

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 7 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Deutsches Institut für Bautechnik Technical Assessment Body issuing the European Technical Assessment: Trade name of the construction product Injection System fischer FIS V Product family Bonded anchor for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND fischerwerke Manufacturing plant This European Technical Assessment 29 pages including 3 annexes contains This European Technical Assessment is Guideline for European technical approval of "Metal issued in accordance with Regulation (EU) anchors for use in concrete", ETAG 001 Part 5: "Bonded No 305/2011, on the basis of anchors", used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-02/0024 English translation prepared by DIBt

Page 2 of 29 | 7 January 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The fischer injection system FIS V is a bonded anchor consisting of a cartridge with injection mortar fischer FIS V and a steel element. The steel element consist of

- a fischer threaded rod FIS A or RGM of sizes M6 to M30 or
- a internal threaded anchor RG MI of sizes M8 to M20 or
- a deformed reinforcing bar of sizes $\phi = 8$ to 28 mm or
- a fischer rebar anchor FRA of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 6
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

European Technical Assessment

ETA-02/0024

Page 4 of 29 | 7 January 2015

English translation prepared by DIBt

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

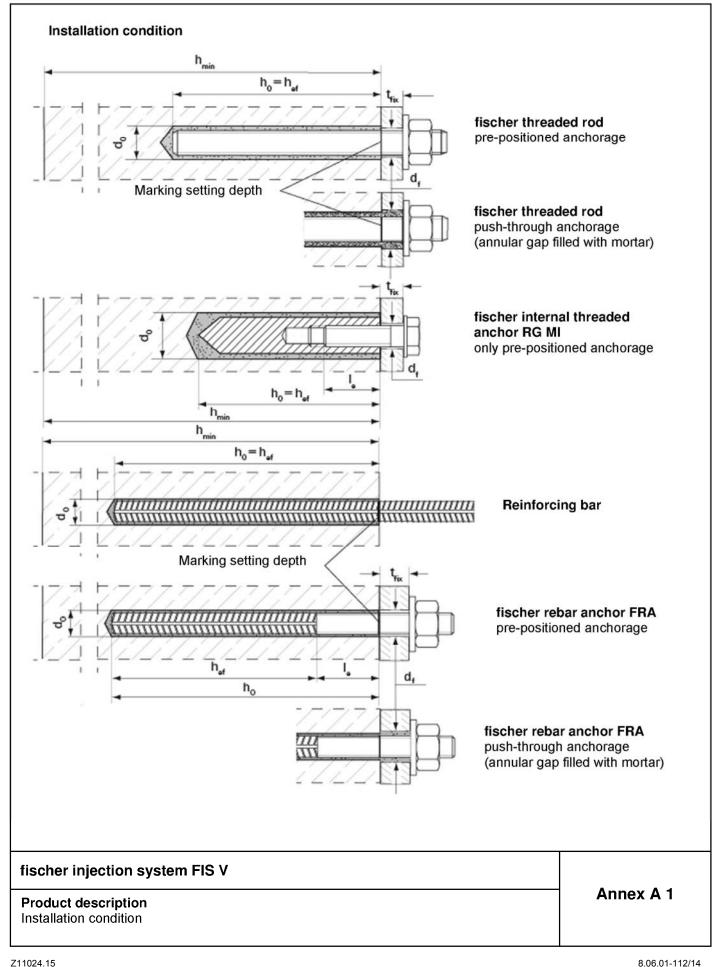
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

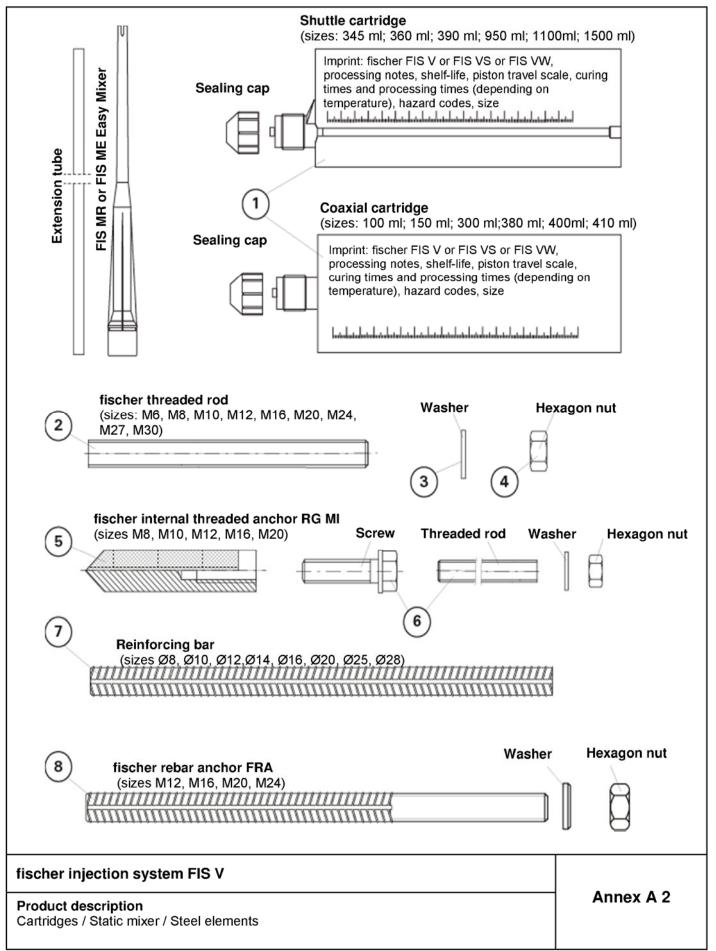
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 7 January 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-02/0024 of 7 January 2015

