

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0032 of 7 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti push-in anchor HKD

Deformation-controlled expansion anchor made of galvanised or stainless steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Aktiengesellschaft

19 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 4: "Deformation controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-02/0032

Page 2 of 19 | 7 January 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z957.15 8.06.01-252/14

European Technical Assessment ETA-02/0032

Page 3 of 19 | 7 January 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti-push-in anchor HKD of sizes M6, M8, M10, M12, M16 and M20 is an anchor made of galvanised or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The anchor consists of an anchor body and an internal plug.

The Illustration and the description of the product are given in Annex A.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B2.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads in non-cracked concrete	See Annex C1 / C4
Characteristic resistance for shear loads in non-cracked concrete	See Annex C2 / C5
Displacements under tension and shear loads	See Annex C3 / C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

Z957.15 8.06.01-252/14

European Technical Assessment ETA-02/0032

Page 4 of 19 | 7 January 2015

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

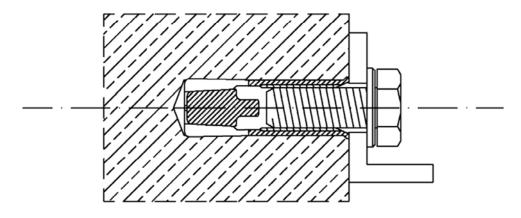
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European assessment Dcoument

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

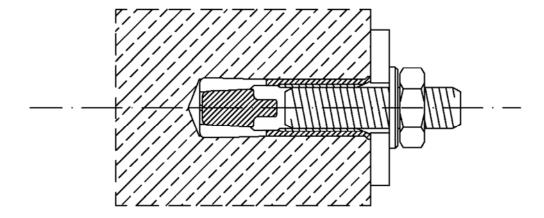
Issued in Berlin on 7 January 2015 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange

Z957.15 8.06.01-252/14

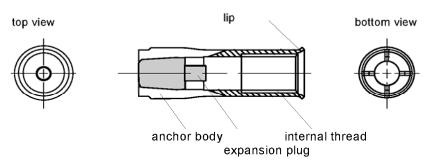


Installed condition

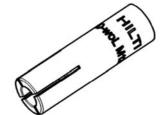

Figure A1:

Hilti push-in anchor HKD with screw

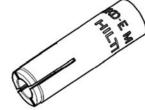
Figure A2:


Hilti push-in anchor HKD with threaded rod, washer and nut

Hilti push-in anchor HKD	
Product description Installed condition	Annex A1



Product description: Hilti push-in anchor HKD



Marking:

HKD

HKD-woL

HKD-S / HKD-SR

HKD-E / HKD-ER

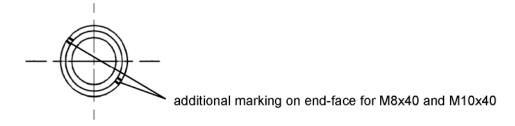
<u>HKD</u>	HKD-woL
HKD M8 x 30	HKD-woL M8 x 30
HKD M8 x 40	HKD-woL M8 x 40
HKD M10 x 30	HKD-woL M10 x 30
HKD M10 x 40	HKD-woL M10 x 40
HKD M12 x 50	HKD-woL M12 x 50
HKD M16 x 65	HKD-woL M16 x 65
HKD M20 x 80	HKD-woL M20 x 80

<u>HKD-E</u>	
HKD-E	M6 x 30 ø8
HKD-E	M8 x 30 ø10
HKD-E	M8 x 40 ø10
HKD-E	M10 x 30 ø12
HKD-E	M10 x 40 ø12
HKD-E	M12 x 50 ø15
HKD-E	M16 x 65 ø20
HKD-E	M20 x 80 ø25

<u>HKD-SR</u>
HKD-SR M6 x 30 ø8
HKD-SR M8 x 30 ø 10
HKD-SR M10 x 40 ø12
HKD-SR M12 x 50 ø15
HKD-SR M16 x 65 ø20
HKD-SR M20 x 80 ø25

HKD-ER HKD-ER M6 x 30 Ø 8 HKD-ER M8 x 30 Ø 8 HKD-ER M10 x 40 Ø 12 HKD-ER M12 x 50 Ø 15 HKD-ER M16 x 65 Ø 20 HKD-ER M20 x 80 Ø 25

Hilti push-in anchor HKD	
Product description Anchor types / Marking	Annex A2


Identification after installation

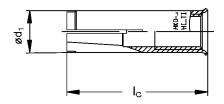
each anchor can be identified with setting tool after installation

