

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-01/0013 of 30 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

MKT Wegde Anchor B

Torque controlled expansion anchor for use in non-cracked concrete

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-01/0013

Page 2 of 16 | 30 January 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-01/0013

Page 3 of 16 | 30 January 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The MKT Wedge Anchor B in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of electroplated, hot dipped galvanised steel, stainless steel or high corrosions resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1 to C 3
Displacements under tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

European Technical Assessment ETA-01/0013

Page 4 of 16 | 30 January 2015

English translation prepared by DIBt

3.8 General aspects

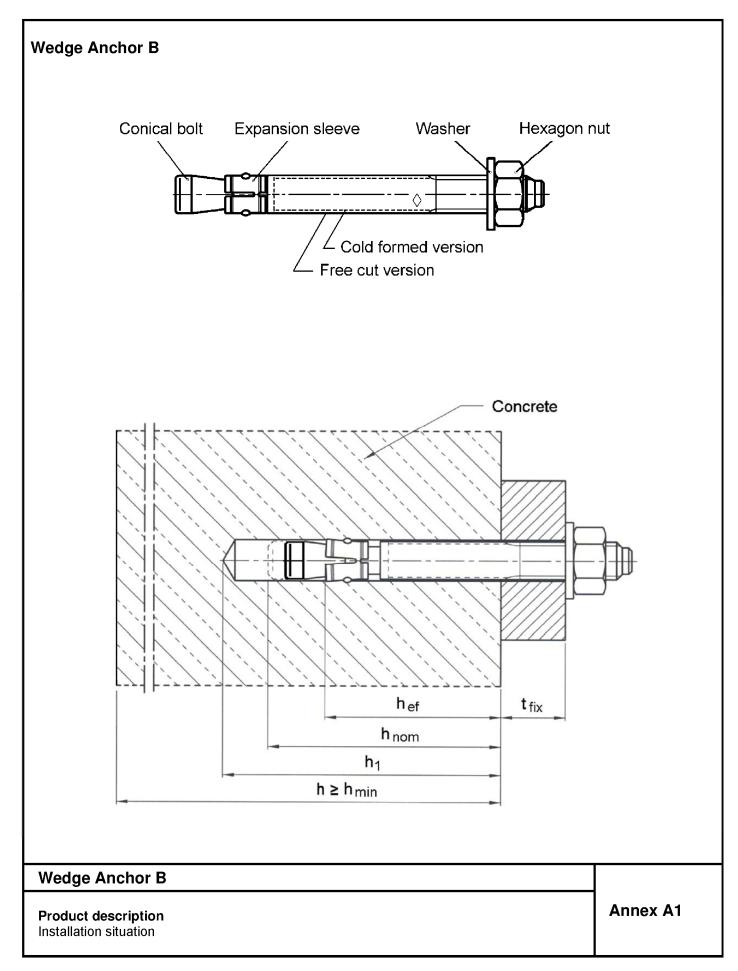
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 30 January 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

*beglaubigt:*Baderschneider

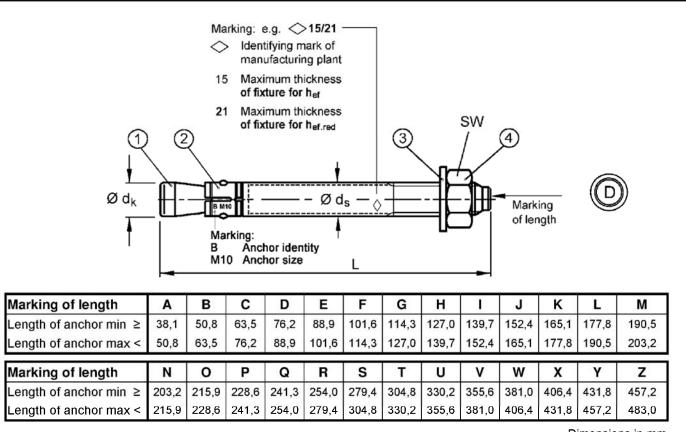


Table A1: Dimensions, steel zinc plated

Dimensions in mm

			Anchor	Wrench	
Anchor size	\emptyset d _k	Ø d₅	Standard anchorage depth	Reduced anchorage depth	size [SW]
Steel electroplated	and hot-dip	galvanised	-	-	_
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 97,3	t _{fix hef,red} + 82,3	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 121,0	t _{fix hef,red} + 103,0	24
M20	20	20 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