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-02/0024 of 7 January 2015

English translation prepared by DIBt

Electronic copy of the ETA by DIBt: ETA-02/0024

Part	Designation		Material	
1	Mortar cartridge		Mortar, hardener; filler	
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel c
2	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated \geq 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\%$ fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014
5	Internal threaded anchor RG MI	Property class 5.8 or 8.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or threaded rod for internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
7	Rebar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods cla f_{yk} and k according to NDP of $f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex	or NCL of EN 1992-1-1/ B4)	
8	Rebar anchor FRA	Rebar part: Bars and de-co class B or C with f_{yk} and k a NDP or NCL of EN 1992-1- $f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex	ccording to	Threaded part: roperty class 70 SO 3506:2009 1.4565; 1.4529 N 10088-1:2014

fischer injection system FIS V

Product description Materials Annex A 3

Specifications of intended use

Table B1: Overview use categories and performance categories

Anchorage	s subject to				FIS V with				
		Thr	eaded rod	Internal	threaded anchor RG MI		orcing bar	Rebar	anchor FRA
Hammer dı	rilling				all sizes				
Static and quasi static	non- cracked concrete	M6 to M30	Tables: C1, C5 ,C9, C13, C17,	M8 to M20	Tables: C2, C6, C10, C14, C19, C20	Ø8 to Ø28	Tables: C3, C7, C11, C15,	M12 to	Tables: C4, C8, C12, C16,
load, in	cracked concrete	M10 to M30	C13, C17, C18			Ø10 to Ø28	C11, C13, C21, C22	M24-	C12, C18, C23, C24
Use category	Dry or wet concrete	M	6 to M30	Ν	/18 to M20	Ø8	to Ø28	M1	2 to M24
calegory	Flooded hole	M1	2 to M30	N	/18 to M20				
Installation	temperature				-10°C to +40	°C			
In-service	Temperature range l	-4	0°C to +80°C		ax. long term temp nperature +80°C)	perature	+50°C and	max. sh	ort term
tempe- rature	Temperature range II	-4(0°C to +120°C		ax. long term temp nperature +120°C		+72°C and	max. sł	ort term

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel)

Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with TR 029 "Design of bonded anchors", Edition September 2010 or CEN/TS 1992-4:2009

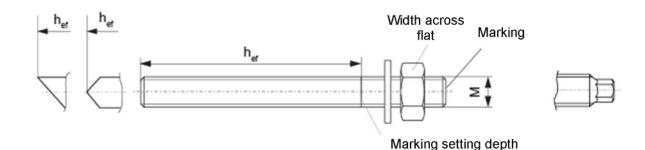
Installation:

Anchor installation carried out by appropriately gualified personnel and under the supervision of the person responsible for technical matters of the site.

fischer injection system FIS V

Intended Use Specifications

Annex B 1



					1							
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Width across	flat	SW	[mm]	10	13	17 ²⁾	19 ²⁾	24	30	36	41	46
Nominal drill b	oit diameter	d ₀	[mm]	8	10	12	14	18	24	28	30	35
Drill hole dept	h	h₀	[mm]					$h_0 = h_{ef}$				
Effective anch	orago donth	h _{ef,min}	[mm]	50	60	60	70	80	90	96	108	120
	lorage depth	h _{ef,max}		72	160	200	240	320	400	480	540	600
Maximum toro	que moment	T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300
Minimum spa	cing	S _{min}	[mm]	40	40	45	55	65	85	105	125	140
Minimum edg	e distance	C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance	Pre- positioned anchorage	d _f	[mm]	7	9	12	14	18	22	26	30	33
hole in the fixture ¹⁾	Push- through anchorage	d _f	[mm]	9	11	14	16	20	26	30	32	40
Minimum thicl concrete men		h _{min}	[mm]		h _{ef} + 30	(≥ 100)				h _{ef} + 2d)	

Table B2: Installation parameters threaded rods

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1 ²⁾ Deviating to ISO 4032

fischer threaded rods FIS A and RGM

Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 or high corrosion-resistant steel C, property class 50:••

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

fischer injection system FIS V

Intended Use

Annex B 2

Installation parameters threaded rods

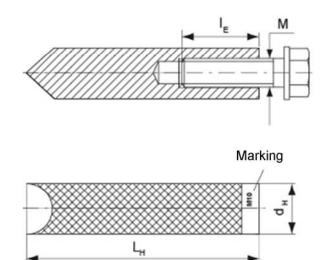


Table B3: Installation parameters internal threaded anchors RG MI

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	do	[mm]	14	18	20	24	32
Drill hole depth	ho	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth ($h_{ef} = L_H$)	h _{ef}	[mm]	90	90	125	160	200
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80	120
Minimum spacing	S _{min}	[mm]	55	65	75	95	125
Minimum edge distance	C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	125	165	210	265
Maximum screw-in depth	$I_{E,max}$	[mm]	18	23	26	35	45
Minimum screw-in depth	I _{E,min}	[mm]	8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

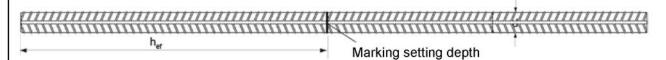
fischer internal threaded anchor RG MI

Marking: anchor size e.g.: M10 Stainless steel in addition A4 e.g.: M10 A4 High corrosion-resistant steel in addition C e.g.: M10 C

Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1

fischer injection system FIS V

Intended Use Installation parameters internal threaded anchors RG MI Annex B 3



d

Table B4: Installation par	ameters	reinfor	cing bar	'S							
Rebar diameter		Ø	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28
Nominal drill bit diameter	d ₀	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35
Drill hole depth	h ₀	[mm]					$h_0 = h_e$	f			
Effective anchorage	h _{ef,min}	[mm]	60	60	7	כ	75	80	90	100	112
depth	h _{ef,max}	[mm]	160	200	24	.0	280	320	400	500	560
Minimum spacing	S _{min}	[mm]	40	45	5	5	60	65	85	110	130
Minimum edge distance	C _{min}	[mm]	40	45	5	5	60	65	85	110	130
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +	- 30 ≥ 10	C			h _{ef}	+ 2d ₀		

¹⁾ Both drill bit diameters can be used.