Table A1: Identification HKD and HKD-woL

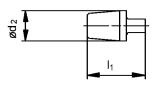
Size	Setting tool	Top view
HKD M8x30	HSD-G M8 x 25/30	
HKD M8x40	HSD-G M8 x 40	
HKD M10x30	HSD-G M10 x 25/30	
HKD M10x40	HSD-G M10 x 40	
HKD M12x50	HSD-G M12 x 50	
HKD M16x65	HSD-G M16 x 65	
HKD M20x80	HSD-G M20 x 80	

Identification HKD-E(R) and HKD-S(R)

Hilti push-in anchor HKD	
Product description Identification after installation	Annex A3



Materials and dimensions


Table A2: Materials

designation	material	
HKD; HKD-woL		
anchor body	cold formed steel – galvanised to $\geq 5~\mu\text{m}$	
expansion plug	cold formed steel	
HKD-S; HKD-E		
anchor body	Steel Fe/Zn5 (galvanised ≥ 5 μm)	
expansion plug	cold formed steel	
HKD-SR; HKD-ER		
anchor body	stainless steel,,	
expansion plug	1.4401, 1.4404 or 1.4571 EN 10088-3:2014	

anchor body

expansion plug

Table A3: Dimensions

anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Anchor length	l _G	[mm]	30	30	40	30	40	50	65	80
Anchor diameter	Ød₁	[mm]	8	9,95	9,95	11,8	12	14,9	19,8	24,8
Plug diameter	$Ød_2$	[mm]	5	6,5	6,35	8,2	8,2	10,3	13,8	16,4
Plug length	l ₁	[mm]	15	12	16	12	16	20	29	30

Hilti push-in anchor HKD	
Product description Materials and dimensions	Annex A4

Specifications of intended use

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Table B1: Overview use categories and performance categories

Anchorages subject to:	HKD / HKD-woL / HKD-E(R) and HKD-S(R) with						
	Threaded rod or screw						
Hammer drilling	✓						
Static and quasi static loading and non-cracked concrete	M6 to M20 Table : C1, C2, C3, C4, C5 and C6						

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - "ETAG 001, Annex C, design method A, Edition August 2010"

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · The anchor may only be set once.
- Overhead applications are permitted.

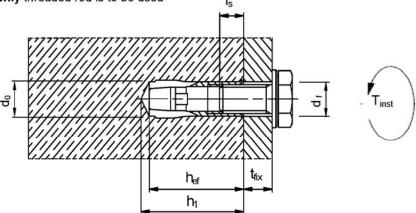

Hilti push-in anchor HKD	
Specifications of intended use	Annex B1

Table B2: Installation parameters for HKD-S(R), HKD-E(R), HKD and HKD-woL

HKD			M6x30	M8x30	M8x40	M10x30 ¹⁾	M10x40	M12x50	M16x65	M20x80
Nominal diameter of drill bit	d ₀	[mm]	8	10	10	12	12	15	20	25
Diameter of thread	d	[mm]	6	8	8	10	10	12	16	20
drill hole depth	h ₁	[mm]	32	33	43	33	43	54	70	85
Effective embedment depth	h _{ef}	[mm]	30	30	40	30	40	50	65	80
Thread engagement length	I _{s,max}	[mm]	12,5	14,5	17,5	12,7	18	23,5	30,5	42
Minimum screwing depth 1)	$I_{s,min}$	[mm]	6	8	8	10	10	12	16	20
Maximum torque moment	T _{inst}	[Nm]	4	8	8	15	15	35	60	100
Maximum diameter of clearance hole in the fixture	d _f	[mm]	7	9	9	12	12	14	18	22

1) with anchor size M10x30 only threaded rod is to be used

Requirements for fastening screw or threaded rod:

For anchors made of galvanised steel (HKD, HKD-woL, HKD-E and HKD-S) fastening screws or threaded rods of steel grade 4.6 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 shall be specified.

For anchors made of stainless steel (HKD-ER and HKD-SR) fastening screw or threaded rod of steel grade 70 according EN ISO 3506:2009 shall be specified.