⁾ cold formed version

Table A2: Material properties, steel zinc plated

		Material					
Part	Designation	Steel, electroplated ≥ 5 μm acc. to EN ISO 4042:1999	Steel, hot-dip galvanised ≥ 40 μm, acc. to EN ISO 1461:2009				
1	Conical bolt	Cold formed or machined steel	Cold formed or machined steel				
2	Expansion sleeve	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303				
3	Washer	Steel	Steel				
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012	Property class 8 acc. to EN ISO 898-2:2012				

Wedge Anchor B

Product description

Anchor dimensions, marking and materials, steel zinc plated

Annex A2

77254.15 8.06.01-338/14

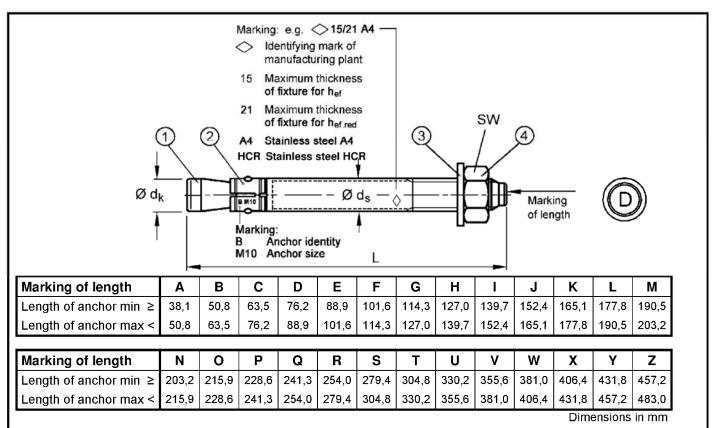


Table A3: Dimensions, stainless steel A4/HCR

 $\emptyset d_s$

 $\emptyset d_k$

Wrench Standard anchorage | Reduced anchorage size

		Ů	depth	depth	[SW]
Stainless steel	A4/HCR				
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 96,5	t _{fix hef,red} + 81,5	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 117,8	t _{fix hef,red} + 101,8	24
M20	19,7	19,7 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

Anchor length L

Anchor size

Designations and Materials, stainless steel A4/HCR Table A4:

Part	Designation	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated
2	Expansion sleeve	Stainless steel 1.4401, 1.4571, 1.4362,	EN 10088:2005
3	Washer	Stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005
4	Hexagon nut	ISO 3506:2009, A4-70, stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005, coated	ISO 3506:2009, strength class 70, high corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated

Wedge Anchor B

Product description

Anchor dimensions, marking and materials, stainless steel A4/HCR

Annex A3

¹⁾ cold formed version

Specifications of intended use

Wedge Anchor B			М6	M8	M10	M12	M16	M20
Ota al min a minta d		electroplated	✓	✓	✓	✓	✓	✓
ials	Steel zinc plated -	hot-dip galvanized	-	✓	✓	✓	✓	✓
Materials	Stainless steel	A4	✓	✓	✓	✓	✓	✓
Σ	High corrosion resistant steel	HCR	✓	✓	✓	✓	√	✓
Stat	Static or quasi-static action ✓							
Red	luced anchorage depth	1	√					
Non	-cracked concrete		✓					

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

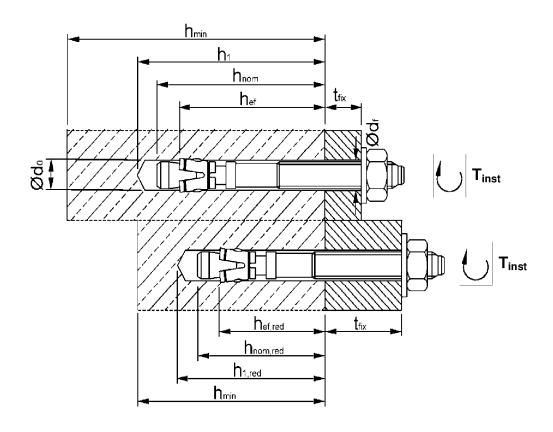
- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A