Reinforcing bar

Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N

Product form				ated bars and led rod
Class			В	C
Characteristic yield strength fyk or	f _{0,2k}	[MPa]	400 t	o 600
Minimum value of k = (f _t /f _{yk})			≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at maximum f	orce ε _{uk} [%]		≥ 5,0	≥ 7,5
Bentability property			Bend / R	ebendtest
Maximum deviation	Nominal bar	≤ 8	±	6,0
from nominal mass (individual bar) [%]	size [mm]	> 8	±·	4,5
Bond: Minimum relative rib area, f _{R,min}	Nominal bar	8 to 12	0,0	040
(determination acc. to EN 15630)	size [mm]	> 12	0,0)56

Rib height h:

The rib hight h must be:

 $0,05*d \le h \le 0,07*d$

d = nominal bar size

fischer injection system FIS V

Intended U	se		
Installation	parameters	reinforcing	bars

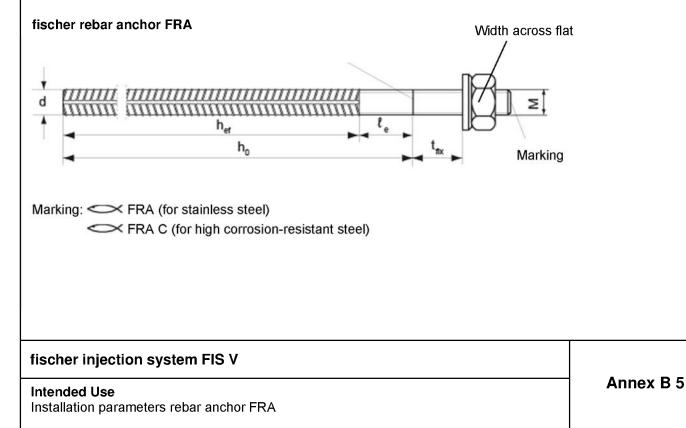

Annex B 4

Table B5: Installation parameters rebar anchor FRA

Threaded diameter				M12	1)	M16	M20	M24
Diameter of anchor		d	[mm]	12		16	20	25
Width across flat		SW	[mm]	19		24	30	36
Nominal drill bit diame	ter	do	[mm]	(14)	16	20	25	30
Drill hole depth		h ₀	[mm]			h _{ef} +	e e	•
Distance concrete sur to welded join	face	${f l}_{ m e}$	[mm]			100	I	
Effective encharges d	anth	h _{ef,min}	[mm]	70		80	90	96
Effective anchorage d	eptn	h _{ef,max}		14()	220	300	380
Maximum torque morr	nent	T _{inst,max}	[Nm]	40		60	120	150
Minimum spacing		S _{min}	[mm]	55		65	85	105
Minimum edge distand	ce	C _{min}	[mm]	55	1	65	85	105
Diameter of clearance hole	Pre-positioned anchorage	d _f	[mm]	14		18	22	26
in the fixture ²⁾	Push-through anchorage	d _f	[mm]	18		22	26	32
Minimum thickness of member	concrete	h _{min}	[mm]	h ₀ + 30		h	1 ₀ + 2d ₀	

¹⁾ Both drill bit diameters can be used
 ²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

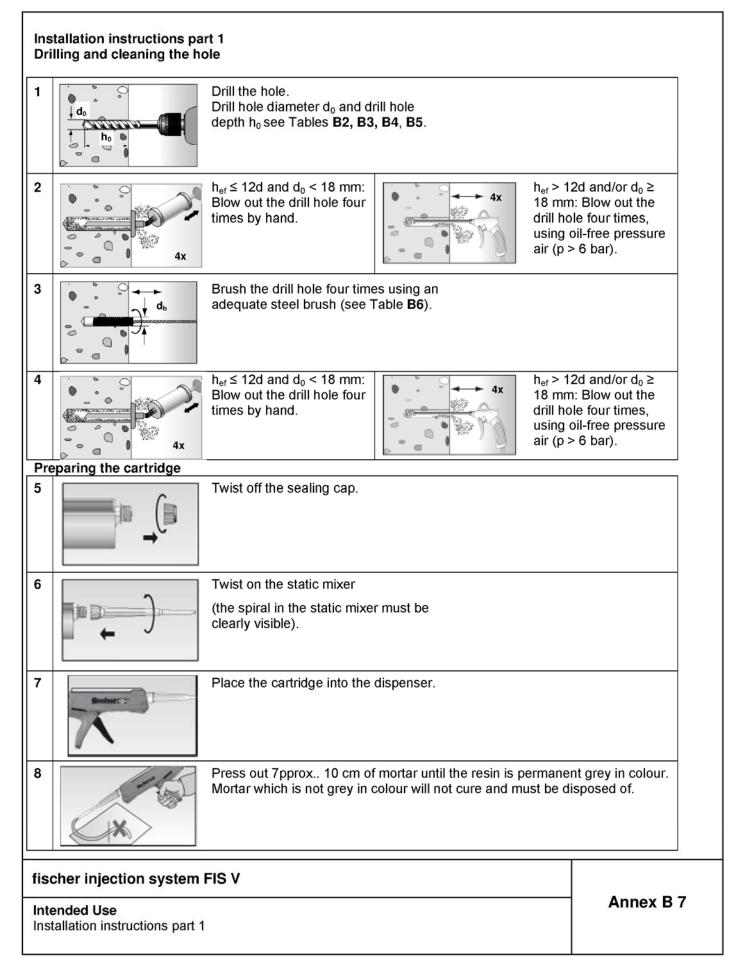
Electronic copy of the ETA by DIBt: ETA-02/0024

