

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0022 vom 19. August 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Injektionsanker System UPM 44

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

29 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-02/0022

Seite 2 von 29 | 19. August 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-02/0022

Seite 3 von 29 | 19. August 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionsanker System UPM 44 ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel UPM 44, UPM 44 Express und UPM 44 Relax und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer Upat Ankerstange in den Größen M6 bis M30,
- einem Upat Innengewindeanker IST in den Größen M8 bis M20,
- einem Betonstahl in den Größen $\phi = 8$ bis 28 mm oder
- einem Upat Bewehrungsanker in den Größen M12 bis M24.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung		
Charakteristische Werte für Bemessung nach TR 029	Siehe Anhang C 1 bis C 6		
Charakteristische Werte für Bemessung nach CEN/TS 1992-4:2009	Siehe Anhang C 7 bis C 12		
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 13 / C 14		

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

Europäische Technische Bewertung ETA-02/0022

Seite 4 von 29 | 19. August 2015

3.4 Sicherheit bei der Nutzung (BWR 4)

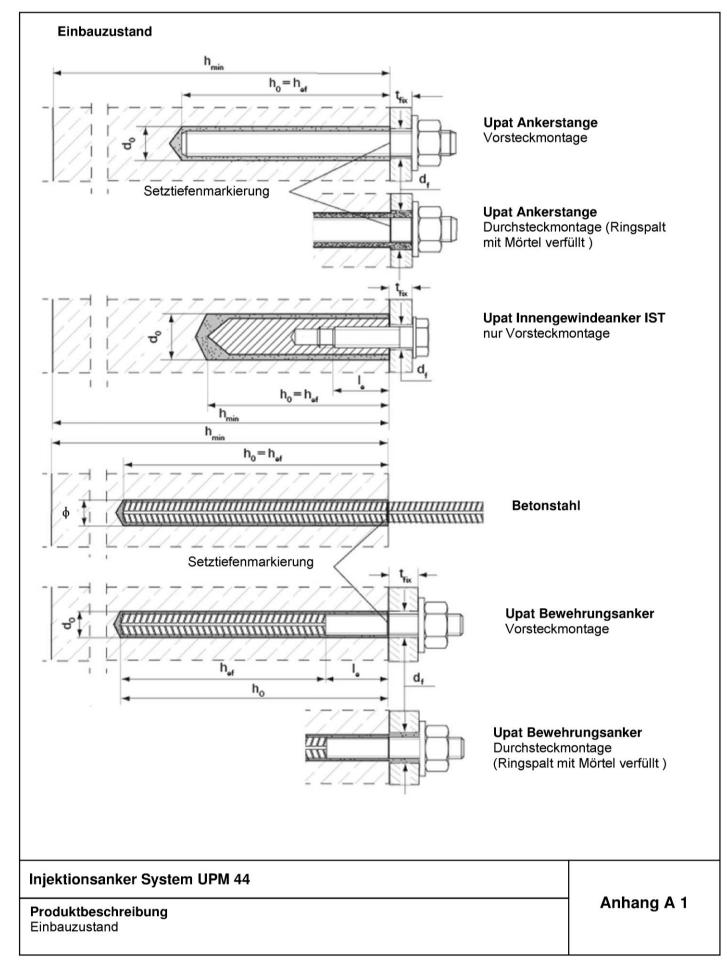
Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

