischen Baubestimmungen zu entnehmen. Die materialbezogenen Sicherheitsbeiwerte γ_M sind in folgender Tabelle aufgeführt:

Eigenecheften für die v. gilt	Grenzzustand der					
Eigenschaften, für die γ_M gilt	Tragfähigkeit	Gebrauchstauglichkeit				
Fließen einer Metalldeckschicht	1,10	1,00				
Knittern einer Metalldeckschicht im Feld und an einem Zwischenauflager (Interaktion mit der Auflagerreaktion)	1,30	1,10				
Schubversagen des Kerns	1,26	1,10				
Schubversagen einer profilierten Deckschicht	1,10	1,00				
Druckversagen des Kerns	1,26	1,10				
Aufnehmbare Auflagerkraft des Auflagers einer profilierten Deckschicht	1,10	1,00				
Versagen der direkten oder indirekten Befestigungen	1,33					

Siehe: <u>www.dibt.de</u> unter der Rubrik >Geschäftsfelder< und dort unter >Bauregellisten/Technische Baubestimmungen<

Seite 11 von 14 | 23. Juni 2014

3.1.2 Einwirkungen

Das Eigengewicht der Wandelemente darf beim Nachweis der Sandwichelemente unberücksichtigt bleiben. Das Eigengewicht der Dachelemente ist auf der Grundlage der in Anlage 3.1 aufgeführten Rohdichte des Kernwerkstoffs anzusetzen; die Rohdichte der Deckschichten sind den bauaufsichtlich eingeführten Technischen Baubestimmungen zu entnehmen.

Bei den Verbindungen der Wand- und Dachelemente mit der Unterkonstruktion ist das Eigengewicht der Elemente zu berücksichtigen.

Die Wind- und Schneelasten sind entsprechend den bauaufsichtlich eingeführten Technischen Baubestimmungen anzusetzen.

Als Nutzlasten dürfen nur Lasten gemäß DIN EN 1991-1-1/NA¹², Abschnitt 6.3.4.2, Tabelle 6.10DE einwirken. Ein rechnerischer Nachweis für diese Nutzlasten ist nicht erforderlich. Weitere Nutzlasten dürfen nicht zur Anwendung kommen.

Zusätzlich sind Temperaturdifferenzen zwischen den Deckschichten zu berücksichtigen.

Als maximale Temperaturdifferenz der gleichzeitig in beiden Deckschichten wirkenden Temperaturen ist für den Endzustand

$$\Delta T = T_1 - T_2$$

mit T₁ und T₂ gemäß wie folgt anzusetzen:

Deckschichttemperatur der Innenseite T₂

Im Regelfall ist von T_2 = 20 °C im Winter und von T_2 = 25 °C im Sommer auszugehen; dies gilt für den Nachweis der Tragfähigkeit und Gebrauchstauglichkeit.

In besonderen Anwendungsfällen (z. B. Hallen mit Klimatisierung – wie Reifehallen, Kühlhäuser) ist T₂ entsprechend der Betriebstemperatur im Innenraum anzusetzen.

Deckschichttemperatur der Außenseite T₁

Es ist von folgenden Werten für T₁ auszugehen:

Jahreszeit	Sonnen- einstrahlung	Grenzzustand der Tragfähigkeit	Grenzzustand der Gebrauchstauglichkei			
			Farbgruppe *	F	G**	
		T ₁ [°C]		[%]	T ₁ [°C]	
Winter		-20	alle	90 – 8	-20	
bei gleichzeitiger Schneelast		0	alle	90 – 8	0	
			I	90 – 75	+55	
Sommer	direkt	+80	Ш	74 – 40	+65	
Sommer			III	39 – 8	+80	
	indirekt***	+40	alle	90 – 8	+40	

Die maximale Temperaturdifferenz ΔT der gleichzeitig in beiden Deckschichten wirkenden Temperaturen ist für den Montagezustand entsprechend den örtlichen Gegebenheiten ggf. zusätzlich nachzuweisen.

DIN EN 1991-1-1/NA:2010-12

R_G: Reflexionsgrad bezogen auf Bariumsulfat = 100 % (Die angegebenen Helligkeitswerte beziehen sich auf das Messverfahren nach Hunter-L·a·b.)

Unter indirekter Sonneneinstrahlung auf die Wand wird der Fall einer vorgehängten, hinterlüfteten Fassade vor der Sandwichwand (wie z. B. oftmals bei Kühlhallen) verstanden.

Seite 12 von 14 | 23. Juni 2014

3.1.3 Beanspruchbarkeiten

Die charakteristischen Kennwerte der Beanspruchbarkeiten der Sandwichelemente sind den Anlagen dieser allgemeinen bauaufsichtlichen Zulassung, die der Schrauben der allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407 zu entnehmen. Für die in Abhängigkeit von der Unterkonstruktion ggf. vorzunehmende Reduzierung der Zugtragfähigkeit der Schrauben ist die allgemeine bauaufsichtliche Zulassung Nr. Z-14.4-407 zu beachten.

3.2 Unterkonstruktion

Für Stahlunterkonstruktionen darf angesetzt werden:

- Die stabilisierende Wirkung der Sandwichelemente als Drehbettung nach DIN EN 1993-1-1¹³, Anhang BB, Abschnitt BB.2.2 oder DIN EN 1993-1-3¹, Abschnitt 10.1.5.2.
 - Die DIN EN 1993-1-1/NA¹⁴, Abschnitt NA.2.2, Punkt NCI zu BB.2.2 ist zu berücksichtigen.
 - Die Ermittlung der Steifigkeit der Drehbettung hat nach nationalem Anhang DIN EN 1993-1-3/NA¹⁵, Abschnitt NA 2.2, Punkt NCI zu 10.1.5.2(2) zu erfolgen; die dort genannten Randbedingungen sind einzuhalten.
- Die kontinuierliche seitliche Stützung (Schubsteifigkeit) der Sandwichelemente nach DIN EN 1993-1-1¹³, Anhang BB, Abschnitt BB.2.1 oder DIN EN 1993-1-3¹, Abschnitt 10.1.1(5) und 10.1.1(6), sofern die Sandwichelemente direkt befestigt sind.
 - Die Ermittlung der Schubsteifigkeit muss auf der Grundlage des in [1]¹⁶ dargestellten Berechnungsverfahrens erfolgen. Das Verfahren geht davon aus, dass die Verbindungen in den Längsstößen nicht planmäßig bei der Übertragung von Schubkräften mitwirken; das heißt, dass eine möglich vorhandene Schubsteifigkeit nicht zur Weiterleitung von Kräften aus äußeren Einwirkungen in der Dach- oder Wandebene angesetzt werden darf.
 - Die in [1] genannten Randbedingungen sind einzuhalten.

Die Verbindungen der Sandwichelemente mit der Unterkonstruktion sind für die Beanspruchungen aus den vorgenannten beiden Punkten und den damit zu überlagernden Beanspruchungen aus äußeren Einwirkungen und Temperatur zu bemessen.

3.3 Brandschutz

3.3.1 Brandverhalten

Die Sandwichelemente sind schwerentflammbar.

Die Dachelemente sind widerstandsfähig gegen Flugfeuer und strahlende Wärme (harte Bedachung) nach DIN 4102-4/A1.

3.3.2 Feuerwiderstand

Sollen bei der Verwendung der Sandwichelemente Anforderungen hinsichtlich des Feuerwiderstandes erfüllt werden, muss die entsprechende Nachweisführung für diese Bauart im Rahmen einer allgemeinen bauaufsichtlichen Zulassung erfolgen.

DIN EN 1993-1-1:2010-12

DIN EN 1993-1-1/NA:2010-12

¹⁵ DIN EN 1993-1-3/NA:2010-12

^[1] Käpplein, S., Berner, K., Ummenhofer, T.: Stabilisierung von Bauteilen durch Sandwichelemente. Stahlbau 81 (2012), Heft 12, S. 951-958

Allgemeine bauaufsichtliche Zulassung

Nr. Z-10.4-570

Seite 13 von 14 | 23. Juni 2014

3.4 Wärmeschutz¹⁷

Für den rechnerischen Nachweis des Wärmeschutzes gilt DIN 4108-3. Für den Kernwerkstoff ist in Abhängigkeit vom Schaumsystem folgender Bemessungswert λ der Wärmeleitfähigkeit in Ansatz zu bringen:

"2003", "2003 L" und "TK 1B-03"

 $\lambda = 0.025 \text{ W/(m·K)}$

"TK 2C-01" und "TK 2D-02"

 $\lambda = 0.024 \text{ W/(m·K)}$

3.5 Schallschutz

Für die Anforderungen an den Schallschutz gilt DIN 4109 (Schallschutz im Hochbau). Werden an die Sandwichelemente Anforderungen zum Schallschutz gestellt, sind weitere Untersuchungen notwendig.

3.6 Korrosionsschutz

Entsprechend den Anwendungsbedingungen ist ein ausreichender Korrosionsschutz vorzusehen. Hierzu sind gegebenenfalls zusätzliche Maßnahmen erforderlich, die in jedem Einzelfall beurteilt werden müssen, wobei der Brandschutz zu beachten ist.

4 Bestimmungen für die Ausführung

4.1 Allgemeines

Die Sandwichelemente müssen gemäß folgender Bestimmungen und entsprechend den Angaben der Anlagen sowie unter Berücksichtigung der Planungsvorgaben (s. Abschnitt 3) eingebaut werden.

4.2 Bestimmungen für die ausführenden Firmen

Sandwichelemente dürfen nur von Firmen eingebaut werden, die die dazu erforderliche Erfahrung haben. Andere Firmen dürfen es nur, wenn für eine Einweisung des Montagepersonals durch Fachkräfte von Firmen, die auf diesem Gebiet Erfahrungen besitzen, gesorgt ist.

Benachbarte Sandwichelemente müssen in der Längsfuge passgenau angeordnet werden.

Die Verbindungselemente sind entsprechend der allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407 einzubringen, um eine einwandfrei tragende und erforderlichenfalls dichtende Verbindung sicherzustellen.

Der Witterung ausgesetzte Schrauben mit Unterlegscheibe und Elastomerdichtung sind von Hand oder mit einem Elektroschrauber mit jeweils entsprechend eingestelltem Tiefenanschlag einzuschrauben. Die Verwendung von Schlagschraubern ist grundsätzlich unzulässig.

4.3 Befestigung der Sandwichelemente an der Unterkonstruktion

Bei direkter Befestigung sind die Wand- und Dachelemente je Auflager mit mindestens zwei Schrauben pro Element entsprechend Anlage 5.1 und 5.3 zu befestigen, bei indirekter Befestigung gemäß Anlage 5.2. An den Auflagern aus Stahl und Nadelholz sind die Wand- und Dachelemente mit den hierfür nach Abschnitt 3.1 angegebenen Verbindungselementen zu verwenden, auf Auflagern aus Stahlbeton, Spannbeton oder Mauerwerk unter Zwischenschaltung von ausreichend verankerten Stahlteilen unter Beachtung der einschlägigen Zulassungen und Normen.

Für Sonderanwendungen, z. B. Kühlräume und Gefrierhäuser, ist die Betriebswärmeleitfähigkeit unter Berücksichtigung der jeweiligen Betriebstemperatur entsprechend der Richtlinie VDI 2055 festzulegen.

Seite 14 von 14 | 23. Juni 2014

Für e (Abstände der Schrauben untereinander) und e_R (Abstände der Schrauben zum Bauteilrand) sind die Angaben der Anlage 5 zu beachten. Die Auflagerbreite darf die Werte der Anlage 4 nicht unterschreiten.