Page 13 of European Technical Assessment ETA-02/0024 of 7 January 2015

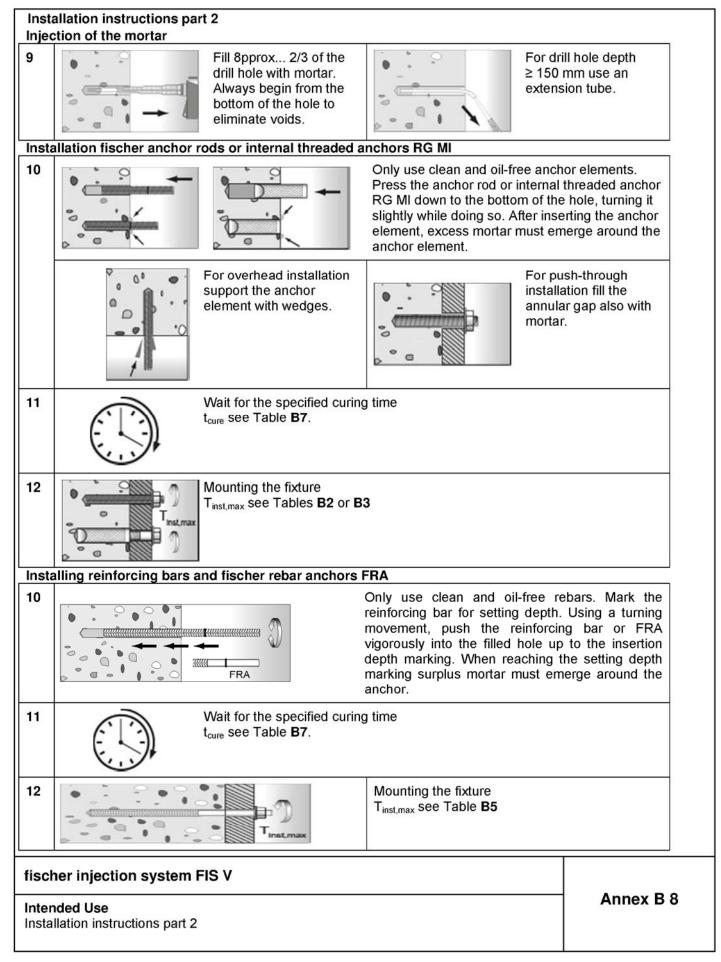
English translation prepared by DIBt

[able														
Drill b diamet		mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stee brush liamet d _b	ר ו	[mm]	9	11	14	16	20	20	25	26	27	30	40	40
d _b	•					Kajiaji								
Table	e B7:	Maxim (During	um pro	cessin ring tim	g time of ne of the m	the m e	ortar an	d minin rete terr	num cur	ing tim may no	e ot			
Table		(During	g the cu ow the I	ring tim listed m	ne of the m ninimum te	nortar t empera ime ¹⁾ t	he conc ature).	d minin rete terr	iperature	e may no	ot	process		t _{work}
Tem		(During fall bel ure at base	g the cu ow the I	ring tim listed m Minimu VW gh	ne of the m ninimum te	ime ¹⁾ t	he conc ature).	rete terr	num cur iperature System mperatu (mortar) [°C]	e may no Ma re FI	ot	process [minutes FIS V	s] FIS	t _{work}
Tem anch	peratu	(During fall bel ure at base	g the cu ow the I FIS Hig Spe	ring tim listed m Minimu VW gh	ne of the m ninimum te m curing t [minutes	ime ¹⁾ t	the conc ature). cure IS VS Low	rete terr	System mperatu (mortar)	e may no Ma re FI	aximum S VW High	[minute:	s] FIS	VS DW
Tem anch	peratu oring [°C]	(During fall bel ire at base	g the cu ow the I FIS Hig Spe	ring tim listed m Minimu VW gh eed ours	ne of the m ninimum te m curing t [minutes	ime ¹⁾ t,	the conc ature). cure IS VS Low	rete terr	System mperatu (mortar)	e may no Ma re FI	aximum S VW High	[minute:	s] FIS	VS DW
Tem anch	peratu oring [°C] to	(During fall bel ire at base -5	g the cur ow the I FIS Hig Spe 12 h 3 hc	ring tim listed m Minimu VW gh eed ours	ne of the m ninimum te m curing t [minutes FIS V	ime ¹⁾ t, F	the conc ature). cure IS VS Low	rete terr	System mperatu (mortar) [°C]	e may no Ma re FI	aximum S VW High peed	[minute:	s] FIS	S VS DW
Tem anch 10 >-5 •±0	peratu oring [°C] to to	(During fall bel ire at base -5 ±0	g the cu ow the I FIS Hig Spe 12 h 3 hc 3 hc	ring tim listed m Minimu VW gh eed ours ours	ne of the m ninimum te m curing t [minutes FIS V 24 hours	ime ¹⁾ t, F	the conc ature). ^{cure} IS VS Low Speed	rete terr	System mperatu (mortar) [°C] ±0	e may no Ma re FI	aximum S VW High peed 5	[minutes	FIS LC Sp	VS DW
Tem anch 10 >-5 •±0 •+5	peratu oring [°C] to to	(During fall bel ire at base -5 ±0 +5	g the cur ow the I FIS Hig Spe 12 h 3 hc 3 hc 5	ring tim listed m Minimu VW gh eed ours ours ours	ne of the m hinimum te m curing t [minutes FIS V 24 hours 3 hours	ime ¹⁾ t, F S S S S	he conc ature). Cure SIS VS Low Speed hours	rete terr	System mperatu (mortar) [°C] ±0 +5	e may no Ma re FI	aximum S VW High peed 5 5	[minutes FIS V 13	FIS Lo Spo 2	VS ow eed
Tem	peratu oring [°C] to to to	(During fall bel rre at base -5 ±0 +5 +10	g the cur ow the I FIS Hig Spe 12 h 3 hc 3 hc 5	ring tim listed m Minimu VW gh eed ours ours ours 0	FIS V 24 hours 3 hours	ime ¹⁾ t, F S S S S	he conc ature). cure FIS VS Low Speed hours hours	rete terr	System mperatu (mortar) [°C] ±0 +5 +10	e may no Ma re FI	aximum S VW High peed 5 5 3	[minutes FIS V 13 9	5] FIS Lo Spo 2 2	SVS Dw eed

¹⁾ For wet concrete or flooded hole the curing time must be doubled.


fischer injection system FIS V

Intended Use Cleaning tools / Processing - and curing times Annex B 6


Page 14 of European Technical Assessment ETA-02/0024 of 7 January 2015

English translation prepared by DIBt

Page 16 of European Technical Assessment ETA-02/0024 of 7 January 2015

English translation prepared by DIBt

Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Installation	Dry and we concret	e	[-]					1,0				
safety factor F	looded ho	γ ₂	[-]						1,	2 ¹⁾		
Combined pullo	ut and con	crete co	ne failure							-		
Diameter of calcu	lation	d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic be		ance in n	on-cracke	ed cono	crete C2	20/25. D	ry and	wet cor	ncrete			
Temperature rang		$\tau_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature rang	je II ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic be		ance in n	on-cracke	ed cono	crete C2	20/25. F	looded	hole				
Temperature rang	-	$\tau_{Rk,ucr}$					9,5	8,5	8,0	7,5	7,0	7,0
Temperature rang	-	$\tau_{Rk,ucr}$					7,5	7,0	6,5	6,0	6,0	6,0
Characteristic be		ance in c		oncrete	C20/25	. Dry ar	nd wet o	concret	е	-		
Temperature rang		$\tau_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
Temperature rang	je II ²⁾	$\tau_{Rk,cr}$	[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Characteristic be	ond resista	ance in c	racked co	oncrete	C20/25	. Flood	ed hole	-				
Temperature rang	·	$\tau_{\text{Rk,cr}}$	[N/mm ²]				5,0	5,0	4,5	4,0	3,5	3,5
Temperature rang	ge II ²⁾	$\tau_{\text{Rk,cr}}$	[N/mm ²]				4,0	4,0	3,5	3,5	3,0	3,0
		C25/30	[-]					1,05				
		C30/37	[-]					1,10				
Increasing factor	ω	C35/45	[-]					1,15				
increasing lactor	· c	C40/50	[-]					1,19				
		C45/55	[-]					1,22				
		C50/60	[-]					1,26				
Splitting failure												
		n/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr}	_{.sp} 2,0>ł	n/h _{ef} >1,3	[mm]				4,6	6 h _{ef} – 1,	8 h			
	ł	n/h _{ef} ≤1,3	[mm]					2,26 h _{ef}				
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				