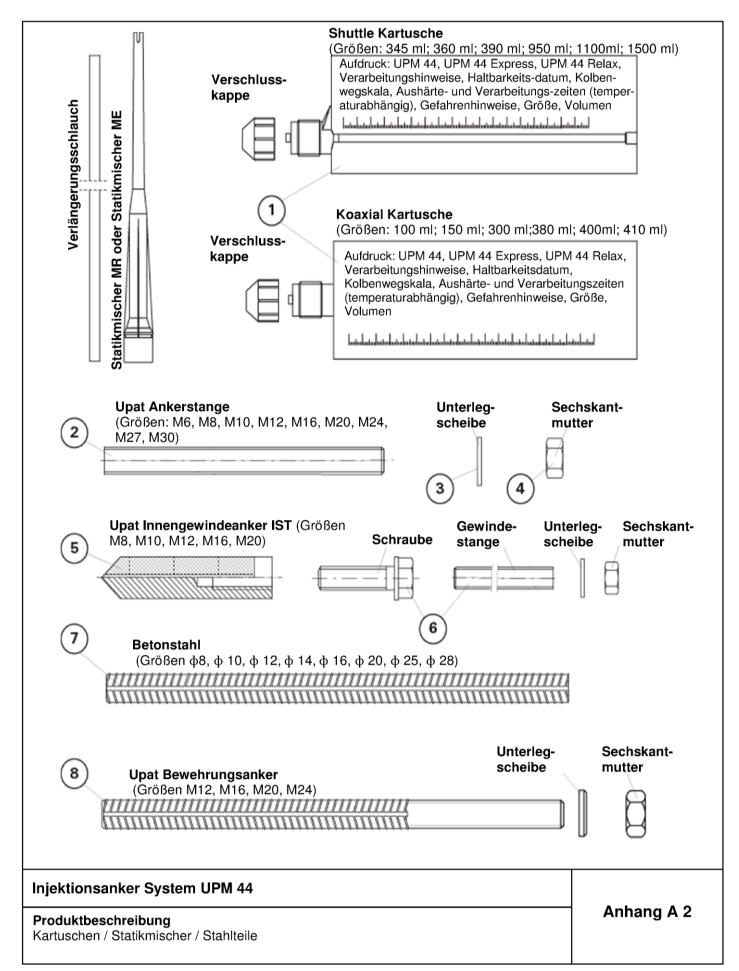
Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 19. August 2015 vom Deutschen Institut für Bautechnik


Andreas Schult i.V. Abteilungsleiter

Beglaubigt:

Teil	Bezeichnung		Material						
1	Mörtelkartusche	Mörtel, Härter; Füllstoff							
		Stahl, verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C					
2	Ankerstange	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt \geq 5 μ m, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ Bruchdehnung					
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5µm, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2013 verzinkt ≥ 5µm, ISO 4042:1999 A2K oder feuerverzinkt ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014					
5	Innengewindeanker IST	Festigkeitsklasse 5.8 EN 10277-1:2008-06 verzinkt ≥ 5µm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
6	Schraube oder Ankerstange für Innengewindeanker IST	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5µm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
7	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom f_{yk} und k gemäß NDP oder I $f_{uk} = f_{tk} = k \cdot f_{yk}$		A:2013					
8	Upat Bewehrungsanker	Betonstahlteil: Stäbe und Betonstahl vom Ring Klasse B oder C mit f _{yk} und k gemäß NDP oder NCL der EN 1992-1-1/NA:2013 f _{uk} = f _{tk} = k•f _{yk} EN 10088-1:2014							

Injektionsanker System UPM 44	
Produktbeschreibung Materialien	Anhang A 3

Spezifizierung des Verwendungszwecks

Tabelle B1: Übersicht Nutzungskategorien und Leistungskategorien

Tabelle BT: Obersicht	uutzungsk	kategorien un	a Leistu	ngskategorien					
Beanspruchung der Verankerung	uPM 44 mit								
3	Ank	Ankerstange Innengewinde		ewindeanker IST	Betonstahl		Bewel	nrungsanker	
Hammerbohren				alle Größe	n				
Statische gerissene und quasi- Beto	r M6 bis M30	Tabellen: C1, C5 ,C9,	M8 bis M20	Tabellen: C2, C6, C10, C14, C19, C20	Ø8 bis Ø28	Tabellen: C3, C7,	M12 bis	Tabellen: C4, C8,	
statische Belastung in gerissene Beto	I DIS I	C13, C17, C18				C11, C15, C21, C22	M24	C12, C16, C23, C24	
Nutz- nasser Beto	1 1/16	M6 bis M30		M8 bis M20		Ø8 bis Ø28		M12 bis M24	
kategorie Wassergefül tes Bohrloch		M12 bis M30		M8 bis M20					
Einbautemperatur				-10°C bis +4	0°C				
Temperatu Gebrauchs- bereich	_/11	-40°C bis +80°C		(Maximale Langzeittemperatur +50°C und Maximale Kurzzeittemperatur +80°C)				male	
temperatur Temperatu bereich	-40	°C bis +120°C	(Maximale Langzeittemperatur +72°C und Maximale Kurzzeittemperatur +120°C)				male		

¹⁾ Nur Koaxial Kartuschen: 380 ml, 400 ml und 410 ml

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)
 - Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit TR 029 "Bemessung von Verbunddübeln", Ausgabe September 2010 oder CEN/TS 1992-4:2009