4.4 Anschluss an Nachbarbauteile

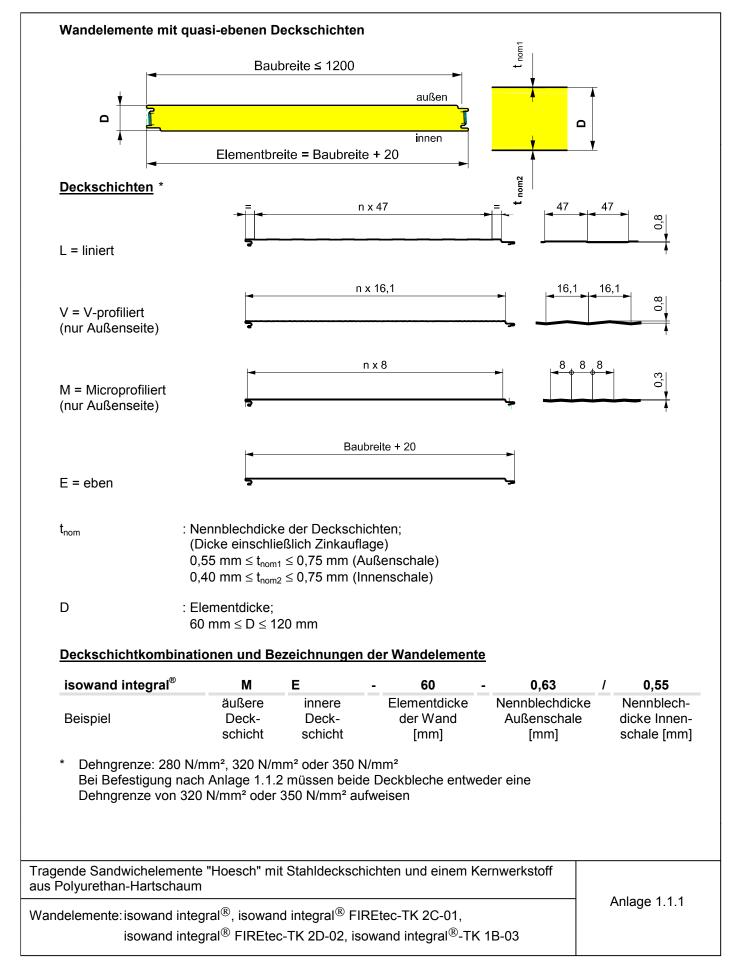
Die Wand- und Dachelemente sind so einzubauen und am Nachbarbauteil anzuschließen, dass Feuchtigkeit nicht durchdringen kann und Wärmebrücken vermieden werden. Diese Details sind im Einzelfall zu beurteilen.

4.5 Detailausbildung

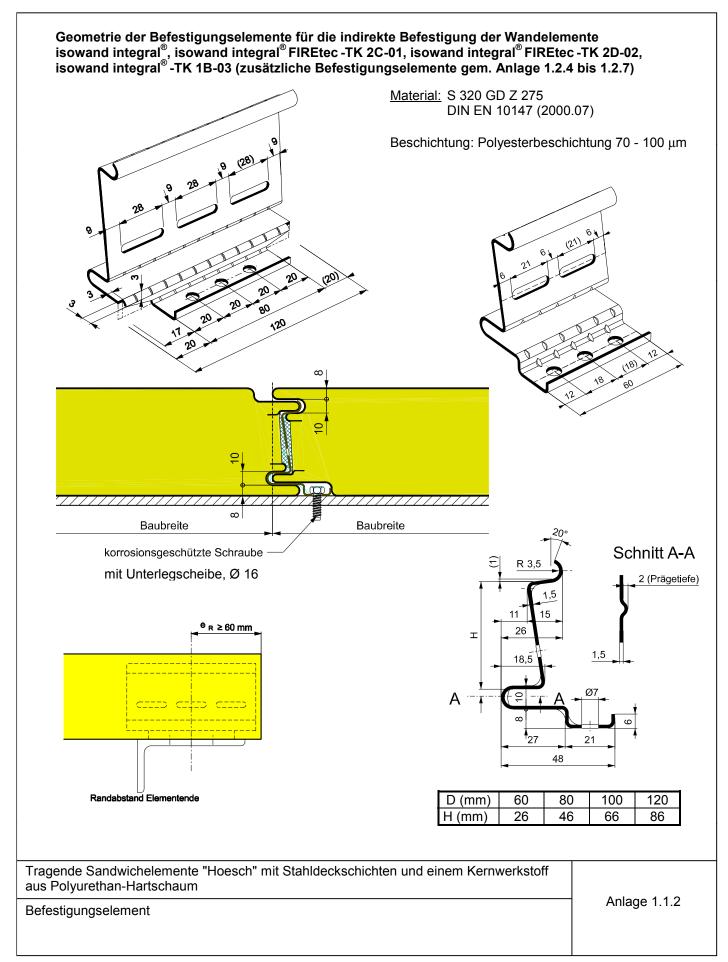
Entsprechend den Anwendungsbedingungen sind die Detailausbildungen, insbesondere bei offenen Schnittkanten, so auszubilden, dass keine Beeinträchtigung durch z. B Feuchtigkeit, Tierfraß oder Insektenbefall entsteht. Hierzu sind ggf. konstruktive Maßnahmen erforderlich, die in jedem Einzelfall beurteilt werden müssen, wobei der Brandschutz zu beachten ist.

4.6 Übereinstimmungsbestätigung

Die Firma, die die Sandwichelemente einbaut, muss für jedes Bauvorhaben eine Übereinstimmungsbestätigung ausstellen, mit der sie bescheinigt, dass die Kennzeichnung der von ihr eingebauten Sandwichelemente den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen und die Vorgaben des Planers (s. Abschnitt 3) sowie die Bestimmungen zum Einbau (s. Abschnitt 4) eingehalten wurden.


Diese Erklärung ist in jedem Einzelfall dem Bauherrn vorzulegen und von ihm in die Bauakte mit aufzunehmen.

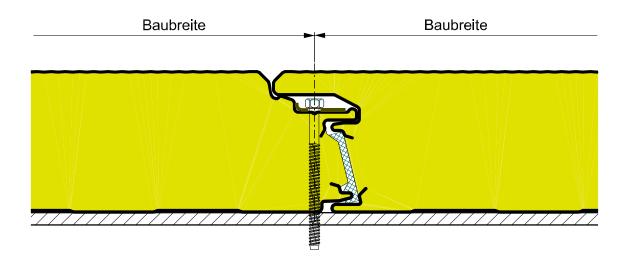
5 Bestimmungen für Nutzung, Unterhaltung und Wartung

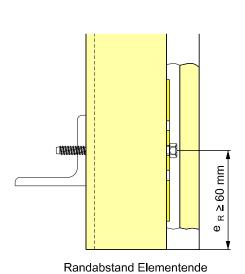

Dächer dürfen für übliche Erhaltungsmaßnahmen, Reparaturen, Reinigungsarbeiten und Zustandskontrollen nur von Einzelpersonen betreten werden.

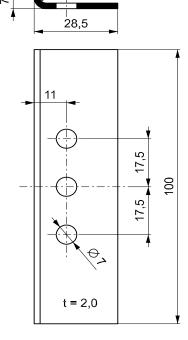
Manfred Klein	Beglaubigt
Referatsleiter	

Z32040.14 1.10.4-570/1

*	Dehngrenze: 280 N/mm², 320 N/mm² oder 350 N/mm²
	Bei Befestigung nach Anlage 1.2.2 müssen beide Deckbleche entweder eine
	Dehngrenze von 320 N/mm² oder 350 N/mm²


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Anlana 4.0.4
Wandelemente:isowand vario [®] , isowand vario [®] FIREtec -TK 2C-01, isowand vario [®] FIREtec -TK 2D-02, isowand vario [®] -TK 1B-03	Anlage 1.2.1

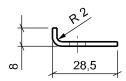

Z32040.14 1.10.4-570/1

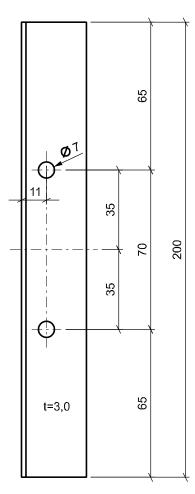


Geometrie der Befestigungselemente für die indirekte Befestigung der Wandelemente isowand vario $^{\circ}$, isowand vario $^{\circ}$ FIREtec -TK 2C-01, isowand vario $^{\circ}$ FIREtec -TK 2D-02, isowand vario $^{\circ}$ -TK 1B-03

(zusätzliche Befestigungselemente gem. Anlage 1.2.4 bis 1.2.7)

Material: Nichtrostender Stahl, X5 CrNi 18 - 10 (Werkstoffnummer: 1.4301) DIN EN 10088-2 (1995.08)


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum


Befestigungselement

Geometrie der Befestigungselemente für die indirekte Befestigung der Wandelemente isowand vario $^{\circ}$, isowand vario $^{\circ}$ FIREtec - TK 2C-01, isowand vario $^{\circ}$ FIREtec -TK 2D-02, isowand vario $^{\circ}$ -TK 1B-03

Lastverteilungsplatte I = 200 mm

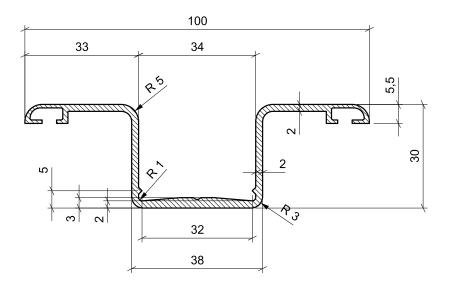
Blechdicke: 3,0 mm Gewicht: 0,14 kg/Stck.

Werkstoff: Nichtrostender Stahl DIN EN 10 088-2

X5 CrNi 18 10 (Werkst.-Nr.: 1.4301)

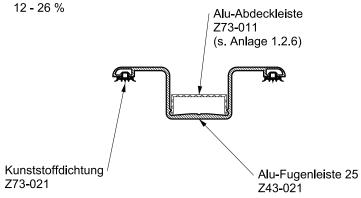
Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement



Geometrie des ggf. zusätzlichen Befestigungselementes

für die indirekte Befestigung der Wandelemente


isowand integral[®], isowand integral[®] FIREtec -TK 2C-01, isowand integral[®] FIREtec -TK 2D-02 und isowand integral[®] -TK 1B-03 sowie

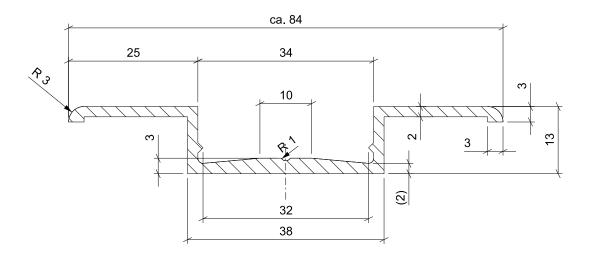
isowand vario[®], isowand vario[®] FIREtec -TK 2C-01, isowand vario[®] FIREtec -TK 2D-02, und isowand vario[®] -TK 1B-03 mit der AL-Fugenleiste 25

Werkstoff-Nr.: 3.3206.71 (DIN 1725-1) AIMgSi 0,5-F22

Werkstoff-Nr.: EN-AW -6060 (EN 573-3) AlMgSi 0,5-F22

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

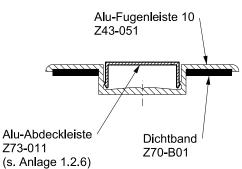
Befestigungselement Alu-Fugenleiste 25



Geometrie des ggf. zusätzlichen Befestigungselementes

für die indirekte Befestigung der Wandelemente

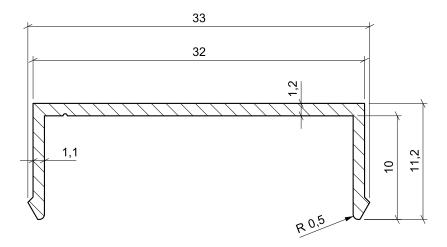
isowand integral®, isowand integral® FIREtec -TK 2C-01, isowand integral® FIREtec -TK 2D-02, und isowand integral®-TK 1B-03 sowie


isowand vario $^{^{@}}$,isowand vario $^{^{@}}$ FIREtec -TK 2C-01, isowand vario $^{^{@}}$ FIREtec -TK 2D-02, isowand vario $^{^{@}}$ -TK 1B-03 mit der AL-Fugenleiste 10

Werkstoff-Nr.: 3.3206.71 (DIN 1725-1) AlMgSi 0,5-F22

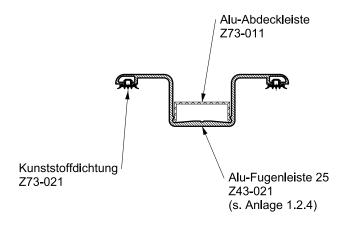
Werkstoff-Nr.: EN-AW -6060 (EN 573-3) AlMgSi 0,5-F22