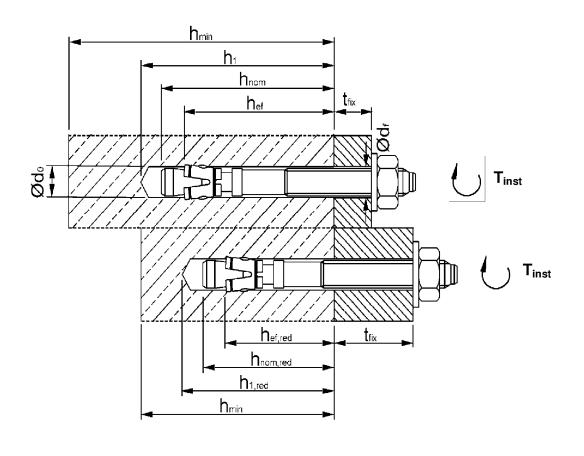
Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured, if
 the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in
 accordance with Annex A1 and A2 and the hexagon nut is placed at the end of the conical bolt as delivered
 by the manufacturer.

Wedge Anchor B	
Intended use Specifications	Annex B1

Table B1: Installation data, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Nominal drill hole diameter	$d_0 =$	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque (Wedge Anchor B electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (Wedge Anchor B hot-dip galvanised)	T _{inst} =	[Nm]	ı	15	30	40	90	120
Diameter of clearance hole in the fixture	$d_f\!\leq\!$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	h ₁ ≥	[mm]	55	65	70	90	110	130
Embedment depth	$h_{nom} \geq$	[mm]	49	56	62	82	102	121
Effective anchorage depth	h _{ef} ≥	[mm]	40	44	48	65	82	100
Reduced anchorage depth								
Depth of drill hole	h _{1,red} ≥	[mm]	45	55	65	75	95	110
Embedment depth	$h_{\text{nom,red}} \ge$	[mm]	39	47	56	67	84	99
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30	35	42	50	64	78



Wedge Anchor B Intended use Installation data, steel zinc plated Annex B2

Table B2: Installation data, stainless steel A4/HCR

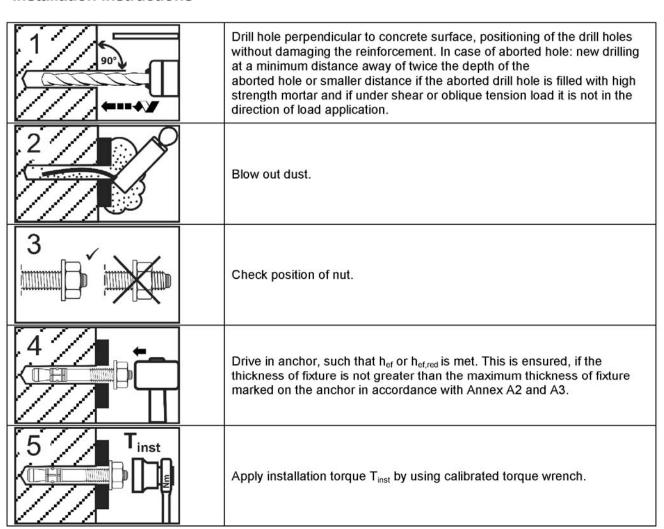
Anchor size			М6	М8	M10	M12	M16	M20
Nominal drill hole diameter	$d_0 =$	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque	T _{inst} =	[Nm]	6	15	25	50	100	160
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{nom} \geq$	[mm]	49	56	62	81	99	121
Effective anchorage depth	$h_{\text{ef}}\!\geq\!$	[mm]	40	44	48	65	80	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,red} \ge$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{nom,red}\!\geq\!$	[mm]	39	47	56	66	83	99
Effective anchorage depth	$h_{\text{ef,red}} \ge$	[mm]	30	35	42	50	64	78

Wedge Anchor B	
Intended use Installation data, stainless steel A4/HCR	Annex B3

Table B3: Minimum spacings and edge distances, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	S _{min}	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140

Table B4: Minimum spacings and edge distances, stainless steel A4/HCR


Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum spacing	S _{min}	[mm]	35	35	45	60	80	100
	for c ≥	[mm]	40	65	70	100	120	150
Minimum edge distance	C _{min}	[mm]	35	45	55	70	80	100
	for s ≥	[mm]	60	110	80	100	140	180
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140

Intermediate values by linear interpolation.