Einbau:

- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Überkopfmontage erlaubt

Injektionsanker System UPM 44	
Verwendungszweck Spezifikationen	Anhang B 1

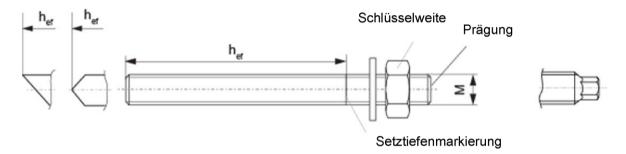


Tabelle B2: Montagekennwerte Ankerstangen

Größe			М6	M8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite	SW	[mm]	10	13	17	19	24	30	36	41	46
Nomineller Bohrdurchmesser	d_0	[mm]	8	10	12	14	18	24	28	30	35
Bohrlochtiefe	h_0	[mm]					$h_0 = h_{ef}$				
Effektive Verankerungstiefe	$h_{\rm ef,min}$	[mm]	50	60	60	70	80	90	96	108	120
Ellektive veralikerungstiele	h _{ef,max}	[mm]	72	160	200	240	320	400	480	540	600
Maximales Drehmoment	$T_{inst,max}$	[Nm]	5	10	20	40	60	120	150	200	300
Minimaler Achsabstand	S _{min}	[mm]	40	40	45	55	65	85	105	125	140
Minimaler Randabstand	C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser Vorsteck- des Durch- montage	d_f	[mm]	7	Ø	12	14	18	22	26	30	33
gangslochs im Anbauteil Durchsteck- montage	d _f	[mm]	9	11	14	16	20	26	30	32	40
Mindestdicke des Betonbauteils hmin [mm]		h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀						

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Upat Ankerstangen

Prägung:

Festigkeitsklasse 8.8 oder hochkorrosionsbeständiger Stahl C, Festigkeitsklasse 80: • Nichtrostender Stahl A4, Festigkeitsklasse 50 oder hochkorrosionsbeständiger Stahl C, Festigkeitsklasse 50:••

Handelsübliche Standard-Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente sollten aufgehoben werden
- Markierung der Verankerungstiefe

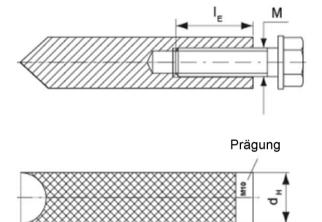

Injektionsanker System UPM 44	
Verwendungszweck Montagekennwerte Ankerstangen	Anhang B 2

Tabelle B3: Montagekennwerte Upat Innengewindeanker IST

Größe			M8	M10	M12	M16	M20
Ankerdurchmesser	d_{H}	[mm]	12	16	18	22	28
Nomineller Bohrdurchmesser	d_{o}	[mm]	14	18	20	24	32
Bohrlochtiefe	h_{o}	[mm]			$h_0 = h_{ef}$		
Effektive Verankerungstiefe (h _{ef} = L _H)	h_{ef}	[mm]	90	90	125	160	200
Maximales Drehmoment	$T_{inst,max}$	[Nm]	10	20	40	80	120
Minimaler Achsabstand	S _{min}	[mm]	55	65	75	95	125
Minimaler Randabstand	C _{min}	[mm]	55	65	75	95	125
Durchmesser des Durchgangslochs im Anbauteil ¹⁾	d_f	[mm]	9	12	14	18	22
Mindestdicke des Betonbauteils	h_{min}	[mm]	120	125	165	210	265
Maximale Einschraubtiefe	$I_{E,max}$	[mm]	18	23	26	35	45
Minimale Einschraubtiefe	$I_{E,min}$	[mm]	8	10	12	16	20

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Upat Innengewindeanker IST

Prägung: Ankergrösse z. B.: M10

Nichtrostender Stahl zusätzlich A4 z. B.: M10

A4

Hochkorrosionsbeständiger Stahl

zusätzlich C z. B.: M10 C

Befestigungsschraube oder Ankerstangen einschliesslich Mutter und Unterlegscheibe müssen den zugehörigen Stahlgüte und Festigkeitsklassen gemäß Tabelle A1 entsprechen

Injektionsanker System UPM 44	
Verwendungszweck Montagekennwerte Upat Innengewindeanker IST	Anhang B 3