Zugfestigkeit R.: 215 N/mm² 160 N/mm² Dehngrenze: Bruchdehnung A.: 12 - 26 %



Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement Alu-Fugenleiste 10


Geometrie der AL-Abdeckleiste bei Anwendung der AL-Fugenleisten der Anlagen 1.2.4 und 1.2.5

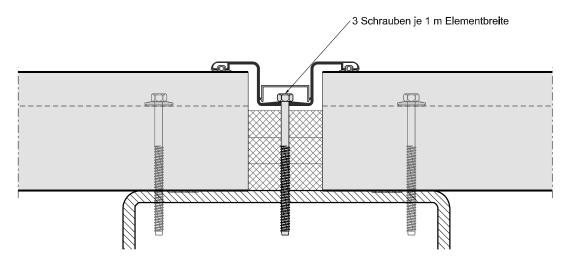
Werkstoff-Nr.: 3.3206.71 (DIN 1725-1) AIMgSi 0,5-F22

Werkstoff-Nr.: EN-AW -6060 (EN 573-3) AIMgSi 0,5-F22

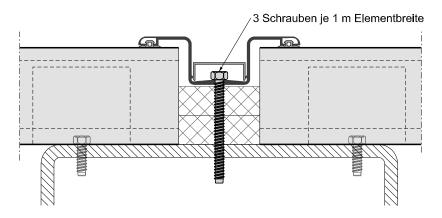
Zugfestigkeit R $_{\rm m}$: 215 N/mm 2 Dehngrenze: 160 N/mm 2 Bruchdehnung A $_{\rm m}$: 12 - 26 %

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement Alu-Abdeckleiste



Beispiele für die Anwendung des zusätzlichen Befestigungselementes nach Anlage 1.2.4 und 1.2.5 für die indirekte Befestigung der Wandelemente


isowand integral $^{\circ}$, isowand integral $^{\circ}$ FIREtec -TK 2C-01, isowand integral $^{\circ}$ FIREtec -TK 2D-02, isowand integral $^{\circ}$ -TK 1B-03 und

isowand vario $^{\rm @}$, isowand vario $^{\rm @}$ FIREtec -TK 2C-01, isowand vario $^{\rm @}$ FIREtec -TK 2D-02, isowand vario $^{\rm @}$ -TK 1B-03

1. Beispiel für die Anwendung mit "isowand vario" (Querfuge)

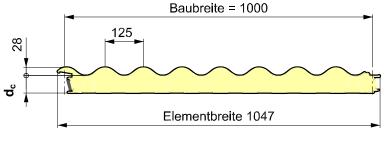
2. Beispiel für die Anwendung mit "isowand integral" (Querfuge)

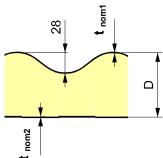
Die Fugenleiste verläuft senkrecht zur Spannrichtung der Sandwichelemente.

Die Fugenleiste wird nur im Bereich des Endauflagers zweier benachbarter hintereinander liegender Sandwichelemente, deren Stützweitenverhältnis zwischen 0,15 und 1 liegt, montiert.

Befestigungselement: Schraube EJOT JT-D-12H-5,5/6,3 x L gemäß der allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407 oder gleichwertige, allgemein bauaufsichtlich zugelassene Schraube, mit gleicher Kopfgeometrie und Stahlgüte.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum


Befestigungselement


Anlage 1.2.7

Z32040.14 1.10.4-570/1

Wand und Dachelemente mit gewellter Deckschicht: Welle 27/125

t_{nom}: Nennblechdicke der Deckschichten;

(Dicke einschließlich Zinkauflage)

0,60 mm $\leq t_{nom1} \leq$ 0,75 mm (Außenschale) 0,40 mm $\leq t_{nom2} \leq$ 0,75 mm (Innenschale)

d_c : durchgehende Kerndicke;

 $36 \text{ mm} \le d_c \le 76 \text{ mm}$

 h_w = 28 mm : Höhe der Welle

D : Elementdicke (Außenmaß);

 $64 \text{ mm} \leq D \leq 104 \text{ mm}$

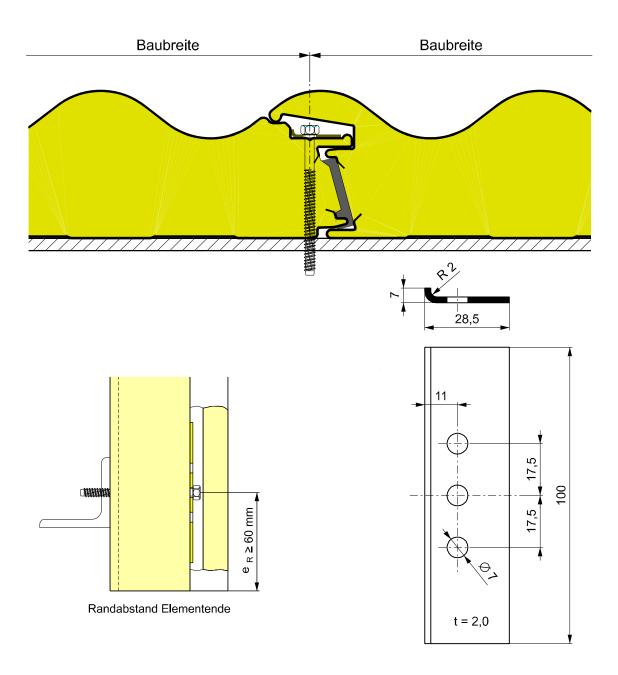
Deckschichtkombinationen und Bezeichnungen

isowelle [®]	W	L	-	84	-	0,50	1	0,40
Beispiel	äußere Deck- schicht	innere Deck- schicht		Elementdicke [mm]		Nennblechdicke Außenschale [mm]		Nennblechdicke Innenschale [mm]

Als innere Deckschicht können linierte und ebene Ausführungen nach Anlage 1.1.1 verwendet werden.

Dehngrenze der Deckbleche: 280 N/mm², 320 N/mm² oder 350 N/mm²

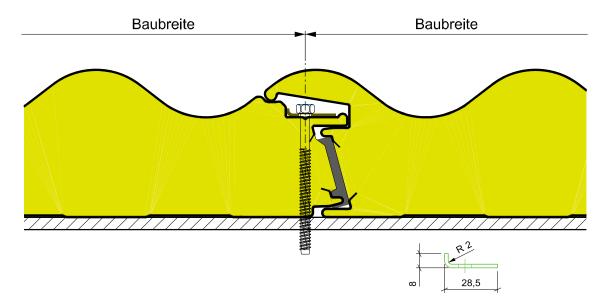
Bei Befestigung nach Anlage 1.3.2 müssen beide Deckbleche entweder eine Dehngrenze von 320 N/mm² oder 350 N/mm² aufweisen.

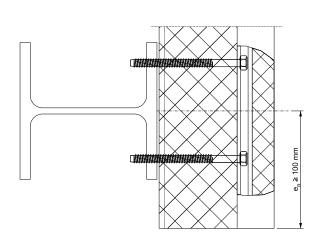

Tragende Sandwichelemente '	"Hoesch" mit Stahldeckschichten und einem	Kernwerkstoff
aus Polyurethan-Hartschaum		

Wand- und Dachelemente: isowelle®, isowelle® FIREtec -TK 2C-01,

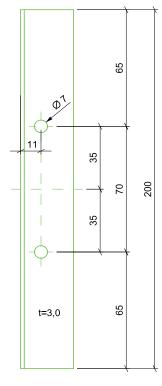
isowelle® FIREtec -TK 2D-02, isowelle®-TK 1B-03

Geometrie der Befestigungselemente für die indirekte Befestigung des Wand- und Dachelementes isowelle $^{\$}$, isowelle $^{\$}$ - FIREtec TK 2C-01, isowelle $^{\$}$ FIREtec TK 2D-02, isowelle $^{\$}$ TK 1B-03


Material: Nichtrostender Stahl, X5 CrNi 18 - 10 (Werkstoffnummer: 1.4301) DIN EN 10088-2 (1995.08)


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

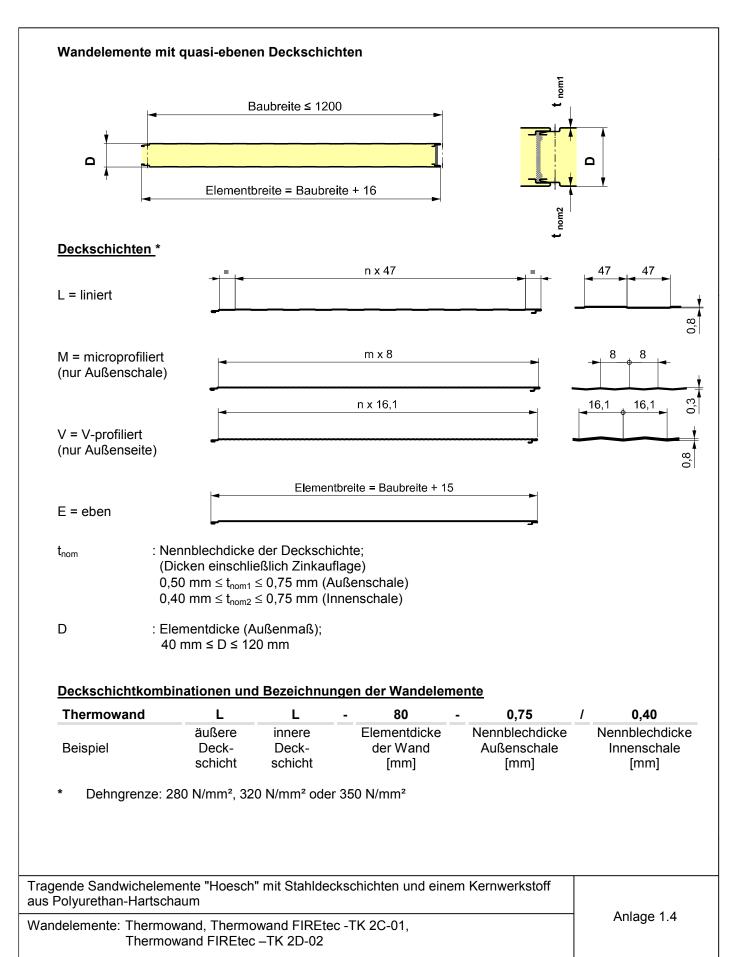
Befestigungselement



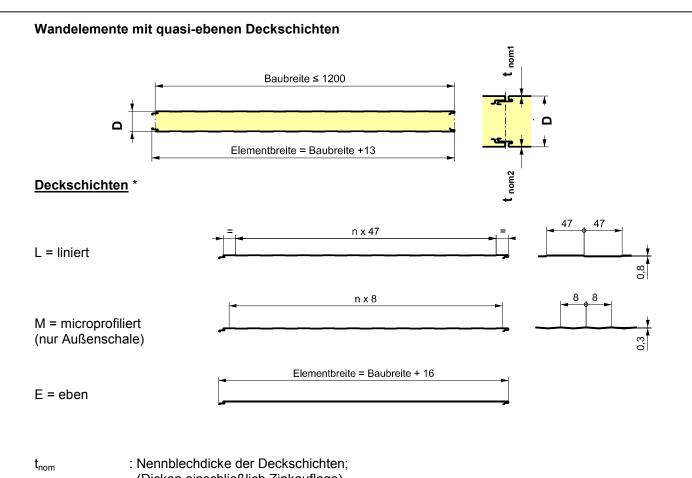
Geometrie der Befestigungselemente für die indirekte Befestigung des Wand- und Dachelementes isowelle $^{\mathbb{B}}$, isowelle $^{\mathbb{B}}$ - FIREtec TK 2C-01, isowelle $^{\mathbb{B}}$ - TK 2D-02, isowelle $^{\mathbb{B}}$ - TK 1B-03

Randabstand Elementende

Blechdicke: 3,0 mm Gewicht:


0,14 kg/Stck.
Nichtrostender Stahl DIN EN 10 088-2 Werkstoff

X5 CrNi 18 10 (Werkst.-Nr.: 1.4301)