 $^{1)}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}$ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for threaded rods under tension load in non-cracked and cracked concrete (Design according to TR 029)

Table C2: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to TR 029)

Size				M8	M10	M12	M16	M20
Installation safety	Dry and wet concrete		[-]			1,0		
factor	Flooded hole	γ2	[-]			1,2 ¹⁾		
Steel failure						_	_	
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
Combined pullout and c	oncrete cone f	ailure						
Diameter of calculation		d _н	[mm]	12	16	18	22	28
Characteristic bond resi	stance in non-		oncrete (220/25.	Dry and	wet con	crete	
Temperature range I ²⁾		N ⁰ _{Rk,p}	[kN]	30	40	50	75	115
Temperature range II ²⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95
Characteristic bond resi	stance in non-	cracked c	oncrete (220/25.	Flooded	hole		
Temperature range I ²⁾		N ⁰ _{Rk,p}	[kN]	25	35	50	60	95
Temperature range II ²⁾		N ⁰ _{Rk,p}	[kN]	20	25	35	50	75
		C25/30	[-]			1,05		
		C30/37	[-]			1,10		
Increasing factor Ψ_{c}		C35/45	[-]			1,15		
		C40/50	[-]			1,19		
		C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Splitting failure								
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>	h/h _{ef} >1,3	[mm]		4,6	6 h _{ef} – 1,8	3 h	
		h/h _{ef} ≤1,3	[mm]			2,26 h_{ef}		
Spacing		S cr,sp	[mm]			2 c _{cr,sp}		

 $^{1)}$ Only coaxial cartridges: 380 ml, 400 ml and 410 ml $^{2)}$ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for internal threaded rods under tension load in non-cracked concrete (Design according to TR 029)

Table C3: Characteristic values of resistance for reinforcing bars under tension loads in non-cracked and cracked concrete (Design according to TR 029)

Size	Ø	[mm]	8	10	12	14	16	20	25	28
Installation safety facto	or γ ₂	[-]			•	1	,0		•	
Combined pullout an	d concrete con	e failure								
Diameter of calculation	n d	[mm]	8	10	12	14	16	20	25	28
Characteristic bond	resistance in no	on-cracke	d concr	ete C20	/25. Dry	and we	t concre	ete		
Temperature range I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperature range II ¹	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Characteristic bond	resistance in cr	acked co	ncrete (220/25.	Dry and	wet con	crete			
Temperature range I ¹⁾	$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
Temperature range II ¹	τ _{Rk,cr}	[N/mm ²]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
	C25/30	[-]				1,	05			
	C30/37	[-]				1,	10			
Incroacing factor W	C35/45	[-]				1,	15			
Increasing factor Ψ_c	C40/50	[-]				1,	19			
	C45/55	[-]				1,	22			
	C50/60	[-]				1,	26			
Splitting failure										
	h/h _{ef} ≥2,0	[mm]				1,0	h _{ef}			
Edge distance $c_{cr,sp}$	2,0>h/h _{ef} >1,3	[mm]				4,6 h _{ef}	– 1,8 h			
	h/h _{ef} ≤1,3	[mm]				2,20	3 h _{ef}			
Spacing	S _{cr,sp}	[mm]				2 c	cr,sp			

¹⁾ See Annex B1

Performances

Characteristic values of resistance for reinforcing bars in non-cracked and cracked concrete under tension load (Design according to TR 029)

Table C4: Characteristic values of resistance for rebar anchors FRA under tension loads in noncracked and cracked concrete (Design according to TR 029)

Size			M12	M16	M20	M24
Installation safety factor	γ2	[-]		1	,0	L
Steel failure						
Characteristic resistance	N _{Rk,s}	[kN]	63	111	173	270
Partial safety factor	1) γMs,N	[-]		1	,4	
Combined pullout and	concrete cone f	ailure				
Diameter of calculation	d	[mm]	12	16	20	25
Characteristic bond res	sistance in non-	cracked co	oncrete C20/2	25. Dry and wet	t concrete	
Temperature range I ²⁾	τ _{Rk,ucr}	[N/mm ²]	11,0	10,0	9,5	9,0
Temperature range II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Characteristic bond res	sistance in cracl	ked concre	ete C20/25. Di	ry and wet con	crete	
Temperature range I ²⁾	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0
Temperature range II ²⁾	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5
	C25/30	[-]		1,	05	
	C30/37	[-]		1,	10	
Increasing factor Ψ_c	C35/45	[-]		1,	15	
Thereasing lactor Ψ_c	C40/50	[-]		1,	19	
	C45/55	[-]		1,	22	
	C50/60	[-]		1,	26	
Splitting failure						
	h/h _{ef} ≥2,0	[mm]		1,0	h _{ef}	
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]		4,6 h _{ef}	– 1,8 h	
	h/h _{ef} ≤1,3	[mm]		2,26	δ h _{ef}	
Spacing	S _{cr,sp}	[mm]		2 c	cr,sp	

¹⁾ In absence of other national regulations

²⁾ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for rebar anchors FRA in non-cracked and cracked concrete under tension load (Design according to TR 029)