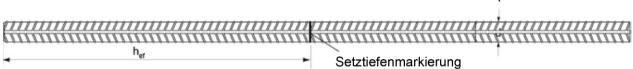


Tabelle B4: Montagekennwerte Betonstähle

Betonstahl Durchmesser		ф	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28
Nomineller Bohrdurchmesser	do	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35
Bohrlochtiefe	h₀	[mm]	$h_0 = h_{ef}$								
Effektive	$h_{\rm ef,min}$	[mm]	60	60	70	0	75	80	90	100	112
Verankerungstiefe	h _{ef,max}	[mm]	160	200	24	0	280	320	400	500	560
Minimaler Achsabstand	S _{min}	[mm]	40	45	5	5	60	65	85	110	130
Minimaler Randabstand	C _{min}	[mm]	40	45	5	5	60	65	85	110	130
Mindestdicke des Betonbauteils	h _{min}	[mm]	h _{ef} + 30 ≥ 100			h _{ef} + 2d ₀					

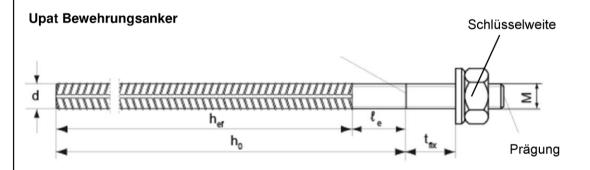
¹⁾ Beide Bohrernenndurchmesser sind möglich.

Betonstahl

Rippenhöhe h:

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2009+AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 φ ≤ h ≤ 0,07 φ
- (φ = Nenndurchmesser des Stabes, h = Rippenhöhe)

Injektionsanker System UPM 44


Verwendungszweck
Montagekennwerte Betonstähle

Anhang B 4

Tabelle B5: Montagekennwerte Upat Bewehrungsanker

Gewindedurchmesser				M12 1)		M16	M20	M24
Ankerdurchmesser		d	[mm]	12	2	16	20	25
Schlüsselweite		SW	[mm]	19)	24	30	36
Nomineller Bohrdurch	messer	d_0	[mm]	14	16	20	25	30
Bohrlochtiefe		h_0	[mm]			h _{ef} +	ℓ _e	
Abstand Betonoberfläche zur Schweissstelle			[mm]		100			
Effolstive \/orankorung	estisfs	h _{ef,min}	[mm]	70)	80	90	96
Effektive Verankerung	suere	h _{ef,max}	[mm]	14	0	220	300	380
Maximales Drehmome	ent	T _{inst,max}	[Nm]	40)	60	120	150
Minimaler Achsabstar	nd	S _{min}	[mm]	55	;	65	85	105
Minimaler Randabstar	nd	C _{min}	[mm]	55	;	65	85	105
Durchmesser des	Vorsteckmontage	d _f	[mm]	14		18	22	26
Durchgangslochs im Anbauteil ²⁾	Durchsteckmontage	d _f	[mm]	18	3	22	26	32
Mindestdicke des Betonbauteils		h_{min}	[mm]	h ₀ + 30	$h_0 + 30$ $h_0 + 2d_0$			

Prägung: Upat Bewehrungsanker FRA (für nichtrostenden Stahl) Upat Bewehrungsanker FRA C (für hochkorrosionsbeständigen Stahl)

Injektionsanker System UPM 44	
Verwendungszweck Montagekennwerte Upat Bewehrungsanker	Anhang B 5

Beide Bohrernenndurchmesser sind möglich
 Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Tabelle B6: Kennwerte der Stahlbürste Upat BS Ø

Bohrdurchmesser	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürstendurchmesser d _b	[mm]	9	11	14	16	20	20	25	26	27	30	40	40

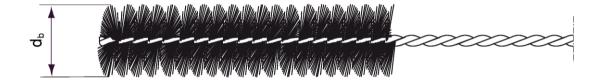
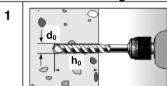
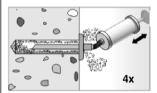


Tabelle B7: Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeitzeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten).