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement

(Dicken einschließlich Zinkauflage)

0,50 mm $\leq t_{nom1} \leq$ 0,75 mm (Außenschale) 0,40 mm $\leq t_{nom2} \leq$ 0,75 mm (Innenschale)

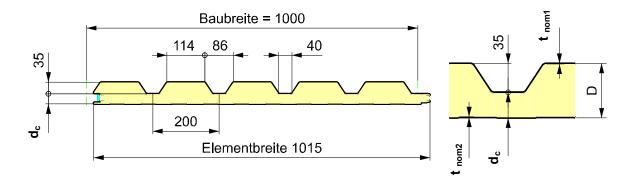
D : Elementdicke (Außenmaß);

 $40 \text{ mm} \le D \le 120 \text{ mm}$

Deckschichtkombinationen und Bezeichnungen der Wandelemente

Thermowand k	L	E	-	60	-	0,50	1	0,40
Beispiel	äußere Deck- schicht	innere Deck- schicht		Elementdicke der Wand [mm]		Nennblechdicke Außenschale [mm]		Nennblechdicke Innenschale [mm]

* Dehngrenze: 280 N/mm², 320 N/mm² oder 350 N/mm²


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum
West delegated. The second of the

Wandelement: Thermowand k

Anlage 1.5

Wandelemente mit profilierter Deckschicht: Trapezprofil T 35-5

t_{nom}: Nennblechdicke der Deckschichten;

(Dicke einschließlich Zinkauflage)

 $\begin{array}{l} 0,50 \ mm \leq t_{nom1} \leq 0,88 \ mm \\ 0,40 \ mm \leq t_{nom2} \leq 0,75 \ mm \end{array}$

 ${\sf d}_{\sf c}$: durchgehende Kerndicke;

 $31 \text{ mm} \le d_c \le 61 \text{ mm}$

 $h_T = 35 \text{ mm}$: Höhe des Trapezprofils

D : Elementdicke (Außenmaß);

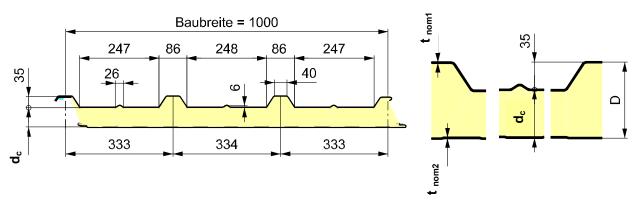
 $66~mm \leq D \leq 96~mm$

Deckschichtkombinationen und Bezeichnungen der Wandelemente

Thermowand TL	T35-5	L	- 66	- 0,50	1	0,40
Beispiel	äußere Deck- schicht	innere Deck- schicht	Elementdicke der Wand [mm]	Nennblechdicke Außenschale [mm])	Nennblechdicke Innenschale [mm]

Als innere Deckschicht können linierte und ebene Ausführungen nach Anlage 1.1.1 verwendet werden. Die Deckbleche müssen eine Dehngrenze von 280 N/mm², 320 N/mm² oder 350 N/mm²aufweisen.

Tragende Sandwichelemente "I	Hoesch" mit Stahldeckschichten und einem Kernwerkstoff
aus Polyurethan-Hartschaum	


Wandelemente: Thermowand TL, Thermowand TL FIREtec -TK 2C-01,

Thermowand TL FIREtec -TK 2D-02

Anlage 1.6

Dachelement mit profilierter Deckschicht: Trapezprofil T 35-3

 t_{nom} : Nennblechdicke der Deckschichten;

(Dicke einschließlich Zinkauflage)

 $\begin{array}{l} 0,50 \ mm \leq t_{nom1} \leq 0,88 \ mm \\ 0,40 \ mm \leq t_{nom2} \leq 0,75 \ mm \end{array}$

d_c : durchgehende Kerndicke;

 $40 \text{ mm} \le d_c \le 95 \text{ mm}$

 h_T = 35 mm : Höhe des Trapezprofils

D : Elementdicke (Außenmaß)

 $75 \text{ mm} \leq D \leq 130 \text{ mm}$

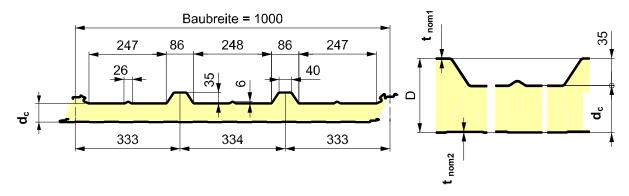
Deckschichtkombinationen und Bezeichnungen der Dachelemente

Thermodach	T35-3	L	-	75	-	0,75	1	0,40
Beispiel	äußere Deck- schicht	innere Deck- schicht		Elementdicke [mm]		Nennblechdicke Außenschale [mm]		Nennblechdicke Innenschale [mm]

Als innere Deckschicht können linierte und ebene Ausführungen nach Anlage 1.1.1 verwendet werden.

Die Deckbleche müssen eine Dehngrenze von 280 N/mm², 320 N/mm² oder 350 N/mm² aufweisen.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff
aus Polyurethan-Hartschaum


Dachelemente: Thermodach, Thermodach FIREtec -TK 2C-01,

Thermodach FIREtec -TK 2D-02

Anlage 1.7

Dachelement mit profilierter Deckschicht: Trapezprofil T 35-3 i

 t_{nom} : Nennblechdicke der Deckschichten;

(Dicke einschließlich Zinkauflage)

 $0,50 \text{ mm} \le t_{nom1} \le 0,88 \text{ mm}$ $0,40 \text{ mm} \le t_{nom2} \le 0,75 \text{ mm}$

d_c : durchgehende Kerndicke;

 $40 \text{ mm} \le d_c \le 120 \text{ mm}$

 $h_T = 35 \text{ mm}$: Höhe des Trapezprofils

D : Elementdicke (Außenmaß);

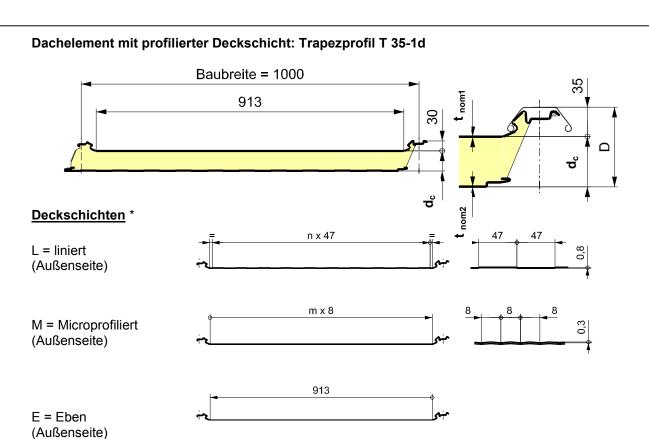
75 mm \leq D \leq 155 mm;

Deckschichtkombinationen und Bezeichnungen der Dachelemente

isodach integral [®]	T35-3i	L	-	75	-	0,75	1	0,55
Beispiel	äußere Deck- schicht	innere Deck- schicht		Elementdicke [mm]		Nennblechdicke Außenschale [mm]		Nennblechdicke Innenschale [mm]

Als innere Deckschicht können linierte und ebene Ausführungen nach Anlage 1.1.1 verwendet werden.

Bei indirekter Befestigung des Dachelementes gilt die Darstellung der Anlage 1.9.2


Dehngrenze der inneren Deckbleche: 280 N/mm², 320 N/mm² oder 350 N/mm²

Bei Befestigung nach Anlage 1.9.2 muss die Dehngrenze der äußeren Deckbleche 320 N/mm² oder 350 N/mm² betragen.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Aplaga 1.9
Dachelemente: isodach integral [®] , isodach integral [®] FIREtec - TK 2C-01, isodach integral [®] FIREtec - TK 2D-02	Anlage 1.8

Z32040.14 1.10.4-570/1

Als innere Deckschicht können linierte und ebene Ausführungen nach Anlage 1.1.1 verwendet werden.

t_{nom} : Nennblechdicke der Deckschichten;

(Dicke einschließlich Zinkauflage)

0,50 mm $\leq t_{nom1} \leq$ 0,88 mm (Außenschale) 0,40 mm $\leq t_{nom2} \leq$ 0,75 mm (Innenschale)

d_c : durchgehende Kerndicke;

 $40~mm \leq d_c \leq 120~mm$

 h_T = 35 mm : Höhe des Trapezprofils

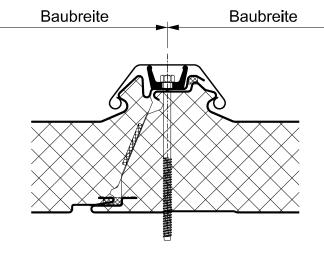
D : Elementdicke (Außenmaß);

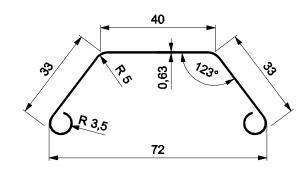
75 mm ≤ D ≤ 155 mm

Deckschichtkombinationen und Bezeichnungen der Dachelemente

isodach mono [®]	T35-1d	L	- 75	- 0,75	/ 0,55
	äußere	innere	Elementdicke	Nennblechdicke	Nennblechdicke
Beispiel	Deck-	Deck-	[mm]	Außenschale	Innenschale [mm]
	schicht	schicht		[mm]	

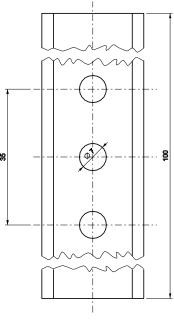
* Dehngrenze der inneren Deckbleche: 280 N/mm², 320 N/mm² oder 350 N/mm² Bei Befestigung nach Anlage 1.9.2 muss die Dehngrenze der äußeren Deckbleche 320 N/mm² oder 350 N/mm² betragen

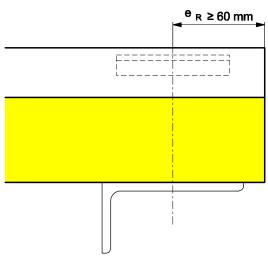

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum


Dachelemente: isodach mono[®], isodach mono[®] FIREtec -TK 2C-01,

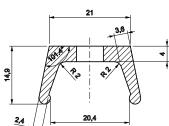
isodach mono® FIREtec -TK 2D-02

Geometrie des Befestigungselementes für die indirekte Befestigung der Dachelemente isodach integral[®], isodach mono[®], isodach integral[®] FIREtec -TK 2C-01, isodach mono[®] FIREtec -TK 2C-01, isodach integral[®] FIREtec -TK 2D-02, isodach mono[®] FIREtec -TK 2D-02





Abdeckleiste:

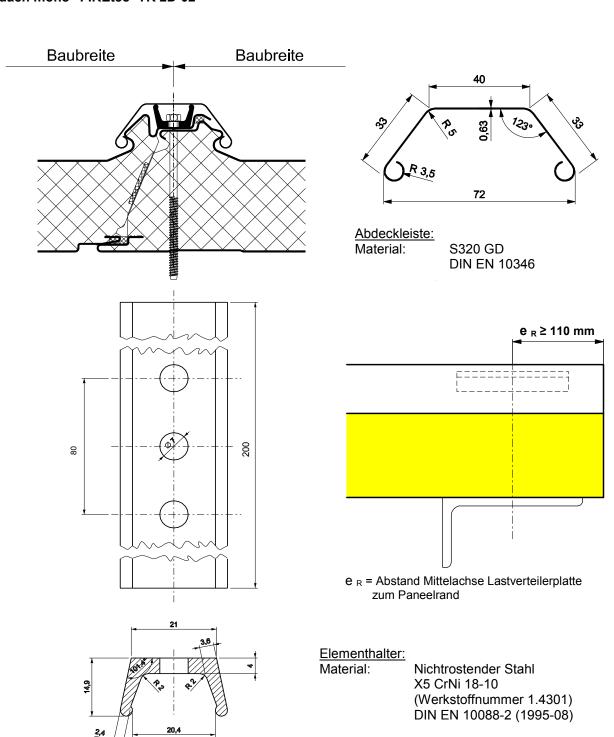

Material: S320 GD

DIN EN 10147 (1995.08)

e _R = Abstand Mittelachse Lastverteilerplatte zum Paneelrand

Elementhalter:

Material: AlMgSi 0.5 - F22


DIN EN 755-2 (1997.08)

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement

Geometrie des Befestigungselementes für die indirekte Befestigung der Dachelemente isodach integral[®], isodach mono[®], isodach integral[®] FIREtec -TK 2C-01, sodach mono[®] FIREtec -TK 2C-01, isodach integral[®] FIREtec -TK 2D-02, isodach mono[®] FIREtec -TK 2D-02

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigungselement

Verbindungen

Für die Verbindungen der Dach- und Wandelemente mit der Unterkonstruktion dürfen nur Schrauben der allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407 verwendet werden.