Minimum screw depth I_{s,min}: The length of the screw shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and available thread length $I_{s,max}$ as well as minimum screw depth $I_{s,min}$ according table B2

Hilti push-in anchor HKD	
Intended Use Installation parameters	Annex B2

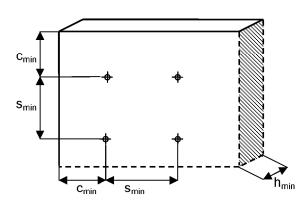


Table B3: Minimum spacing and minimum edge distance for HKD-S(R) and HKD-E(R)

HKD-S(R), HKD-E(R)			M6x30 M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	130	160
Minimum spacing	S _{min}	[mm]	60	80	125	130	160
Minimum edge distance	C _{min}	[mm]	105	140	175	230	280

Table B4: Minimum spacing and minimum edge distance for HKD and HKD-woL

HKD, HKD-woL			M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	130	160
Minimum spacing	s _{min} [mm]		60	80	125	130	160
	for c ≥	[mm]	105	140	175	230	280
Minimum edge distance	C _{min}	[mm]	80	140	175	230	280
	for s≥	[mm]	120	80	125	130	160

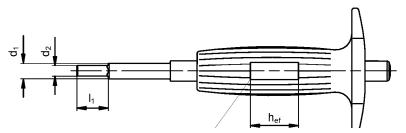
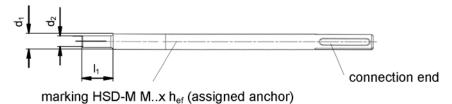

Annex B3

Table B5: Dimensions of the setting tools

Setting tools HSD			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Diameter	d ₁	[mm]	7,5	9,5	9,5	11,5	11,5	14,5	18	22
Diameter	d ₂	[mm]	5	6,5	6,5	8	8	10,2	13,5	16,5
Length	I ₁	[mm]	15	18	28	18	24	30	36	50

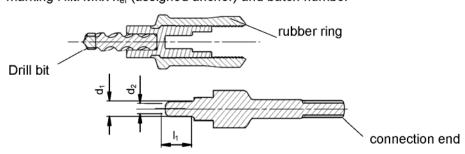
Manual setting tool HSD-G M.. \times h_{ef} (e.g. HSD-G M8 \times 30)



Installation control with manual setting tool

marking from setting

anchor gauge with imprint $M..x h_{ef}$ (assigned anchor) the recess length corresponds to the anchor length h_{ef}


Machine setting tool HSD-M M.. x h_{ef} (e.g. HSD-M M8 x 30)

Machine setting tool HSD-TE CX M.. x hef (e.g. HSD-TE-CX M8 x 30)

marking Hilti M..x hef (assigned anchor) and batch number

Hilti push-in anchor HKD	
Intended Use Setting tools	Annex B4

Installation instructions

Installation instructions

Table C1: Characteristic values of resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under tension loads in non-cracked concrete

						1				
HKD-S (R) HKD-E (R)			M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20x80
Installation safety factor	. γ2		1	,0	1,2			1,0		
Steel failure										
Steel grade 4.6	$N_{Rk,s}$	[kN]	8,0	14,6	14,6	23,2	23,2	33,7	62,8	98,0
Partial safety factor	$\gamma_{ extsf{Ms}}^{ extsf{1})}$					2	,0			
Steel grade 5.6	$N_{Rk,s}$	[kN]	10,1	18,3	18,3	18,5	19,9	42,2	54,7	86,9
Partial safety factor	γ _{Ms} 1)			2,0		1,	49	2,0	1,	47
Steel grade 5.8	$N_{Rk,s}$	[kN]	10,1	17,4	17,4	18,5	19,9	35,3	54,7	86,9
Partial safety factor	γ M s		1,50	1,	53		1,49		1,	47
Steel grade 8.8	$N_{Rk,s}$	[kN]	13,4	17,4	17,4	18,5	19,9	35,3	54,7	86,9
Partial safety factor	γ _{Ms} 1)			1,53			1,49	1,49		47
Steel grade 70	$N_{Rk,s}$	[kN]	12,8	16,8	-	-	21,1	37,3	64,2	102,0
Partial safety factor	γ _{Ms} 1)		1,	83		- 1,83				
Pullout failure										
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]		3)	9,0			3)		
		C30/37				1,	22			
Increasing factors for N _{Rk,p}	Ψс	C40/50			1,41					
,β		C50/60				1,	55			
Concrete cone and sp	litting fail	lure								
Effective embedment depth	h _{ef}	[mm]	30 ²⁾	30 ²⁾	40	30 ²⁾	40	50	65	80
Spacing	S _{cr,N}	[mm]	90	90	120	90	120	150	195	240
Edge distance	C _{cr,N}	[mm]	45	45	60	45	60	75	97	120
Spacing	S _{cr,sp}	[mm]	210	210	280	210	280	350	455	560
Edge distance	C _{cr,sp}	[mm]	105	105	140	105	140	175	227	280