Wedge Anchor B	
Intended use Minimum spacings and edge distances	Annex B4

Installation instructions

Wedge Anchor B	
Intended use Installation instructions	Annex B5

Table C1: Characteristic values for tension loads, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20	
Installation safety factor	$\gamma_2 = \gamma_{\text{inst}}$	[-]		ı	1	,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107	
Partial safety factor	γMs	[-]		1	,5		1	,6	
Pull-out									
Standard anchorage depth hef							_		
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	12	16	1)	1)	1)	
Reduced anchorage depth hef,red									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	6 ²⁾	1) 2)	1)	1)	1)	1)	
Increasing factor for $N_{Rk,p}$	Ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$						
Splitting									
Standard anchorage depth hef									
Spacing	S _{cr,sp}	[mm]	160	220	240	330	410	500	
Edge distance	C _{cr,sp}	[mm]	80	110	120	165	205	250	
Reduced anchorage depth h _{ef,red}									
Spacing	S _{cr,sp}	[mm]	180	210	230	240	320	400	
Edge distance	$c_{cr,sp}$	[mm]	90	105	115	120	160	200	
Concrete cone failure									
Standard anchorage depth hef									
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	82	100	
Spacing	S _{cr,N}	[mm]			3	h _{ef}			
Edge distance	C _{cr,N}	[mm]			1,5	h _{ef}			
Reduced anchorage depth h _{ef,red}									
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Spacing	S _{cr,N}	[mm]				ef,red			
Edge distance	C _{cr,N}	[mm]			1,5	n _{ef,red}			
Factor according to CEN/TS 1992-4	k _{ucr}	[-]			10	0,1			

Wedge Anchor B Annex C1 **Performance** Characteristic values for tension loads, steel zinc plated

¹⁾ Pullout failure is not decisive
2) Use restricted to anchorages of indeterminate structural components

10,1

Anchor size			М6	М8	M10	M12	M16	M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	10	18	30	44	88	134
Partial safety factor	γMs	[-]			1,50			1,68
Pull-out	1 1013				,			,
Standard anchorage depth h _{ef}								
Characteristic resistance in							1)	1)
non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	12	16	25	''	''
Reduced anchorage depth hef,red		<u> </u>						I
Characteristic resistance in	N.I.	FI-A II	6 ²⁾	9 ²⁾	40	1)	1)	1)
non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	b [→]	9 -	12	7	,	· · ·
Splitting For the proof against splitting N	Rk c has to be	replaced	by N ⁰ _{Rk sp.} .					
Standard anchorage depth her	111,5	•	, m,sp					
The higher one of the decisive resistances	of Case 1 and	l Case 2 is	applicable					
Case 1	or odoo r dire	. 0400 2 10	иррпоавто.					
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	6	9	12	20	30	40
Spacing	e	[mm]			3	h _{ef}		l
Edge distance	S _{cr,sp} C _{cr,sp}	[mm]				h _{ef}		
Case 2	Ocr,sp	[[]			1,0	riet		
Characteristic resistance in					Ι		T 1	Π
non-cracked concrete C20/25	$N^{\scriptscriptstyle{0}}_{Rk,sp}$	[kN]	7,5	12	16	25	1)	1)
Spacing	е	[mm]	160	220	240	340	410	560
Edge distance	S _{cr,sp}	[mm]	80	110	120	170	205	280
Reduced anchorage depth h _{ef,red}	C _{cr,sp}	[[[[]]]	00	110	120	170	203	200
Characteristic resistance			2)	•				
in non-cracked concrete C20/25	$N^{\scriptscriptstyle{0}}_{Rk,sp}$	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)
Spacing	S _{cr,sp}	[mm]	180	210	230	300	320	400
Edge distance	C _{cr,sp}	[mm]	90	105	115	150	160	200
Lago distance	Oci,sp	[]	00	100		, 0,5	100	
Increasing factor for $N_{Rk,p}$ and $N^0_{Rk,sp}$	ψс	[-]			$\left(\frac{f_{ck,ci}}{2^{c}}\right)$	ube)		
Concrete cone failure					. 20	*		
Standard anchorage depth								
Effective anchorage depth	h _{ef}	[mm]	40	44	48	65	80	100
Spacing	S _{cr,N}	[mm]		1 17		h _{ef}	1 30	, ,50
Edge distance	C _{cr,N}	[mm]				h _{ef}		
Reduced anchorage depth	- 01,11				.,,-			
Effective anchorage depth	h _{ef,red}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Spacing	S _{cr,N}	[mm]				h _{ef}	•	
Edge distance	C _{cr,N}	[mm]				h _{ef}		