1. Direkte Befestigung

Die charakteristischen Werte der Tragfähigkeit ($N_{R,k}$, $V_{R,k}$) der Befestigungselemente sind der Zulassung Nr. Z-14.4-407 zu entnehmen.

2. Indirekte Befestigung

Die charakteristischen Werte gelten für den Nachweis der Einleitung der Zugkräfte in die Schrauben (Überknöpfen). Die Einleitung der Zugkräfte in die Unterkonstruktion ist gesondert nachzuweisen.

Charakteristische Werte der Tragfähigkeit

Zugtragfähigkeit N_{R,k} in [kN] je Befestigungselement: siehe Tabelle unter 2.1 bis 2.4 Die Zugkräfte gelten nur für Sandwichelemente mit Blechdicken ≥ der ggf. angegebenen Blechdicken. Elemente mit geringeren Blechdicken müssen direkt befestigt werden.

Querkrafttragfähigkeit V_{R,k}: siehe allgemeinen bauaufsichtlichen Zulassung Nr. Z-14.4-407

2.1 isowand vario, isowand vario FIREtec -TK 2C-01, isowand vario FIREtec -TK 2D-02, isowand vario-TK 1B-03

Deckschichtgüte: S 320 GD $(t_{nom} \ge 0.50 \text{ mm})$

Elementldicke	Zwischenauflager Endauflager					
D [mm]	Α	В	С	A 1)	B 1)	C 2)
60	3,06	5,03	4,63	2,34	2,34	
100	3,23	4,85	6,01	2,70	2,87	
140	3,40	6,08	7,38	2,55	2,67	3,15

Deckschichtgüte: S 350 GD $(t_{nom} \ge 0,50 \text{ mm})$

Elementdicke	Zwischenauflager End			ndauflager ³	3)	
D [mm]	Α	В	С	A 1)	B 1)	C 2)
60	3,23	5,39	4,63	2,51	2,51	
100	3,42	5,21	6,01	2,87	3,06	
140	3,40	6,08	7,38	2,55	2,67	3,15

Deckschichtgüte: S 320 GD $(t_{nom} \ge 0.55 \text{ mm})$

Elementdicke	Zwischer	nauflager	Endaufl	ager ^{1) 3)}
D [mm]	Α	В	Α	В
60	3,39	5,59	2,59	2,59
100	3,59	5,39	2,99	3,19

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Verbindungselemente

Anlage 2.1.1

Z32040.14 1.10.4-570/1

Verbindungen

Deckschichtgüte: S 350 GD (t_{nom} ≥ 0,55 mm)

Elementdicke	Zwischer	nauflager	Endauflager 1) 3)		
D [mm]	Α	В	Α	В	
60	3,59	5,99	2,79	2,79	
100	3,79	5,79	3,19	3,39	

- A: Eine Schraube mit Unterlegscheibe Ø 19 mm
- B: Eine Schraube im mittleren Loch des Befestigungselementes nach Anlage 1.2.2
- C: Zwei Schrauben je Befestigungselement nach Anlage 1.2.3
- 1) Randabstand Mitte Befestigungselemente e_R ≥ 60 mm.
- Randabstand Mitte Befestigungselemente e_R ≥ 100 mm. Ist der Randabstand der Befestigungselemente ≥ 500 mm, gelten die Werte für das Zwischenauflager. Zwischenwerte können linear interpoliert werden.
- ³⁾ Bei zusätzlicher Aluminiumschiene nach Anlage 1.2.4 und 1.2.5 kann für das Endauflager folgende zusätzliche charakteristische Zugtragfähigkeit N_{R,k,Alu} in [kN/m] je AL-Fugenleiste angesetzt werden:

Stützweitenverhäl gehaltenen Sar 0,15 ≤ L ₁	ndwichelemente	Stützweitenverhältnis der beidseitig gehaltenen Sandwichelemente $0.5 \le L_1/L_2 \le 1.0$					
Alu-Fugenleiste 25 (s. Anlage 1.2.4) Z 43-021	Alu-Fugenleiste 10 (s. Anlage 1.2.5) Z 43-051	Alu-Fugenleiste 25 (s. Anlage 1.2.4) Z 43-021	Alu-Fugenleiste 10 (s. Anlage 1.2.5) Z 43-051				
Zugtragfähigkeit N _{R,k,Alu} [kN/m]							
1,1	2,6	3,7	4,0				

 L_1 und L_2 sind benachbarte Stützweiten mit $L_1 \leq L_2$

2.2 isowand integral, isowand integral FIREtec -TK 2C-01, isowand integral FIREtec -TK 2D-02, isowand integral-TK 1B-03

Deckschichtgüte: S 320 GD

Elementdicke D [mm]	Nennblech- dicke t _{nom} [mm] ³⁾	Zwischenauflager Klammerbreite 60 mm 120 mm			Endauflager ⁴⁾ Klammerbreite mm ¹⁾ 120 mm ²⁾		
60	0,60	2,75	3,26	1,18	1,40	2,07	
120		3,19	3,63	1,46	1,60	2,99	
60	0,55	2,63	3,11	1,14	1,34	1,99	
120		2,75	3,14	1,26	1,38	2,58	

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Verbindungselemente

Anlage 2.1.2

Verbindungen

Deckschichtgüte: S 350 GD

Elementdicke	Nennblech- dicke	Zwischenauflager Klammerbreite		Endauflager ⁴⁾ Klammerbreite		
D [mm]	t _{nom} [mm] 3)	60 mm	120 mm	60 mm ¹⁾	120 mm ¹⁾	120 mm ²⁾
60	0,60	2,98	3,51	1,28	1,50	2,23
120	0,00	3,43	3,91	1,58	1,72	3,16
60	0,55	2,83	3,35	1,22	1,44	2,15
120	0,55	2,98	3,38	1,36	1,48	2,78

Eine Schraube im mittleren Loch des Befestigungselementes nach Anlage 1.1.2

- ¹⁾ Randabstand Mitte Befestigungselemente $e_R \ge 60$ mm.
- Randabstand Mitte Befestigungselemente e_R ≥ 200 mm.
 Ist der Randabstand der Befestigungselemente ≥ 500 mm, gelten die Werte für das Zwischenauflager.
 Zwischenwerte können linear interpoliert werden.
- Bei indirekter Befestigung müssen beide Deckschichten die gleiche Dicke haben.
- bei zusätzlicher Aluminiumschiene nach Anlage 1.2.4 und 1.2.5 kann für das Endauflager folgende zusätzliche charakteristische Zugtragfähigkeit N_{R,k,Alu} in [kN/m] je AL-Fugenleiste angesetzt werden:

0.000		0.00		
Stützweitenverhältr	ns der beidseitig	Stützweitenverhältnis	der beidseitig gehaltenen	
gehaltenen Sand	lwichelemente	Sandwichelemente		
$0.15 \le L_1/L$	_2 < 0,5	$0.5 \le L_1/L_2 \le 1.0$		
Alu-Fugenleiste 25	Alu-Fugenleiste 10	Alu-Fugenleiste 25	Alu-Fugenleiste 10	
(s.Anlage 1.2.4)	(s.Anlage 1.2.5)	(s.Anlage 1.2.4)	(s.Anlage 1.2.5)	
Z 43-021	Z 43-051	Z 43-021	Z 43-051	
Zugtragfähigkeit N _{R,k,Alu} in [kN/m]				
1,6	4,9	4,3	6,2	

 L_1 und L_2 sind benachbarte Stützweiten mit $L_1 \le L_2$

2.3 isowelle, isowelle FIREtec -TK 2C-01, isowelle FIREtec -TK 2D-02, isowelle-TK 1B-03

 $(t_{nom1} = 0.60 \text{ mm}, t_{nom2} = 0.75 \text{ mm})$

Deckschichtgüte: S 320 GD

Elementdicke der	Zwischenauflager				Endauflage	er
isowelle, D [mm]	Α	В	С	$A^{1)}$	B ¹⁾	$C^{2)}$
64	4,19	6,58		2,39	2,39	
84	3,99	6,38	8,08	2,69	2,79	4,58
104	3,79	6,18	7,83	2,99	3,19	4,28

Deckschichtgüte: S 350 GD

Elementdicke der	Zwischenauflager				Endauflage	
isowelle, D [mm]	Α	В	С	$A^{1)}$	B ¹⁾	$C^{2)}$
64	4,39	7,18		2,59	2,59	
84	4,19	6,88	8,26	2,89	2,99	4,69
104	3,99	6,58	8,37	3,19	3,39	4,58

- A: Eine Schraube mit Unterlegscheibe Ø 19 mm
- B: Eine Schraube im mittleren Loch des Befestigungselementes nach Anlage 1.3.2
- C: Zwei Schrauben mit Befestigungselement gem. Anlage 1.3.3
- 1) Randabstand Mitte Befestigungselemente e_R ≥ 60 mm
- Randabstand Mitte Befestigungselemente $e_R \ge 00 \text{ mm}$

Ist der Randabstand der Befestigungselemente ≥ 500 mm, gelten die Werte für das Mittenauflager. Zwischenwerte können linear interpoliert werden.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	
Verbindungselemente	Anlage 2.1.3

Verbindungen

2.4 isodach integral, isodach mono

Deckschichtgüte: S 320 GD und S 350 GD ($t_{nom1} \ge 0,50$ mm)

Elementdicke des Daches	Zwischenauflager		Endauflager		l 1)
D [mm]	Α	С	A ¹⁾	$A^{3)}$	C ¹⁾
75	4,87		2,62	3,78	
95	6,23	3,30	2,75	4,12	2,27
115	7,58	3,30	2,87	4,46	2,36
155	7,58	3,30	2,87	4,46	2,53

Deckschichtgüte: S 320 GD $(t_{nom1} \ge 0.75 \text{ mm})$

Elementdicke des Daches	Zwischer	nauflager	Endauflager		
D [mm]	Α	В	$A^{1)}$	B ²⁾	
75	5,62		2,70		
95	6,30	7,10	2,93	3,87	
115	6,98	7,62	3,15	4,63	
155	6,98	8,67	3,15	6,14	

Deckschichtgüte: S 350 GD $(t_{nom1} \ge 0.75 \text{ mm})$

Elementdicke des Daches	Zwischer	nauflager	Endauflager		
D [mm]	Α	В	$A^{1)}$	B ²⁾	
75	6,06		2,90		
95	6,80	7,10	3,15	3,87	
115	7,53	7,62	3,39	4,63	
155	7,53	8,67	3,39	6,14	

- A: Eine Schraube im mittleren Loch des Befestigungselementes nach Anlage 1.9.2
- B: Zwei Schrauben in den äußeren Löchern des Befestigungselementes gem. Anlage 1.9.3 (Abstand der Schrauben untereinander 80 mm)
- C: Eine Schraube mit Unterlegscheibe Ø 19 mm
- 1) Randabstand Mitte Befestigungselemente e_R ≥ 60 mm.
- ²⁾ Randabstand Mitte Befestigungselemente e_R ≥ 110 mm
- Randabstand Mitte Befestigungselemente $e_R \ge 250$ mm.