¹⁾ In absence of other national regulations

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under tension loads in non-cracked concrete	Annex C1

²⁾ For application with statically indeterminate structural components only

³⁾ Pull-out failure mode is not decisive

Table C2: Characteristic values of resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under shear loads in non-cracked

					1			I		
HKD-S (R) HKD-E (R)			M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20x80
Steel failure without leve	er arm									
Steel grade 4.6	$V_{Rk,s}$	[kN]	4,0	7,3	7,3	7,4	8,0	16,9	21,9	34,7
Partial safety factor	γ _{Ms} 1)			1,67		1,	25	1,67	1,	25
Steel grade 5.6	$V_{Rk,s}$	[kN]	5,0	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γ _{Ms} 1)		1,67	1,	27			1,25		
Steel grade 5.8	$V_{Rk,s}$	[kN]	5,0	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γ _{Ms} 1)		1,25	1,	27			1,25		
Steel grade 8.8	$V_{Rk,s}$	[kN]	5,3	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γ _{Ms} 1)			1,27			1,25			
Steel grade 70	$V_{Rk,s}$	[kN]	6,4	8,4	-	-	10,5	18,7	32,1	51,0
Partial safety factor	γ _{Ms} 1)		1,	52		-	1,52			
Steel failure with lever arm										
Steel grade 4.6	$M^0_{Rk,s}$	[Nm]	6	15	15	30	30	52	133	260
Partial safety factor	γ _{Ms} 1)					1,	67			
Steel grade 5.6	$M^0_{Rk,s}$	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} 1)					1,	67			
Steel grade 5.8	$M^0_{Rk,s}$	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} 1)					1,	25			
Steel grade 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	30	60	60	105	266	519
Partial safety factor	γ _{Ms} 1)					1,	25			
Steel grade 70	$M^0_{Rk,s}$	[Nm]	11	26	-	-	52	92	233	454
Partial safety factor	γ _{Ms} 1)		1,	56		-		1,	56	
Concrete pry-out failure										
Factor in equation (5.6) ETAG Annex C, §5.2.3.3	k					2	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]	30	30	40	30	40	50	65	80
External diameter of anchor	d _{nom}	[mm]	8	10	10	12	12	15	20	25

¹⁾ In absence of other national regulations

²⁾ For application with statically indeterminate structural components only

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under shear loads in non-cracked concrete	Annex C2

Table C3: Displacement under tension load for HKD-S(R) and HKD-E(R)

HKD-S (R) HKD-E (R)			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tension load in C20/25 to C50/60 non-cracked concrete	N	[kN]	3,3	3,3	3,6	3,3	5,1	7,1	12,6	17,2
Displacement -	δ_{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	$\delta_{\text{N}\infty}$	[mm]	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2

Table C4: Displacement under shear load for HKD-S(R) and HKD-E(R)

HKD-S HKD-E			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Shear load in C20/25 to C50/60 non-cracked concrete	V	[kN]	1,7	3,1	3,1	4,3	4,6	7,2	12,5	19,8
Displacement -	δ_{V0}	[mm]	0,35	0,35	0,40	0,35	0,40	0,45	0,75	0,75
	$\delta_{V^{\infty}}$	[mm]	0,50	0,50	0,60	0,50	0,60	0,70	1,1	1,1

Table C5: Displacement under shear load for HKD-S(R) and HKD-E(R)

HKD-SR HKD-ER			M6x30	M8x30	M10x40	M12x50	M16x65	M20x80
Shear load in C20/25 to C50/60 non-cracked concrete	V	[kN]	1,7	3,9	4,9	8,8	15,1	24,0
Displacement -	δ_{V0}	[mm]	0,35	0,45	0,45	0,55	0,9	0,9
	$\delta_{V^{\infty}}$	[mm]	0,50	0,65	0,65	0,85	1,3	1,3

Hilti push-in anchor HKD	
Performance Displacement under tension load and under shear load for HKD-S(R) and HKD-E(R)	Annex C3

Table C6: Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL under tension loads in non-cracked concrete