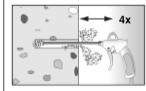
Temperatur i Verankerung grund [°C]		ır im	Minima	le Aushärteze [Minuten]	eit ¹⁾ t _{cure}	System		e Verarbeit _{ork} [Minuter	
		ngs-	UPM 44 Express	UPM 44	UPM 44 Relax	Temperatur (Mörtel) [°C]	UPM 44 Express	UPM 44	UPM 44 Relax
-10	bis	-5	12 Stunden						
>-5	bis	ois ±0 3 Stunden Stund		24 Stunden		±0	5		
>±0	bis	+5	3 Stunden	3 Stunden	6 Stunden	+5	5	13	
>+5	bis	+10	50	90	3 Stunden	+10	3	9	20
>+10	bis	+20	30	60	2 Stunden	+20	1	5	10
>+20	bis	+30		45	60	+30		4	6
>+30	bis	+40		35	30	+40		2	4


¹⁾ In feuchtem Beton oder wassergefülltem Bohrloch sind die Aushärtezeiten zu verdoppeln.

Injektionsanker System UPM 44	
Verwendungszweck Reinigungswerkzeuge / Verarbeitungszeit und Aushärtezeiten	Anhang B 6

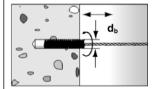

Montageanleitung Teil 1

Bohrlocherstellung und Bohrlochreinigung



Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe Tabellen **B2**, **B3**, **B4**, **B5**.

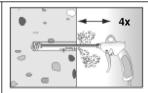
2



h_{ef} ≤ 12d und d₀ < 18 mm: Bohrloch viermal von Hand ausblasen.

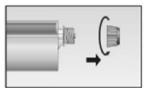
h_{ef} > 12d und/oder d₀ ≥ 18 mm: Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar).

3

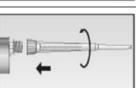


Bohrloch viermal mit einer passenden Stahlbürste ausbürsten (siehe Tabelle **B6**).

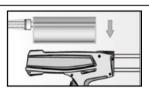
4


 $h_{ef} \le 12d$ und $d_0 < 18$ mm: Bohrloch viermal von Hand ausblasen.

 h_{ef} > 12d und/oder $d_0 \ge 18$ mm: Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar).


Kartuschenvorbereitung

5


Verschlusskappe abschrauben.

6

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).

7

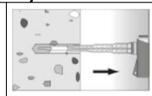
Kartusche in die Auspresspistole legen.

8

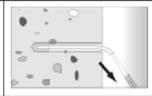
Einen etwa 10 cm langen Mörtelstrang auspressen, bis dieser gleichmäßig grau gefärbt ist.

Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Injektionsanker System UPM 44

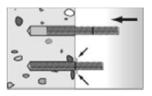

Verwendungszweck Montageanleitung Teil 1 Anhang B 7

Z61678.15

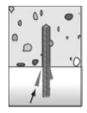


Montageanleitung Teil 2 Mörtelinjektion

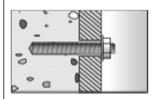
9


Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer vom Grund des Bohrloches her beginnen, um Hohlräume zu vermeiden.

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden.

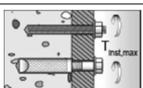

Einbau Upat Ankerstangen oder Upat Innengewindeanker IST

10



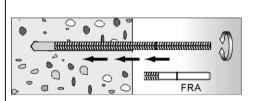
Nur saubere und ölfreie Verankerungselemente verwenden. Die Ankerstange oder den Upat Innengewindeanker IST mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund austreten.

Bei Überkopfmontage das Verankerungselement mit Keilen fixieren.


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen.

11

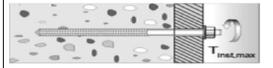
Aushärtezeit abwarten t_{cure} siehe Tabelle **B7**.


12

Montage des Anbauteils T_{inst,max} siehe Tabellen **B2** oder **B3**

Montage Betonstähle und Upat Bewehrungsanker

10


Nur sauberen und ölfreien Betonstahl verwenden. Betonstahl mit Setztiefenmarkierung versehen. Den Betonstahl oder Upat Bewehrungsanker mit leichten Drehbewegungen bis zur Setztiefenmarkierung kräftig in das gefüllte Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss an der Betonoberfläche Überschussmörtel austreten.

11

Aushärtezeit abwarten t_{cure} siehe Tabelle **B7**.