Ist der Randabstand der Befestigungselemente ≥ 500 mm, gelten die Werte für das Zwischenauflager. Zwischenwerte können linear interpoliert werden.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Verbindungselemente

Anlage 2.1.4

Verbindungen

2.5 isodach integral FIREtec -TK 2C-01, isodach mono FIREtec -TK 2C-01, isodach integral FIREtec -TK 2D-02 und isodach mono FIREtec -TK 2D-02

Deckschichtgüte: S 320 GD und S 350 GD $(t_{nom1} \ge 0,50 \text{ mm})$

Elementdicke des Daches Zwischenauflager		Endauflager			
D [mm]	Α	С	A ¹⁾	A ³⁾	C ¹⁾
75	3,82		2,05	2,96	
95	4,89	3,30	2,16	3,23	2,27
115	5,95	3,30	2,26	3,50	2,36
155	5,95	3,30	2,26	3,50	2,53

Deckschichtgüte: S 320 GD $(t_{nom1} \ge 0.75 \text{ mm})$

Elementdicke des Daches	Zwischenauflager		Endau	ıflager
D [mm]	A B		A ¹⁾	B ²⁾
75 95 115 155	5,18 6,05 6,91 6,91	7,10 7,62 8,67	2,48 2,80 3,12 3,12	 3,87 4,63 6,14

- A: Eine Schraube im mittleren Loch des Befestigungselementes nach Anlage 1.9.2
- B: Zwei Schrauben in den äußeren Löchern des Befestigungselementes gem. Anlage 1.9.3 (Abstand der Schrauben untereinander 80 mm)
- C: Eine Schraube mit Unterlegscheibe Ø 19 mm
- ¹⁾ Randabstand Mitte Befestigungselemente $e_R \ge 60$ mm.
- ²⁾ Randabstand Mitte Befestigungselemente e_R ≥ 110 mm
- Randabstand Mitte Befestigungselemente $e_R \ge 250$ mm.

Für die Verbindungen von Zubehör- und Formteilen siehe allgemeine bauaufsichtliche Zulassung: "Verbindungselemente zur Verwendung bei Konstruktionenmit Kaltprofilen aus Stahlblechen insbesondere mit Stahlprofilen"-Zulassungsbescheid Nr. Z-14.1-4

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Verbindungselemente

Anlage 2.1.5

Rechenwerte zur Ermittlung der Spannungen und Schnittgrößen

1.
isowand integral, isowand integral FIREtec -TK 2C-01,
isowand integral FIREtec -TK 2D-02, isowand integral -TK 1B-03,
isowand vario, isowand vario FIREtec -TK 2C-01,

isowand integral FIREtec -TK 2D-02, isowand integral -TK 1B-03, isowand vario, isowand vario FIREtec -TK 2C-01, isowand vario FIREtec -TK 2D-02, isowand vario-TK 1B-03, isowelle, isowelle FIREtec -TK 2C-01, isowelle FIREtec -TK 2D-02, isowelle-TK 1B-03

Elementdicke D bzw.
durchgehende Kerndicke dc
[mm]

isowelle, isowelle FIREtec - I K 2C-01, isowelle F				
isowelle-TK 1B-03		36 - 100	120 - 140	
Elastizitätsmodul E _C [MPa]	3,1	3,1		
Schubmodul (Kern), G _c [MPa]		2,7	2,7	
Schubfestigkeit (Kern), f _{cv} [MPa]	0,12	0,09		
Langzeit-Schubfestigkeit, f _{cv} [MPa]		0,06		
Druckfestigkeit (Kern), f _{cc} [MPa]		0,08	0,08	
Zugfestigkeit mit Deckschicht, f _{ct} [MPa]		0,06	0,06	
	φ 2000	2,4		
Kriechfaktoren	φ 100.000	7,0		

2.

Thermowand, Thermowand k, Thermowand TL, Thermodach, isodach integral, isodach mono

Elementdicke D bzw.					
durchgehende Kerndicke d _c					
[mm]					

isodacii iliolio	F	[]			
		31 - 100	120		
Elastizitätsmodul E _C [MPa]	Elastizitätsmodul E _C [MPa]				
Schubmodul (Kern), G _c [MPa]	3,3	2,7			
Schubfestigkeit (Kern), f _{cv} [MPa]	Schubfestigkeit (Kern), f _{cv} [MPa]				
Langzeit-Schubfestigkeit, f _{cv} [MPa]	Langzeit-Schubfestigkeit, f _{cv} [MPa]				
Druckfestigkeit (Kern), f _{cc} [MPa]	Druckfestigkeit (Kern), fcc [MPa]				
Zugfestigkeit mit Deckschicht, f _{ct} [MPa]	0,06	0,06			
	φ 2000	1,5	1,7		
Kriechfaktoren	φ 100.000	7,0	7,0		

Zwischenwerte dürfen linear interpoliert werden.

Stahldeckschichten:
Dehngrenze [N/mm²] 280, 320 bzw. 350

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff	:
aus Polyurethan-Hartschaum	

Kennwerte

Anlage 3.1.1

Rechenwerte zur Ermittlung der Spannungen und Schnittgrößen

3.

Thermowand isodach inte	d FIREtec -TK 2C-01, d TL FIREtec -TK 2C-01, Thermodach FIREte gral FIREtec -TK 2C-01, isodach mono FIREt d FIREtec -TK 2D-02,	Elementdicke D bzw. durchgehende Kerndicke d _c [mm]		
Thermowand TL FIREtec -TK 2D-02, Thermodach FIREtec -TK 2D-02, isodach integral FIREtec -TK 2D-02, isodach mono FIREtec -TK 2D-02		31 - 100	120	
	Elastizitätsmodul E _C [MPa]	3,1	3,1	
·	Schubmodul (Kern), G _c [MPa]	2,7	2,7	
•	Schubfestigkeit (Kern), f _{cv} [MPa]			0,09
•	Langzeit-Schubfestigkeit, f _{cv} [MPa]			0,04
•	Druckfestigkeit (Kern), f _{cc} [MPa]		0,08	0,08
Zugfestigkeit mit Deckschicht, fct [MPa]			0,06	0,06
		φ 2000	2,4	2,4
	Kriechfaktoren		7.0	7.0

Zwischenwerte dürfen linear interpoliert werden.

Stahldeckschichten: Dehngrenze [N/mm²]	280, 320 bzw. 350

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Auto 2 0 4 0
Kennwerte	Anlage 3.1.2

1. isowand integral, isowand integral FIREtec -TK 2C-01, isowand integral FIREtec -TK 2D-02, isowand integral-TK 1B-03,

isowand vario, isowand vario FIREtec -TK 2C-01, isowand vario FIREtec -TK 2D-02, isowand vario-TK 1B-03,

isowelle, isowelle FIREtec -TK 2C-01, isowelle FIREtec -TK 2D-02, isowelle-TK 1B-03

1.1 für äußere Deckschichten:

1.1.1 Quasiebene Deckschichten

			Knitterspannungen [MPa]				
Deckblechtyp	Anlage	Elementdicke D [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischen- auflager (erhöhte Temperatur)	
L	1.1 / 1.2	60 – 120 140	113 110	97 95	90 88	77 76	
M, V	1.1 / 1.2	60 80 120 140	142 143 148 166	122 123 127 143	114 114 118 133	98 98 101 114	
E	1.1 / 1.2	36 - 140	60	52	48	41	

1.1.2 Wellprofilierte Deckschichten

					Knittersp	annungen [MPa]
Deck- blech- typ	Dehn- grenze	Anlage	Durchgehende Kerndicke d _c [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischen- auflager (erhöhte Temperatur)
W	≥ 320 ≥ 280	1.3	36 - 76	320 280	320 280	320 280	320 280

1.2 für innere Deckschichten:

		Elementdicke D	Knitterspa	annungen [MPa]
Deckblechtyp	Anlage	bzw. durchgehende Kerndicke d₀ [mm]	im Feld	am Zwischenauflager
L	1.1 bis 1.3	60 – 120 140	113 110	102 100
E	1.1 bis 1.3	36 - 140	60	54

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	
Knitterspannungen	Anlage 3.2.1

1.3 Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren und inneren Deckschichten bei Nennblechdicke t_{nom}

				t _{nom} [mm]		
Deckblechtyp	Anlage	0,40	0,50	0,55	0,60	0,63	0,75
E, L, W	1.1.bis 1.3	1,0	1,0	1,0	1,0	1,0	1,0
M, V	1.1 / 1.2	-	1,0	1,0	1,0	0,94	0,83

1.4 Zusätzliche Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren Deckschichten beim Lastfall "Temperatur, Sommer" für die Sandwichelemente isowand integral-TK 2C-01, isowand integral-TK 2D-02, isowand vario-TK 2C-01 und isowand vario-TK 2D-02

Nennblechdicke t _{nom1} [mm]	Abminderungsfaktoren abhängig vom Deckblechtyp			
cnom1 [·····]	М	V		
0,50	0,46	0,52		
0,60	0,50	0,73		
0,75	0,74	0,87		

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Anlage 3.2.2

Knitterspannungen

2. Thermowand, Thermowand k, Thermowand TL, Thermodach, isodach integral, isodach mono

2.1 für äußere Deckschicht:

2.1.1 Quasiebene Deckschichten

		Elementdicke D		Knitte	rspannungen [MP	a]
Deckblech- typ	Anlage	bzw. durchgehende Kerndicke d₀ [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischenauflager (erhöhte Temperatur)
		40	166	143	133	114
L	1.4 / 1.5	60	148	127	118	101
		120	138	119	110	95
	1.9	40 – 100	142	122	114	98
<u> </u>	1.9	120	138	119	111	95
		40	161	138	129	111
M, V	1.4 / 1.5 / 1.9	80 – 100	149	128	120	103
		120	145	125	117	101
E	1.4 / 1.5 / 1.9	31 - 95	71	61	57	49
	1.4 / 1.5 / 1.9	120	66	57	53	46

2.1.2 Trapezprofilierte Deckschichten

					Knitters	oannungen [MI	Pa]
Deck- blech- typ	Dehn- grenze	Anlage	Durchgehende Kerndicke d _c [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischenauflager (erhöhte Temperatur)
T 35-5	≥ 320	1.6	31 61	201 191	201 191	201 191	201 191
T 35-3 T 35-3 i	≥ 320	1.7 / 1.8	40 - 120	320	320	320	320
T 35-5	≥ 280	1.6	31 61	176 167	176 167	176 167	176 167
T 35-3 T 35-3 i	≥ 280	1.7 / 1.8	40 - 120	280	280	280	280

2.2 für innere Deckschichten:

	Elementdicke D		Knitterspar	nnungen [MPa]
Deckblech- typ	Anlage	bzw. durchgehende Kerndicke d₀ [mm]	im Feld	am Zwischenauflager
		40	166	149
L	1.4 / 1.5	60	148	133
		120	138	124
L	1.6	31 - 61	135	122
L	1.7 bis 1.9	40 – 100 120	142 138	128 124
E	1.4 bis 1.9	31 - 95 120	71 66	64 59

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Knitterspannungen

Anlage 3.2.3

2.3 Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren und inneren Deckschichten bei Nennblechdicke t_{nom}

Deckblech- typ	Elementdicke D bzw. durchgehende Kerndicke (d _c) [mm]	Anlage	0,40	0,50	0,55	0,60	0,63	0,75	0,88
L		1.4.bis 1.9	1,0	1,0	0,92	0,87	0,83	0,74	0,71
E, T		1.4 bis 1.9	1,0	1,0	1,0	1,0	1,0	1,0	1,0
M, V	40 - 80	1.4 / 1.5 / 1.9	1	1,0	1,0	1,0	1,0	0,84	0,75
M, V	> 80 bis 120	1.4 / 1.5 / 1.9	-	1,0	1,0	0,91	0,88	0,78	0,70

3. Thermowand FIREtec -TK 2C-01,
Thermowand TL FIREtec -TK 2C-01, Thermodach FIREtec -TK 2C-01,
isodach integral FIREtec -TK 2C-01, isodach mono FIREtec -TK 2C-01

3.1 für äußere Deckschicht:

3.1.1 Quasiebene Deckschichten

		Elementdicke D		Knitte	Knitterspannungen [MPa]			
Deckblech- typ	Anlage	bzw. durchgehende Kerndicke d₀ [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischen-auflager (erhöhte Temperatur)		
L	1.4 / 1.5/ 1.9	40 - 120	113	97	90	77		
M, V	1.4 / 1.5 / 1.9	40 - 60 80 120	142 143 148	122 123 127	114 114 118	98 98 101		
E	1.4 / 1.5 / 1.9	31 - 120	60	52	48	41		