Г

Size				M6	M8	M10	M12	M16	M20	M24	M27	N
Concrete pryout failure												
Factor k in equation (5.7) for the design of Bonded A			k [-]					2,0				
	walu aa af waa	sintana	o for int	arnal thr		l rodo		unda	h.a.	Lood	~	
(Design accor	values of res ding to TR 02		e for int	ernal thr	eadec	d rods	RG MI	unde	r shea	r load:	S	
(Design accor			e for int	ernal thr M8		d rods		unde	r shea M1		s)
(Design acco r Size			e for int				M)
(Design accor Size Installation safety factor	ding to TR 02	29)					M	12)
(Design accor Size Installation safety factor	ding to TR 02	29)					M	12		6		-
(Design accor Size Installation safety factor Steel failure without leve	rding to TR 02	29) γ ₂	[-]	M8		M10	M 1	1 2 ,0	M1	6	M2()
(Design accor Size Installation safety factor Steel failure without leve Characteristic	er arm Property	29) γ ₂ 5.8	[-] [kN]	M8 9,2		M10 14,5	M 1 2 [.] 3:	12 ,0 1,1	M1	6 ,2 ,7	62,0)
(Design accor Size Installation safety factor Steel failure without leve Characteristic resistance V _{Rk,s}	er arm Property class Property class 70	29) γ ₂ <u>5.8</u> 8.8	[-] [kN] [kN]	M8 9,2 14,6		M10 14,5 23,2	M 1 2 3 3 2 9	12 ,0 1,1 3,7	M1 39, 62,	6 ,2 ,7 ,8	62,0)
(Design accor Size Installation safety factor Steel failure without leve Characteristic resistance V _{Rk,s}	er arm Property class Property class 70	29) γ ₂ 5.8 8.8 A4	[-] [kN] [kN] [kN]	M8 9,2 14,6 12,8		M10 14,5 23,2 20,3	M 1 2 3 3 2 9	12 ,0 1,1 3,7 9,5	M1 39 62 54	6 ,2 ,7 ,8	62,0 62,0 90,0 86,0)
	er arm Property class Property class 70	29) γ ₂ 5.8 8.8 A4	[-] [kN] [kN] [kN]	M8 9,2 14,6 12,8		M10 14,5 23,2 20,3	M 1 22 33 29 29	12 ,0 1,1 3,7 9,5	M1 39 62 54	6 2 7 8 8 8	62,0 62,0 90,0 86,0)))
(Design accor Size Installation safety factor Steel failure without leve Characteristic resistance V _{Rk,s}	er arm Property class Property class 70 rm	29) γ2 5.8 8.8 A4 C	[-] [kN] [kN] [kN] [kN]	M8 9,2 14,6 12,8 12,8		M10 14,5 23,2 20,3 20,3	M 1 2: 3: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	112 ,0 1,1 3,7 9,5 9,5	M1 39 62 54	6 2 7 8 8 3	62,0 90,0 86,0)))

class 70	0	[Nm]	26	52	92	232	454
	0		20	52	52	202	
Concrete pryout failure		-					
Factor k in equation (5.7) of TR 029 for the design of Bonded Anchor	k	[-]			2,0		

fischer injection system FIS V

Performances

Characteristic values of resistance for threaded rods and internal threaded anchors RG MI under shear load (Design according to TR 029) $\,$

Page 21 of European Technical Assessment ETA-02/0024 of 7 January 2015

English translation prepared by DIBt

Γ

Table C7: Characteristic values o (Design according to T		nce fo	or reinfo	orcing ba	ars un	der shea	ar load	S		
Size	Ø	[mm]	8	10	12	14	16	20	25	28
Concrete pryout failure	•		1							
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]				2,0)			
Table C8: Characteristic values o (Design according to T		ince re	epar an	cnors FF	A UNC	ier snea	r Ioads	5		
Size				M12		M16	м	20	M24	L
Size Steel failure without lever arm				M12		M16	M	20	M2 4	I
Size Steel failure without lever arm Characteristic resistance	V	, Rk,s	[kN]	M12 30		M16 55		20	M2 4	
Steel failure without lever arm Characteristic	V γms,	1)	[kN] [-]			55				
Steel failure without lever arm Characteristic resistance		1)				55	8			
Steel failure without lever armCharacteristic resistancePartial safety factor		,v ¹⁾				55	,56			

Concrete pryout failure			
Factor k in equation (5.7) of TR 029 for the design of Bonded Anchor	k	[-]	2,0

¹⁾ In absence of other national regulations

fischer injection system FIS V

Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads (Design according to TR 029)

Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety		Dry and wet						1,0				
factor γ _{inst}	F	concrete looded hole						-	1,2)		
Steel failure									1,2			
Characteristic resis	stance	e N _{Rk,s}	[kN]					$A_s \mathbf{x} f_{uk}$				
Combined pullout	and	concrete co	ne failure	;		_						
Diameter of calcula	tion	d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bo				ed con	crete C	20/25.	Dry and	l wet co	oncrete			
Temperature range			[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range			[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bo				ed con	crete C	20/25.	Floode	d hole				
Temperature range			[N/mm ²]				9,5	8,5	8,0	7,5	7,0	7,0
Temperature range	e ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Characteristic bo				oncret	e C20/2	5. Dry a	and wet	concre	ete			
Temperature range			[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
Temperature range	e II ²⁾	τ _{Rk,cr}	[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Characteristic bo		sistance in (cracked c	oncret	e C20/2	5. Floo	ded hol	е				
Temperature range		τ _{Rk,cr}					5,0	5,0	4,5	4,0	3,5	3,5
Temperature range	e II ²⁾	τ _{Rk,cr}	[N/mm ²]				4,0	4,0	4,0	3,5	3,0	3,0
		C25/30	[-]					1,05				
		C30/37	[-]					1,10				
Increasing factor 4	I	C35/45	[-]					1,15				
increasing lactor +	С	C40/50	[-]					1,19				
		C45/55	[-]					1,22				
		C50/60						1,26				
Factor acc. CEN/TS 1992-	k ₈	cracked concrete	1 1-1 1					7,2				
4:2009 Section		non-cracked										
6.2.2.3	k ₈	concrete	1 1-1 1					10,1				
Concrete cone fai	lure											
Factor acc. CEN/TS 1992-	k _{cr}	cracked concrete	1 1-1 1					7,2				
4:2009 Section 6.2.3.1	k _{ucr}	non-cracked concrete	1 1-1 1					10,1				
		h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,sp}	, 2	2,0>h/h _{ef} >1,3	[mm]				4,6	h _{ef} – 1,	8 h			
		h/h _{ef} ≤1,3	[mm]					2,26 h _{ef}				
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				

¹⁾ Only coaxial cartridges: 380 ml, 400 ml and 410 ml

²⁾ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for threaded rods under tension load in non-cracked and cracked concrete (Design according to CEN/TS-1992-4)