12

Montage des Anbauteils T_{inst,max} siehe Tabelle **B5**

Injektionsanker System UPM 44

Verwendungszweck Montageanleitung Teil 2 Anhang B 8

Tabelle C1: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)

Größe			М6	M8	M10	M12	M16	M20	M24	M27	M30	
Trod und i Montagesicher	ckener nasser Beton γ ₂	[-]	1,0									
heitsbeiwert Wasse tes Bo	rgefüll	[-]						1,	2 ¹⁾			
Kombiniertes Versage	en durch Hera	usziehen	und B	etonaus	bruch							
Rechnerischer Durchme	esser d	[mm]	6	8	10	12	16	20	24	27	30	
Charakteristische Ver	bundfestigke	it im unge	erissen	en Beto	n C20/2	25. Troc	kener ι	ınd nas	ser Bet	on		
Temperaturbereich I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5	
Temperaturbereich II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0	
Charakteristische Ver	bundfestigke	it im unge	erissen	en Beto	n C20/2	25. Was	sergefü	illtes B	ohrloch	1)		
Temperaturbereich I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]				9,5	8,5	8,0	7,5	7,0	7,0	
Temperaturbereich II ²⁾	$ au_{Rk,ucr}$	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0	
Charakteristische Ver	bundfestigke	it im geris	senen	Beton (C20/25.	Trocke	ner und	l nasse	r Beton			
Temperaturbereich I ²⁾	$ au_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0	
Temperaturbereich II ²⁾	$ au_{Rk,cr}$	[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5	
Charakteristische Ver	bundfestigke	it im geris	ssenen	Beton (C20/25.	Wasse	rgefüllt	es Bohi	rloch 1)			
Temperaturbereich I ²⁾	$ au_{Rk,cr}$	[N/mm ²]				5,0	5,0	4,5	4,0	3,5	3,5	
Temperaturbereich II ²⁾	$ au_{Rk,cr}$	[N/mm ²]				4,0	4,0	3,5	3,5	3,0	3,0	
	C25/30	[-]					1,05					
	C30/37	[-]					1,10					
Erhöhungsfaktor Ψ _c	C35/45	[-]					1,15					
Emonungsiaktor Ψ_c	C40/50	[-]					1,19					
	C45/55	[-]					1,22					
C50/60 [-]							1,26					
Spalten												
	h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}					
Randabstand c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]				4,6	5 h _{ef} – 1,	8 h				
	h/h _{ef} ≤1,3	[mm]					2,26 h _{ef}					
Achsabstand	S _{cr,sp}	[mm]					$2 c_{cr,sp}$					

 $^{^{1)}}$ Nur Koaxial Kartuschen: 380 ml, 400 ml und 410 ml $^{2)}$ Siehe Anhang B1

Injektionsanker System UPM 44	
Leistungen	Anhang C 1
Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)	

Tabelle C2: Charakteristische Werte für die Zugtragfähigkeit von Upat Innengewindeankern IST in ungerissenem Beton (Bemessungsverfahren nach TR 029)

Größe				M8	M10	M12	M16	M20	
Montagesicherheits-	Trockener und nasser Beton		[-]	1,0					
beiwert	Wassergefülltes Bohrloch		[-]		1,2 ¹⁾				
Stahlversagen									
	Festigkeits-	5.8	[kN]	19	29	43	79	123	
Charakteristischer Widerstand mit Schraub	klasse	8.8	[kN]	29	47	68	108	179	
N _{Rk,s}	e Festigkeits-	A4	[kN]	26	41	59	110	172	
TRK,S	klasse 70	С	[kN]	26	41	59	110	172	
Kombiniertes Versage	n durch Herausz	ziehen und	d Betonau	ısbruch					
Rechnerischer Durchme	esser	d _H	[mm]	12	16	18	22	28	
Charakteristische Verk nasser Beton	oundfestigkeit in	Ū	senen Bet	ton C20	/25. Troc	kener u	nd		
Temperaturbereich I ²⁾		$N_{Rk,p}^0$	[kN]	30	40	50	75	115	
Temperaturbereich II ²⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95	
Charakteristische Verk Wassergefülltes Bohrl	oundfestigkeit in och ¹⁾	n ungeriss	senen Bet	ton C20	/25.				
Temperaturbereich I ²⁾		$N_{Rk,p}^0$	[kN]	25	35	50	60	95	
Temperaturbereich II ²⁾		$N^0_{Rk,p}$	[kN]	20	25	35	50	75	
		C25/30	[-]		1,05				
	_	C30/37	[-]			1,10			
Erhöhungsfaktor Ψ _c	_	C35/45	[-]	1,15					
Emonungsiaktor Ψ_c		C40/50	[-]			1,19			
		C45/55	[-]			1,22			
		C50/60	[-]			1,26			
Spalten									
		h/h _{ef} ≥2,0		1,0 h _{ef}					
Randabstand c _{cr,sp}	2,0>	h/h _{ef} >1,3	[mm]	4,6 h _{ef} – 1,8 h					
		h/h _{ef} ≤1,3 [mm] 2,26 h _{ef}							
Achsabstand		S _{cr,sp}	[mm]	2 C _{cr,sp}					