3.1.2 Trapezprofilierte Deckschichten

					Knittersp	oannungen [MPa	a]
Deck- blech- typ	Dehn- grenze	Anlage	Durchgehende Kerndicke d _c [mm] im Feld		im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischen- auflager (erhöhte Temperatur)
T 35-5	≥ 320	1.6	31 61	189 179	189 179	189 179	189 179
T 35-3 T 35-3 i	≥ 320	1.7 / 1.8	40 - 120	301	301	301	301
T 35-5	≥ 280	1.6	31 61	165 157	165 157	165 157	165 157
T 35-3 T 35-3 i	≥ 280	1.7 / 1.8	40 - 120	263	263	263	263

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	
Knitterspannungen	Anlage 3.2.4

3.2 für innere Deckschichten:

			Knitterspa	nnungen [MPa]
Deckblechtyp	Anlage	Elementdicke D bzw. durchgehende Kerndicke d _c [mm]	im Feld	am Zwischenauflager
L	1.4 / 1.5	40 - 120	113	102
L	1.6	31 - 61	113	102
L	1.7 bis 1.9	40 - 120	113	102
E	1.4 bis 1.9	31 - 120	60	54

3.3 Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren und inneren Deckschichten bei Nennblechdicke t_{nom}

			t _{nom} [mm]			
Deckblechtyp	Anlage	0,40	0,50	0,55	0,60	0,63	0,75
E, L, T	1.4 bis 1.9	1,0	1,0	1,0	1,0	1,0	1,0
M, V	1.4 / 1.5 / 1.9	-	1,0	1,0	1,0	0,94	0,83

3.4 Zusätzliche Abminderungsfaktoren für $\sigma_{\text{w},\text{k}}$ der äußeren Deckschichten beim Lastfall "Temperatur, Sommer"

Nennblechdicke	Abminderungsfaktoren abhängig vom Deckblechtyp						
t _{nom1} [mm]	M	V	T35-5	T 35-3 T 35-3 i			
0,50	0,46	0,52	0,33	0,33			
0,60	0,50	0,73	1,0	1,0			
0,75	0,74	0,87	1,0	1,0			

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Knitterspannungen

Anlage 3.2.5

4. Thermowand FIREtec -TK 2D-02, Thermowand TL FIREtec -TK 2D-02, Thermodach FIREtec -TK 2D-02, isodach integral FIREtec -TK 2D-02, isodach mono FIREtec -TK 2D-02

4.1 für äußere Deckschicht:

4.1.1 Quasiebene Deckschichten

			Knitterspannungen [MPa]					
Deckblech- typ	Anlage	Elementdicke D bzw. durchgehende Kerndicke d _c [mm]	im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager ¹⁾	am Zwischen-auflager (erhöhte Temperatur)		
L	1.4 / 1.5/ 1.9	40 - 120	113	97	90	77		
M, V	1.4 / 1.5 / 1.9	40 - 60 80 120	142 143 148	122 123 127	114 114 118	98 98 101		
E	1.4 / 1.5 / 1.9	31 - 120	60	52	48	41		

4.1.2 Trapezprofilierte Deckschichten

				Knitterspannungen [MPa]					
Deck- blech- typ	h- grenze Kerndicke d _c		im Feld	im Feld (erhöhte Temperatur)	am Zwischen- auflager	am Zwischenauflager (erhöhte Temperatur)			
T 35-5	≥ 320	1.6	31 61	164 156	164 156	164 156	164 156		
T 35-3 T 35-3 i	≥ 320	1.7 / 1.8	40 - 120	269	269	269	269		
T 35-5	280	1.6	31 61	144 137	144 137	144 137	144 137		
T 35-3 T 35-3 i	280	1.7 / 1.8	40 - 120	235	235	235	235		

4.2 für innere Deckschichten:

		Elementdicke D	Knitterspan	nungen [MPa]	
Deckblechtyp	Anlage	bzw. durchgehende Kerndicke d _c [mm]	im Feld	am Zwischenauflager	
L	1.4 / 1.5	40 - 120	113	102	
L	1.6	31 - 61	113	102	
L	1.7 bis 1.9	40 - 120	113	102	
Е	1.4 bis 1.9	31 - 120	60	54	

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Automa 0.00
Knitterspannungen	Anlage 3.2.6

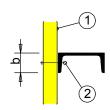
4.3 Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren und inneren Deckschichten bei Nennblechdicke t_{nom}

				t _{nom} [mm]		
Deckblechtyp	Anlage	0,40	0,50	0,55	0,60	0,63	0,75
E, L, T	1.4 bis 1.9	1,0	1,0	1,0	1,0	1,0	1,0
M, V	1.4 / 1.5 / 1.9	-	1,0	1,0	1,0	0,94	0,83

4.4 Abminderungsfaktoren für $\sigma_{w,k}$ der äußeren Deckschichten beim Lastfall "Temperatur, Sommer"

Nennblechdicke	Abminderungsfaktoren abhängig vom Deckblechtyp				
t _{nom1} [mm]	М	V	T35-5	T35-3 T 35-3 i	
0,50	0,46	0,52	0,38	0,38	
0,60	0,50	0,73	1,0	1,0	
0,75	0,74	0,87	1,0	1,0	

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum


Knitterspannungen

Anlage 3.2.7

Auflagerbedingungen (Beispiele)

1. <u>Zwischenauflager</u> (Wandelement durchlaufend)

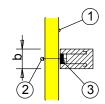


Bild 1 Stahlauflager

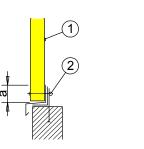
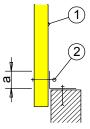

Bild 2 Holzauflager

Bild 3 Betonauflager


Zwischenauflagerbreite:b ≥ 60 mm

- ① Wandelement
- Verbindungselement
- im Beton verankertes Stahlauflager mit Hartschaumstreifen z. B. Vierkantrohr, HTU-Schiene oder Flachstahl 60x8 mm

2. Endauflager

Beispiel: Stahlunterkonstruktion

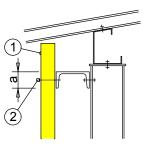


Bild 4
Fußpunkt
Wandelement
aufgesetzt

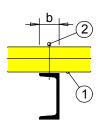
Bild 5 Fußpunkt Wandelement vorgesetzt

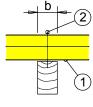
Bild 6 Traufpunkt

Endauflagerbreite: $a \ge 40 \text{ mm}$

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Auflagerausbildung der Wandelemente


Anlage 4.1



Auflagerbedingungen (Beispiele)

1. Zwischenauflager

(Dachelement durchlaufend)

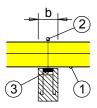


Bild 1 Stahlauflager

Bild 2 Holzauflager

Bild 3
Betonauflager

Zwischenauflagerbreite: $b \ge 60 \text{ mm}$

- ① Dachelement
- 2 Verbindungselement
- im Beton verankertes Stahlauflager mit Hartschaumstreifen z.B. Vierkantrohr, HTU-Schiene oder Flachstahl 60x8 mm

2. Endauflager

Beispiel: Stahlunterkonstruktion

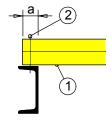
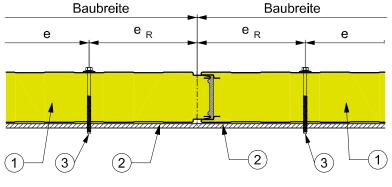


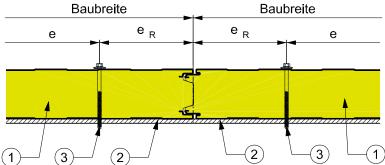
Bild 4 Traufpunkt

Endauflagerbreite: $a \ge 40 \text{ mm}$

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

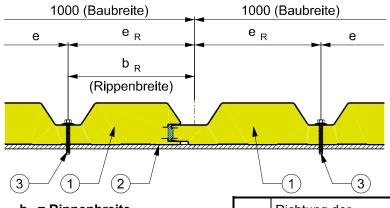

Auflagerausbildung der Dachelemente

Anlage 4.2



Abstände der Verbindungen mit der Unterkonstruktion

1. Elemente mit quasi-ebenen Deckschichten



Thermowand

Thermowand k

2. Elemente mit einer profilierten Deckschicht

Thermowand TL

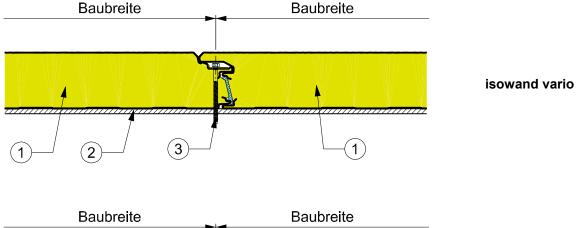
 b_R = Rippenbreite

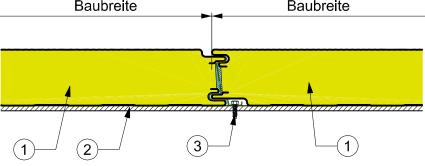
- Wandelement
- **Auflager**
- Verbindungselement

	Zeile	Richtung der Verbindungslinie	Abstände der Verbindungen			
Zelle		Verbindungslinie	zu 1.	zu 2.		
	1	quer zur	e _R ≥ 50 mm	$e_R \ge b_R$		
	2	Spannrichtung	e ≥ 100 mm	$e \ge b_R$		
	3	bei direkter Befestigung parallel zur Spannrichtung	Stützweite am Tafelende			

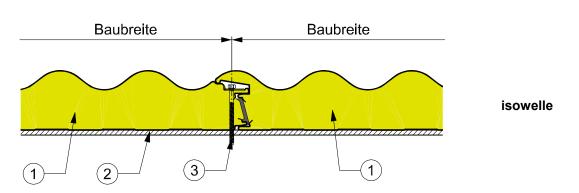
Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigung,


Wandelemente mit Längsfuge


Anlage 5.1

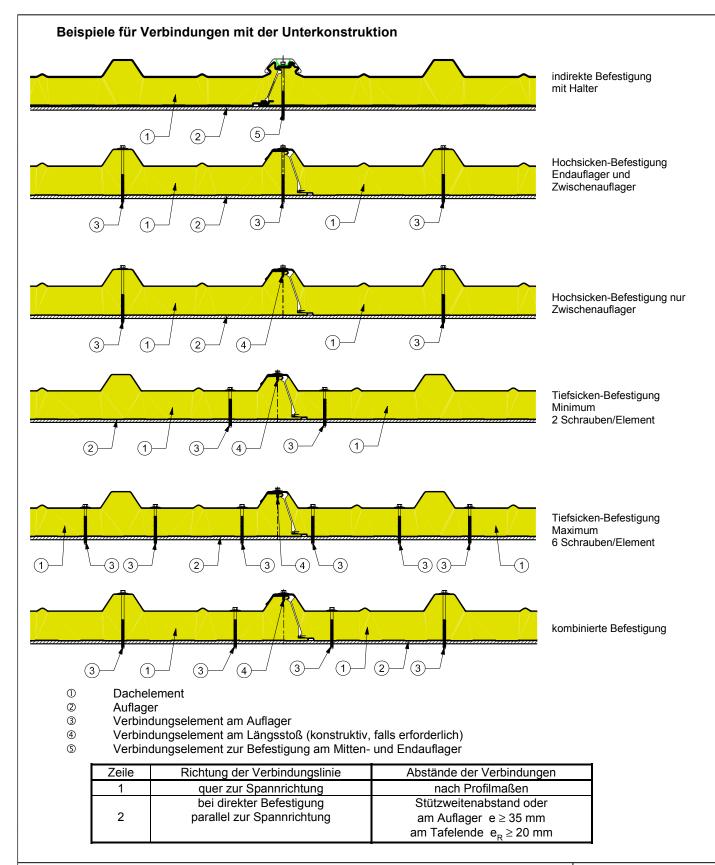
Abstände der Verbindungen mit der Unterkonstruktion


3. <u>Elemente mit quasi-ebenen Deckschichten und indirekter Befestigung</u>

isowand integral

4. <u>Elemente mit einer gewellten Deckschichten und indirekter Befestigung</u>

- Wandelement
- ② Auflager
- ③ Verbindungselement


Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum

Befestigung,

Wandelemente mit Längsfuge

Anlage 5.2

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	
Befestigung, Dachelemente mit Längsfuge	1 Anlage 5.3