Table C10: Characteristic values of resistance for internal threaded anchors RG MI under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20
Installation safety factor	Dry and w	vet concrete	[-]			1,0		
γ _{inst}	F	looded hole	[-]			1,2 ¹⁾		
Steel failure						_	_	-
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
	Property	5.8	[-]			1,50		
Partial	class	8.8	[-]			1,50		
safety factor	Property	A4	[-]			1,87		
γ̃ms,N [°]	class 70	С	[-]			1,87		
Combined pullout and co	oncrete cone	e failure						
Diameter of calculation		d	[mm]	12	16	18	22	28
Characteristic bond resis	stance in no				10	50		
Temperature range I ²⁾		N ⁰ _{Rk,p}	[kN]	30	40	50	75	115
Temperature range II ²⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95
Characteristic bond resis Flooded hole	stance in no	n-cracked c	oncrete C	20/25				
Temperature range I ²⁾		N ⁰ _{Rk,p}	[kN]	25	35	50	60	95
Temperature range II ²⁾		N ⁰ _{Rk,p}	[kN]	20	25	35	50	75
· · ·		C25/30	[-]			1,05		
	_	C30/37	[-]			1,10		
Increasing factor Ψ_{c}	-	C35/45	[-]			1,15		
moredoing lactor T _c	_	C40/50	[-]			1,19		
	-	C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Factor acc. CEN/TS 1992- Section 6.2.2.3	4-5:2009	k ₈	[-]			10,1		
Concrete cone failure								
Factor acc. CEN/TS 1992-	4-5.2009							
Section 6.2.3.1		k _{ucr}	[-]			10,1		
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0	D>h/h _{ef} >1,3	[mm]		4,6	5 h _{ef} – 1,8		
		h/h _{ef} ≤1,3	[mm]			2,26 h _{ef}		
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}		

¹⁾ Only coaxial cartridges: 380 ml, 400 ml and 410 ml

²⁾ See Annex B1

³⁾ In absence of other national regulations

fischer injection system FIS V

Performances

Characteristic values of resistance for internal threaded anchors RG MI under tension load in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C11: Characteristic values of resistance for reinforcing bars under tension loads in non-cracked and cracked concrete (Design according to CEN/TS 1992-4)

Size		Ø	[mm]	8	10	12	14	16	20	25	28
Installation safety f	factor	γ̈́inst	[-]				1	,0			
Steel failure											
Characteristic resis	stance	e N _{Rk,s}	[kN]				A _s z	x f _{uk}			
Combined pullou	t and	concrete con	e failure								
Diameter of calcula	ation	d	[mm]	8	10	12	14	16	20	25	28
Characteristic bo	nd re	sistance in no	on-cracke	d concr	ete C20	/25. Dry	and we	t concre	te		
Temperature range	ə I ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperature range		$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Characteristic bo		sistance in cr		ncrete (
Temperature range		$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
Temperature range	e II''	$ au_{Rk,cr}$	[N/mm ²]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
		C25/30	[-] [-]					05			
	C30/							10			
Increasing factor 4	creasing factor Ψ.						,	15			
	C	C40/50	[-]					19			
		C45/55	[-]				,	22			
		C50/60	[-]				1,	26			
Factor acc. CEN/TS 1992-4-	k ₈	CUIICIEIE	[-]				7	,2			
5: 2009 Section 6.2.2.3	k ₈	non-cracked concrete	[-]				10),1			
Concrete cone fai	ilure										
Factor acc. CEN/TS 1992-4-	k _{cr}	cracked concrete	[-]				7	,2			
5: 2009 Section 6.2.3.1	k _{ucr}	non-cracked concrete	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure											
		h/h _{ef} ≥2,0	[mm]				1,0	h _{ef}			
Edge distance $c_{cr,s}$	р	2,0>h/h _{ef} >1,3	[mm]				4,6 h _{ef}	– 1,8 h			
		h/h _{ef} ≤1,3	[mm]								
Spacing		S _{cr,sp}	[mm]				2 c	cr,sp			

¹⁾ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for reinforcing bars under tension load in non-cracked and cracked concrete (Design according to CEN/TS-1992-4)

Table C12: Characteristic values of resistance for rebar anchors FRA under tension loads in noncracked and cracked concrete (Design according to CEN/TS 1992-4)

Size				M12	M16	M20	M24		
Installation safety fac	tor	γ_{inst}	[-]		1	,0	•		
Steel failure									
Characteristic resista	nce	N _{Rk,s}	[kN]	63	111	173	270		
Partial safety factor		γ _{Ms,N} 1)	[-]		1	,4			
Combined pullout a	nd co	ncrete cone fai	lure						
Diameter of calculation	on	d	[mm]	12	16	20	25		
Characteristic bond	resis	tance in non-cr	acked co	ncrete C20/25	. Dry and wet	concrete			
Temperature range I	2)	$ au_{Rk,ucr}$	[N/mm ²]	11,0	10,0	9,5	9,0		
Temperature range II	2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5		
Characteristic bond		tance in cracke	d concre	te C20/25. Dry	and wet cond	crete			
Temperature range I		$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0		
Temperature range II	2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5		
		C25/30	[-]		1,	05			
		C30/37	[-]	1,10					
Increasing factor Ψ_{c}		C35/45	[-]		1,	15			
		C40/50	[-]		1,	19			
		C45/55	[-]		1,	22			
		C50/60	[-]		1,	26			
Factor acc. CEN/TS 1992-4-5: 2009	k ₈	cracked concrete	[-]		7	,2			
Section 6.2.2.3	k ₈	non-cracked concrete	[-]		10),1			
Concrete cone failu	re								
Factor acc. CEN/TS 1992-4-5: 2009	k _{cr}	cracked concrete	[-]		7	,2			
Section 6.2.3.1	\mathbf{k}_{ucr}	non-cracked concrete	[-]		10),1			
		h/h _{ef} ≥2,0	[mm]		1,0) h _{ef}			
Edge distance c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h					
		h/h _{ef} ≤1,3	[mm]	2,26 h _{ef}					
Spacing		S _{cr,sp}	[mm]	2 C _{cr,sp}					

¹⁾ In absence of other national regulations

²⁾ See Annex B1

fischer injection system FIS V

Performances

Characteristic values of resistance for rebar anchors FRA under tension load in noncracked and cracked concrete (Design according to CEN/TS-1992-4)