¹⁾ Pullout failure is not decisive.

Factor according to CEN/TS 1992-4

Wedge Anchor B Performance Characteristic values for tension loads, stainless steel A4/HCR Annex C2

²⁾ Use restricted to anchorages of indeterminate structural components.

Table C3: Characteristic values for shear loads, steel zinc plated

Anchor size			М6	M8	M10	M12	M16	M20	
Installation safety factor	$\gamma_2 = \gamma_{\text{inst}}$	[-]				1,0			
Steel failure without lever arm									
Characteristic shear resistance	$V_{Rk.s}$	[kN]	5	11	17	25	44	69	
Factor for ductility	k ₂	[-]				1,0			
Steel failure with lever arm									
Characteristic resistance	$M^0_{Rk.s}$	[Nm]	9	23	45	78	186	363	
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]	1,25				1	1,33	
Concrete pry-out failure									
Factor k acc. ETAG 001, Annex C or k₃ acc. CEN/TS 1992-4 for hef	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0	
Factor k acc. ETAG 001, Annex C or k ₃ acc. CEN/TS 1992-4 for h _{ef,red}	k ₍₃₎	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0	
Concrete edge failure									
Effective length of anchor in shear loading for hef	l _f	[mm]	40	44	48	65	82	100	
Effective length of anchor in shear loading for h _{ef,red}	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78	
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20	

¹⁾ Use restricted to anchorages of indeterminate structural components

Table C4: Characteristic values for shear loads, stainless steel A4/HCR

Anchor Size			М6	M8	M10	M12	M16	M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Steel failure without lever arm								
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7	12	19	27	50	86
Factor for ductility	k ₂	[-]			1	,0		
Steel failure with lever arm								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	10	24	49	85	199	454
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]			1,25			1,4
Concrete pry-out failure								
Factor k acc. ETAG 001, Annex C or k₃ acc. CEN/TS 1992-4 for h₀f	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor k acc. ETAG 001, Annex C or k_3 acc. CEN/TS 1992-4 for $h_{ef,red}$	k ₍₃₎	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading with h_{ef}	l _f	[mm]	40	44	48	65	80	100
Effective length of anchor in shear loading with $h_{\text{ef,red}}$	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Wedge Anchor B

Performance

Characteristic values for shear loads

Annex C3

Table C5: Displacements under tension loads, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth					•			•
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Diantagament	δ_{N0}	[mm]	0,4			0,5		
Displacement	$\delta_{N_{\infty}}$	[mm]	0,7			2,3		
Reduced anchorage depth								
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Displacement	δ_{N0}	[mm]	0,3			0,4		
Displacement	$\delta_{N_{\infty}}$	[mm]	0,6			1,8		

Table C6: Displacements under tension loads, stainless steel A4/HCR

Anchor size			М6	М8	M10	M12	M16	M20
Standard anchorage depth				•	•			
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δ_{N0}	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	$\delta_{N_{\infty}}$	[mm]			1,8			4,2
Reduced anchorage depth								
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Dianlacement	δ_{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	$\delta_{N_{\infty}}$	[mm]		•	1,3	•		2,9

Table C7: Displacements under shear loads, steel zinc plated

Anchor size			М6	М8	M10	M12	M16	M20
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	$\delta_{V_{\infty}}$	[mm]	2,4	2,2	2,4	3,9	4,6	6,6

Table C8: Displacements under shear loads, stainless steel A4/HCR

Anchor Size			М6	М8	M10	M12	M16	M20
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	$\delta_{V_{\infty}}$	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

Wedge Anchor B	
Performance Displacements	Annex C4