				T	1	ı	1	1		
HKD HKD-woL			M8x30 ²⁾	M8x40	M10x30 ²⁾	M10×40	M12x50	M16x65	M20×80	
Installation safety factor	γ2		1,0	1,2			1,0			
Steel failure				•						
Steel grade 4.6	$N_{Rk,s}$	[kN]	14,6	14,6	19,9	22,1	33,7	62,8	98,0	
Partial safety factor	γ _{Ms} 1)		2	,0	1	,5		2,0		
Steel grade 5.6	$N_{Rk,s}$	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0	
Partial safety factor	γ _{Ms} 1)					1,5				
Steel grade 5.8	$N_{Rk,s}$	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0	
Partial safety factor	$\gamma_{ extsf{Ms}}^{ extsf{1})}$					1,5				
Steel grade 8.8	$N_{Rk,s}$	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0	
Partial safety factor	γ _{Ms} 1)					1,5				
Pullout failure										
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	³⁾	9,0			³⁾			
		C30/37				1,22				
Increasing factors for N _{Rk.p}	Ψc	C40/50				1,41				
		C50/60				1,55				
Concrete cone and sp	litting fail	lure								
Effective embedment depth	h _{ef}	[mm]	30 ²⁾	40	30 ²⁾	40	50	65	80	
Spacing	S _{cr,N}	[mm]	90	120	90	120	150	195	240	
Edge distance	C _{cr,N}	[mm]	45	60	45	60	75	97	120	
Spacing	S _{cr,sp}	[mm]	210	280	210	280	350	455	560	
Edge distance	C _{cr,sp}	[mm]	105	140	105	140	175	227	280	

¹⁾ In absence of other national regulations

Hilti push-in anchor HKD	
Performances Characteristic values of resistance under tension loads in non-cracked concrete	Annex C4

²⁾ For application with statically indeterminate structural components only

³⁾ Pull-out failure mode is not decisive

Table C7: Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL under shear loads in non-cracked concrete

					1			1	
HKD HKD-woL			M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20x80
Steel failure without lev	er arm								
Steel grade 4.6	$V_{Rk,s}$	[kN]	7,3	7,3	10,0	11,0	16,9	31,4	49
Partial safety factor	1) γ _{Ms}		1,67 1,25 1,67				1,67		
Steel grade 5.6	$V_{Rk,s}$	[kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
Partial safety factor	1) γ _{Ms}		1,25	1,67			1,25		
Steel grade 5.8	$V_{Rk,s}$	[kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
Partial safety factor	1) γ M s					1,25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
Partial safety factor	1) γ M s					1,25			
Steel failure with lever a									
Steel grade 4.6	M ⁰ _{Rk,s}	[Nm]	15	15	30	30	52	133	260
Partial safety factor	γ _{Ms} 1)			•		1,67			
Steel grade 5.6	M ⁰ _{Rk,s}	[Nm]	19	19	37	37	65	166	325
Partial safety factor	1) γ _{Ms}			•	•	1,67			
Steel grade 5.8	$M^0_{Rk,s}$	[Nm]	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} 1)			•		1,25			
Steel grade 8.8	M ⁰ _{Rk,s}	[Nm]	30	30	60	60	105	266	519
Partial safety factor	1) γ M s					1,25			
Concrete pry-out failure)								
Factor in equation (5.6) ETAG Annex C, §5.2.3.3	k					2,0			
Concrete edge failure									
Effective length of anchor	r I _f	[mm]	30	40	30	40	50	65	80
External diameter of anchor	d _{nom}	[mm]	10	10	12	12	15	20	25

¹⁾ In absence of other national regulations

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL under shear loads in non-cracked concrete	Annex C5

²⁾ For application with statically indeterminate structural components only

Table C8: Displacement under tension load for HKD and HKD-woL

HKD HKD-woL			M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tension load in C20/25 to C50/60 non-cracked concrete	N	[kN]	4,0	4,3	4,0	6,1	8,5	12,6	17,2
Displacement	δ_{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Displacement -	$\delta_{\text{N}\infty}$	[mm]	0,3	0,3	0,3	0,3	0,3	0,2	0,2

Table C9: Displacement under shear load for HKD and HKD-woL

HKD HKD-woL			M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Shear load in C20/25 to C50/60 non-cracked concrete	N	[kN]	3,1	3,1	4,3	4,6	7,2	12,5	19,8
Displacement	δ_{N0}	[mm]	0,35	0,40	0,35	0,40	0,45	0,75	0,75
	$\delta_{N^{\infty}}$	[mm]	0,50	0,60	0,50	0,60	0,70	1,1	1,1

Hilti push-in anchor HKD	
Performance	Annex C6
Displacement under tension load and under shear load for HKD and HKD-woL	