Table C13: Characteristic va (Design accordi					ded rods	s under	shear l	oads			
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor	γ_{inst}	[-]			1		1,0	I			
Steel failure without lever an	m										
Characteristic resistance	$V_{Rk,s}$	[kN]				0,	,5 A _s x f _ı	ık			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]					0,8				
Steel failure with lever arm											
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]				1,2	x W _{el} x	f _{uk}			
Concrete pryout failure											
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k ₃	[-]					2,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]] $I_f = \min(h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20	24	27	30

Table C14: Characteristic values of resistance for internal threaded rods RG MI under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20
Installation safety factor		γinst	[-]			1,0		
Steel failure without leve	r arm		1 1					
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Ductility factor acc. to CEN 1992-4-5:2009 Section 6.3		k ₂	[-]			0,8		
Steel failure with lever ar	m		•					
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic resistance	class	8.8	[Nm]	30	60	105	266	519
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3		k ₃	[-]			2,0		
Concrete edge failure							-	
Outside diameter of ancho	r	d _{nom}	[mm]	8	10	12	16	20

fischer injection system FIS V

Performances

Characteristic values of resistance for threaded rods and internal threaded anchors RG MI under shear loads (Design according to CEN/TS 1992-4)

Table C15: Characteristic values of resistance for reinforcing bars under shear loads (Design according to CEN/TS 1992-4)

Size	Ø	[mm]	8	10	12	14	16	20	25	28
Installation safety factor	γ_{inst}	[-]			•	. 1	,0			
Steel failure without lever arm	า									
Characteristic resistance	$V_{Rk,s}$	[kN]				0,5 A	s x f _{uk}			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]				0	,8			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]				1,2 x V	V _{el} x f _{uk}			
Concrete pryout failure										
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k ₃	[-]	2,0							
Concrete edge failure										
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28

Table C16: Characteristic values of resistance for rebar anchors FRA under shear loads (Design according to CEN/TS 1992-4)

Size			M12	M16	M20	M24
Installation safety factor	γ_{inst}	[-]		1	,0	
Steel failure without lever arm						
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	56	
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]		0	,8	
Steel failure with lever arm						
Characteristic resistance	$M^0_{\ Rk,s}$	[Nm]	92	233	454	785
Partial safety factor	γ _{Ms,V} 1)	[-]		1,	56	
Concrete pryout failure						
Factor in equation of CEN/TS 1992-4-5, Section 6.3.3	k ₃	[-]		2	,0	
Concrete edge failure						
Outside diameter of anchor	d _{nom}	[mm]	12	16	20	24

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performances

Characteristic values of resistance for reinforcing bars and rebar anchors FRA under shear loads (Design according to CEN/TS 1992-4)

Table C17: Displace	Table C17: Displacements under tension load ¹⁾ for threaded rods										
Size		M6	M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concr	ete										
δ _{N0} -Factor	[mm/N/mm ²]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δ _{N∞} -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Cracked concrete											
δ _{N0} -Factor	[mm/N/mm ²]			0,12	0,12	0,13	0,13	0,13	0,14	0,15	
δ _{N∞} -Factor	[mm/N/mm ²]			0,27	0,30	0,30	0,30	0,35	0,35	0,40	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor $\cdot \tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty}\text{-}\mathsf{Factor}\cdot\tau$

Table C18: Displacements under shear load ¹⁾ for threaded rods

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
δ _{vo} -Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ _{v∞} -Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\text{V}$

 $\delta_{\mathsf{N}^\infty} = \delta_{\mathsf{N}^\infty} \text{-} \textbf{Factor} \cdot \textbf{V}$

Table C19: Displacements under tension load ¹⁾ for internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20
δ _{N0} -Factor	[mm/N/mm ²]	0,1	0,11	0,12	0,13	0,14
δ _{N∞} -Factor	[mm/N/mm ²]	0,13	0,14	0,15	0,16	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty} \text{-} \textbf{Factor} \cdot \tau$

Table C20: Displacements under shear load ¹⁾ for internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20
δ _{vo} -Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
δ _{v∞} -Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{\mathsf{N}\infty} \texttt{=} \delta_{\mathsf{N}\infty} \textbf{-} \texttt{Factor} \cdot \mathsf{V}$

fischer injection system FIS V

Performances

Displacements threaded rods and internal threaded anchor RG MI

Table C21: Dis	Table C21: Displacements under tension load ¹⁾ for reinforcing bars											
Size	Ø	[mm]	8	10	12	14	16	20	25	28		
Non-cracked c	oncrete											
δ _{N0} -Factor		[mm/N/mm ²]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11		
δ _{N∞} -Factor		[mm/N/mm ²]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13		
Cracked concr	ete											
δ _{N0} -Factor		[mm/N/mm ²]		0,12	0,12	0,13	0,13	0,13	0,13	0,14		
δ _{N∞} -Factor		[mm/N/mm ²]		0,27	0,30	0,30	0,30	0,30	0,35	0,37		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor $\cdot \tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty}\text{-}\mathsf{Factor}\cdot\tau$

Table C22: Displacements under shear load ¹⁾ for reinforcing bars

Size	Ø	[mm]	8	10	12	14	16	20	25	28
δ _{vo} -Factor		[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
$\delta_{V\infty}$ -Factor		[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Factor · V

 $\delta_{\mathsf{N}\infty} \texttt{=} \delta_{\mathsf{N}\infty} \textbf{-} \texttt{Factor} \cdot \mathsf{V}$

Table C23: Displacements under tension load ¹⁾ for rebar anchor FRA

Size		M12	M16	M20	M24
Non-cracked concrete					
δ _{N0} -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,10
δ _№ -Factor	[mm/N/mm ²]	0,12	0,12	0,12	0,13
Cracked concrete					
δ _{νo} -Factor	[mm/N/mm ²]	0,12	0,13	0,13	0,13
$\delta_{N\infty}$ -Factor	[mm/N/mm ²]	0,30	0,30	0,30	0,35

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\tau$

 $\delta_{\mathsf{N}\infty} \texttt{=} \delta_{\mathsf{N}\infty} \textbf{-} \texttt{Factor} \cdot \tau$

Table C24: Displacements under shear load ¹⁾ for rebar anchor FRA

Size		M12	M16	M20	M24
δ _{vo} -Factor	[mm/kN]	0,1	0,1	0,09	0,09
δ _{v∞} -Factor	[mm/kN]	0,11	0,11	0,10	0,1

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\text{V}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Factor · V

fischer injection system FIS V

Performances

Displacements reinforcing bars and rebar anchor FRA