 $^{^{1)}\,\}mathrm{Nur}$ Koaxial Kartuschen: 380 ml, 400 ml und 410 ml $^{2)}\,\mathrm{Siehe}$ Anhang B1

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Upat Innengewindeanker IST in ungerissenem Beton(Bemessungsverfahren nach TR 029)	Anhang C 2

Tabelle C3: Charakteristische Werte für die Zugtragfähigkeit von Betonstählen in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)

Größe	ф	[mm]	8	10	12	14	16	20	25	28
Montagesicherheits- beiwert	γ2	[-]				1	,0			
Kombiniertes Versag	Kombiniertes Versagen durch Herausziehen und Betonausbruch									
Rechnerischer Durchmesser	d	[mm]	8	10	12	14	16	20	25	28
Charakteristische Ve	rbundfestigkei	im unge	rissene	n Beton	C20/25.	Trocke	ner und	nasser	Beton	
Temperaturbereich I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperaturbereich II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Charakteristische Ve	rbundfestigkei	im geris	senen E	Beton C2	20/25. Tr	ockene	und na	sser Be	ton	
Temperaturbereich I ¹⁾	$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
Temperaturbereich II ¹⁾	$ au_{Rk,cr}$	[N/mm ²]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
	C25/30	[-]	1,05							
	C30/37	[-]				1,	10			
Erbähungefoktor III	C35/45	[-]				1,	15			
Erhöhungsfaktor Ψ _c	C40/50	[-]				1,	19			
	C45/55	[-]				1,	22			
	C50/60	[-]				1,	26			
Spalten										
	h/h _{ef} ≥2,0	[mm]				1,0	h _{ef}			
Randabstand c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]				4,6 h _{ef}	– 1,8 h			
	h/h _{ef} ≤1,3	[mm]				2,26	3 h _{ef}			
Achsabstand	S _{cr,sp}	[mm]				2 c	cr,sp			

¹⁾ Siehe Anhang B1

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Betonstählen in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)	Anhang C 3

Tabelle C4: Charakteristische Werte für die Zugtragfähigkeit von Upat Bewehrungsankern in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)

Γ_				T		
Größe			M12	M16	M20	M24
Montagesicherheitsbeiwert	γ2	[-]		1	,0	
Stahlversagen						
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	63	111	173	270
Teilsicherheitsbeiwert	$\gamma_{Ms,N}$ 1)	[-]		1	,4	
Kombiniertes Versagen d	urch Herausz	iehen un	d Betonausbru	uch		
Rechnerischer Durchmesse	er d	[mm]	12	16	20	25
Charakteristische Verbun	dfestigkeit im	n ungeris	senen Beton C	20/25. Trocker	ner und nassei	Beton
Temperaturbereich I 2)	$ au_{Rk,ucr}$	[N/mm ²]	11,0	10,0	9,5	9,0
Temperaturbereich II 2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5
Charakteristische Verbun	und nasser B	eton				
Temperaturbereich I 2)	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0
Temperaturbereich II 2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5
	C25/30	[-]		1,	05	
	C30/37	[-]		1,	10	
Erhöhungsfaktor Ψ _c	C35/45	[-]		1,	15	
Emonungsiaktor Ψ_c	C40/50	[-]		1,	19	
	C45/55	[-]		1,	22	
	C50/60	[-]		1,	26	
Spalten						
	h/h _{ef} ≥2,0	[mm]		1,C	h _{ef}	
Randabstand c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]		4,6 h _{ef}	– 1,8 h	
	h/h _{ef} ≤1,3	[mm]		2,2	6 h _{ef}	
Achsabstand	S _{cr,sp}	[mm]		2 c	cr,sp	

 $^{^{1)}}$ Sofern keine nationale Regelungen vorliegen $^{2)}$ Siehe Anhang B1

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Upat Bewehrungsankern in ungerissenem und gerissenem Beton (Bemessungsverfahren nach TR 029)	Anhang C 4