Werkseigene Produktionskontrolle

Prüfungen bei Raumtemperatur von ca. 20°C Sandwichelemente mit Schaumsystem "2003 E" (s. Zulassungsabschnitt 2.2.4)

Zeile	Art der Prüfung	Anforderung 1)	Prüfkörper ¹⁾ Abmessungen [mm]	Anzahl	Häufigkeit der Prüfungen
1 2	Sandwichelement Dicke Deckblechgeometrie	s. Abschnitt 2.2.4 2.2.1		3 3	1 je Schicht 1 je Schicht
3	Schaumstoff Rohdichte ²⁾	38 ⁺³ -0 kg/m³	100 * 100 * D	5	1 je Schicht
4	Druckspannung bei 10 % Stauchung	≥ 0,08 MPa	100 * 100 * D	3	1 je Woche
5	Zugfestigkeit mit Deckschichten	≥ 0,06 MPa	100 * 100 * D	5	1 je Schicht
6 7	Scherfestigkeit D ≤ 104 D ≤ 140 Schubmodul ⁶⁾	≥ 0,12 MPa ≥ 0,09 MPa ≥ 2,3 MPa	1000 * 150 ³⁾ * D	3	1 je Woche
8 9	Zugmodul E _{Ct} ⁶⁾ Druckmodul E _{Cc} ⁶⁾	≥ 2,1 MPa ≥ 1,7 MPa	100 * 100 * D 100 * 100 * D	3 3	1 je Woche 1 je Woche
10	Maßänderung nach 3 h Warmlagerung bei 80°C	≤ 5 %	100 * 100 * D	5	1 je Woche
11	Brandverhalten	siehe Abschnitt 2.4.2			
12	Wärmeschutz	siehe Fußnote 4)			
13	<u>Deckschichten</u> Streckgrenze	s. Abschnitt 2.2.1			:-
14	Zugfestigkeit	Anforderungen, Prüfungen und F	Prüfkörner nach		je
15	Bruchdehnung	Prüfungen und Prüfkörper nach DIN EN 10346 DIN EN 10002			Hauptcoil
16	Zinkschichtdicke	DIN 50955, DIN 50988 DIN 55928			
17	Kunststoffbeschichtung	Bii 00020	l		

¹⁾ Versuchsbeschreibungen und Auswertung der Ergebnisse, siehe Überwachungsvertrag

⁶⁾ Die Mittelwerte der Messungen müssen die Werte der Anlage 3.1.1, Tabelle 1 einhalten, dabei ist Ec = 0,5 x (Ect + Ecc)

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	
Werkseigene Produktionskontrolle	Anlage 6.1.1

²⁾ Mittel über die Elementdicke, an mindestens 3 Stellen der Elementbreite

³⁾ Bei trapezprofilierter Deckschicht: Größte ebene Breite zwischen den Sicken

⁴⁾ Im Rahmen der werkseigenen Produktionskontrolle des PUR-Hartschaumstoffes sind folgende Prüfungen durchzuführen:

Eingangskontrolle der Rohstoffe laufend - Eingangsköhltölle der Rohsto
 - Kontrolle der Ausgangsstoffe
 - Mischungsverhältnisse
 - Wärmeleitfähigkeit laufend laufend

einmal wöchentlich *

einmal monatlich * - Geschlossenzelligkeit ≥ 90 %

^{*} Im Rahmen der werkseigenen Produktionskontrolle dürfen mit der fremdüberwachenden Stelle vereinbarte Verfahren angewendet werden.

⁵⁾ Zusätzlich bei jeder wesentlichen Produktionsänderung

Werkseigene Produktionskontrolle

Prüfungen bei Raumtemperatur von ca. 20°C Sandwichelemente mit Schaumsystem "2003 L" (s. Zulassungsabschnitt 2.2.4)

Zeile	Art der Prüfung	Anforderung 1)	Prüfkörper ¹⁾ Abmessungen [mm]	Anzahl	Häufigkeit der Prüfungen
1 2	Sandwichelement Dicke Deckblechgeometrie	s. Abschnitt 2.2.4 2.2.1		3	1 je Schicht 1 je Schicht
3	Schaumstoff Rohdichte	38 ⁺³ ₋₀ kg/m³	100 * 100 * D	5	1 je Schicht
4	Druckspannung bei 10 % Stauchung	≥ 0,13 MPa	100 * 100 * D	3	1 je Woche
5	Zugfestigkeit mit Deckschichten	≥ 0,06 MPa	100 * 100 * D	5	1 je Schicht
6 7	Scherfestigkeit $D \le 95$ D = 120 Schubmodul ⁶⁾ $D \le 95$ D = 120	≥ 0,12 MPa ≥ 0,11 MPa ≥ 2,8 MPa ≥ 2,5 MPa	1000 * 150 ³⁾ * D	3	1 je Woche
8 9	Zugmodul E _{Ct} ⁶⁾ Druckmodul E _{Cc} ⁶⁾	≥ 2,9 MPa ≥ 2,8 MPa	100 * 100 * D 100 * 100 * D	3 3	1 je Woche 1 je Woche
10	Maßänderung nach 3 h Warmlagerung bei 80°C	≤ 5 %	100 * 100 * D	5	1 je Woche
11	Brandverhalten	siehe Abschnitt 2.4.2			
12	Wärmeschutz	siehe Fußnote 4)			
13	Deckschichten Streckgrenze	s. Abschnitt 2.2.1		1	
14	Zugfestigkeit	Anforderungen,			je
15	Bruchdehnung	Prüfungen und Prüfkörper nach DIN EN 10346		Hauptcoil	
16	Zinkschichtdicke	DIN EN 10002 DIN 50955, DIN 50988			
17	Kunststoffbeschichtung	DIN 55928			

¹⁾ Versuchsbeschreibungen und Auswertung der Ergebnisse, siehe Überwachungsvertrag

⁶⁾ Die Mittelwerte der Messungen müssen die Werte der Anlage 3.1.1, Tabelle 2 einhalten, dabei ist E_c = 0,5 x (E_{Ct} + E_{Cc})

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Aulana 0.4.0
Werkseigene Produktionskontrolle	Anlage 6.1.2

²⁾ Mittel über die Elementdicke, an mindestens 3 Stellen der Elementbreite

³⁾ Bei trapezprofilierter Deckschicht: Größte ebene Breite zwischen den Sicken

⁴⁾ Im Rahmen der werkseigenen Produktionskontrolle des PUR-Hartschaumstoffes sind folgende Prüfungen durchzuführen:

Eingangskontrolle der Rohstoffe
 Kontrolle der Ausgangsstoffe
 Mischungsverhältnisse

⁻ Wärmeleitfähigkeit einmal wöchentlich *

⁻ Geschlossenzelligkeit ≥ 90 % einmal monatlich *

^{*} Im Rahmen der werkseigenen Produktionskontrolle dürfen mit der fremdüberwachenden Stelle vereinbarte Verfahren angewendet werden.

⁵⁾ Zusätzlich bei jeder wesentlichen Produktionsänderung

Werkseigene Produktionskontrolle

Prüfungen bei Raumtemperatur von ca. 20°C

Sandwichelemente mit Schaumsystem "TK 2C-01", "TK 2D-02" und "TK 1B-03" (s. Zulassungsabschnitt 2.2.4)

7.11.	A.L.I. D. "f	A . (1)	Prüfkörper 1)		Häufigkeit der
Zeile	Art der Prüfung	Anforderung 1)	Abmessungen [mm]	Anzahl	Prüfungen ⁵⁾
1 2	Sandwichelement Dicke Deckblechgeometrie	s. Abschnitt 2.2.4 2.2.1		3 3	1 je Schicht 1 je Schicht
3	Schaumstoff Rohdichte ²⁾	38 ⁺³ ₋₀ kg/m³	100 * 100 * D	5	1 je Schicht
4	Druckspannung bei 10 % Stauchung	≥ 0,08 MPa	100 * 100 * D	3	1 je Woche
5	Zugfestigkeit mit Deckschichten	≥ 0,06 MPa	100 * 100 * D	5	1 je Schicht
6	Scherfestigkeit D ≤ 100 D = 120-140	≥ 0,12 MPa ≥ 0,09 MPa	1000 * 150 ³⁾ * D	3	1 je Woche
7	Schubmodul ⁶⁾ D = 31-140	≥ 2,3 MPa			
8 9	Zugmodul E _{Ct} ⁶⁾ Druckmodul E _{Cc} ⁶⁾	≥ 2,1 MPa ≥ 1,7 MPa	100 * 100 * D 100 * 100 * D	3 3	1 je Woche 1 je Woche
10	Maßänderung nach 3 h Warmlagerung bei 80°C	≤ 5 %	100 * 100 * D	5	1 je Woche
11	Brandverhalten	siehe Abschnitt 2.4.2			
12	Wärmeschutz	siehe Fußnote 4)			
13	<u>Deckschichten</u> Streckgrenze	s. Abschnitt 2.2.1			
14	Zugfestigkeit	Anforderungen,			je
15	Bruchdehnung	Prüfungen und F DIN EN 10346	Prüfkörper nach		Hauptcoil
16	Zinkschichtdicke	DIN EN 10002 DIN 50955, DIN 50988			
17	Kunststoff-beschichtung	DIN 55928			

¹⁾ Versuchsbeschreibungen und Auswertung der Ergebnisse, siehe Überwachungsvertrag

⁶⁾ Die Mittelwerte der Messungen müssen die Werte der Anlage 3.1.2, Tabelle 3 einhalten, dabei ist Ec = 0,5 x (Ect + Ecc)

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Aulana 0.4.0
Werkseigene Produktionskontrolle	Anlage 6.1.3

²⁾ Mittel über die Elementdicke, an mindestens 3 Stellen der Elementbreite

³⁾ Bei trapezprofilierter Deckschicht: Größte ebene Breite zwischen den Sicken

⁴⁾ Im Rahmen der werkseigenen Produktionskontrolle des PUR-Hartschaumstoffes sind folgende Prüfungen durchzuführen:
- Eingangskontrolle der Rohstoffe laufend
- Kontrolle der Ausgangsstoffe laufend
- Mischungsverhältnisse laufend
- Wärmeleitfähigkeit einmal wöchentlich *

⁻ Geschlossenzelligkeit ≥ 90 % einmal monatlich *

^{*} Im Rahmen der werkseigenen Produktionskontrolle dürfen mit der fremdüberwachenden Stelle vereinbarte Verfahren angewendet werden.

⁵⁾ Zusätzlich bei jeder wesentlichen Produktionsänderung

Fremdüberwachung

Prüfungen der Sandwichelemente mindestens 2-mal jährlich.

Zeile	Art der Prüfungen	Anforderungen und Probenform
1	Werkstoffprüfungen als Kontrolle der werkseigenen Produktionskontrolle	siehe Anlage 6.1.1, 6.1.2 und 6.1.3
2	Einfeldträgerversuche	Stützweite: I = 4,00 m bei d < 80 mm I = 5,00 m bei d ≥ 80 mm Breite: Elementbreite Ermittlung der Knitterspannung und des Schubmoduls zu Vergleichszwecken
3	Wärmeleitfähigkeit des PUR-Schaumkerns	nach DIN EN 12667 oder DIN EN 12939
4	Verformung bei definierter Druck-und Temperaturbeanspruchung: DLT (1) 5	nach DIN EN 13165, Abschnitt 4.3.3
5	Dimensionsstabilität bei definierten Temperatur- und Feuchtebedingungen: DS (70,90)1 und DS (-20,-)1	nach DIN EN 13165, Abschnitt 4.3.2
6	Zellgaszusammensetzung	Gaschromatographische Untersuchung
7	Geschlossenzelligkeit	≥ 90% nach ISO 4590
8	Brandverhalten 1)	siehe Abschnitt 2.4.3

1) Die Überwachungsprüfungen sind an Proben mit planmäßiger Fugenausbildung durchzuführen.

Tragende Sandwichelemente "Hoesch" mit Stahldeckschichten und einem Kernwerkstoff aus Polyurethan-Hartschaum	Anlage 6.2
Fremdüberwachung	
	İ.