Tabelle C5: Charakteristische Werte für die Quertragfähigkeit von Ankerstangen (Bemessungsverfahren nach TR 029)

Größe	М6	М8	M10	M12	M16	M20	M24	M27	M30	
Betonausbruch auf der lastabgewandten Seite										
Faktor k in Gleichung (5.7) des TR						2.0				
029 für die Bemessung von k Verbunddübeln	[-]					2,0				

Tabelle C6: Charakteristische Werte für die Quertragfähigkeit von Innengewindeankern IST (Bemessungsverfahren nach TR 029)

Größe			М8	M10	M12	M16	M20			
Montagesicherheitsbeiwert		γ2	[-]	1,0						
Stahlversagen ohne Hebel	larm									
	Festigkeitsklasse	5.8	[kN]	9,2	14,5	21,1	39,2	62,0		
Charakteristischer Widerstand V _{Rk,s}	restigkeitsklasse -	8.8	[kN]	14,6	23,2	33,7	62,7	90,0		
	Festigkeitsklasse _ 70	A4	[kN]	12,8	20,3	29,5	54,8	86,0		
		С	[kN]	12,8	20,3	29,5	54,8	86,0		
Stahlversagen mit Hebelarm										
	Factionicitation	5.8	[Nm]	20	39	68	173	337		
Charakteristischer	Festigkeitsklasse	8.8	[Nm]	30	60	105	266	519		
Widerstand M ⁰ _{Rk,s}	Festigkeitsklasse	A4	[Nm]	26	52	92	232	454		
	70	С	[Nm]	26	52	92	232	454		
Betonausbruch auf der lastabgewandten Seite										
Faktor k in Gleichung (5.7) des TR 029 für die Bemessung von Verbunddübeln k [-				2,0						

Injektionsanker System UPM 44	
Leistungen	Anhang C 5
Charakteristische Werte für die Quertragfähigkeit von Ankerstangen und Upat	
Innengewindeanker IST (Bemessungsverfahren nach TR 029)	

Tabelle C7: Charakteristische Werte für die Quertragfähigkeit von Betonstählen (Bemessungsverfahren nach TR 029)

Größe	ф	[mm]	8	10	12	14	16	20	25	28
Betonausbruch auf der lastabgewandten Seite										
Faktor k in Gleichung (5.7) des Technical Report TR 029, Abschnitt 5.2.3.3	k	[-]				2,	0			

Tabelle C8: Charakteristische Werte für die Quertragfähigkeit von Bewehrungsankern (Bemessungsverfahren nach TR 029)

Größe			M12	M16	M20	M24					
Stahlversagen ohne Hebelarm											
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	30	55	86	124					
Teilsicherheitsbeiwert	γMs,∨ ¹⁾	[-]	1,56								
Stahlversagen mit Hebelarm											
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]	92	233	454	785					
Teilsicherheitsbeiwert $\gamma_{\text{Ms,V}}^{-1}$ [-] 1,56											
Betonausbruch auf der lastabgewandten Seite											
Faktor k in Gleichung (5.7) des TR 029 k [-] 2,0											

¹⁾ Sofern keine nationale Regelungen vorliegen

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Quertragfähigkeit von Betonstählen und Upat Bewehrungsankern (Bemessungsverfahren nach TR 029)	Anhang C 6

Tabelle C9: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen in ungerissenem und gerissenem Beton (Bemessung gemäß CEN/TS 1992-4)

Größe				М6	M8	M10	M12	M16	M20	M24	M27	M30
		ockener und	1 1-1					1,0				
Montagesicher-		asser Beton					<u> </u>	.,.				
heitsbeiwert γ_{inst}	vva	ssergefülltes			- 1,2 ¹⁾							
Stablyaraagan		Bohrloch										
Stahlversagen Charakteristischer		$N_{Rk,s}$										
Widerstand	[kN]					$A_s x f_{uk}$						
Kombiniertes Vers	sage	n durch Her	⊥ ausziehei	n und E	Betonau	ısbruch	<u> </u>					
Rechnerischer Dur			T	6	8	10	12	16	20	24	27	30
Charakteristische	Verk	oundfestigk	eit im ung	erisse	nen Bet	on C20	/25. Tro	ckener	und na	asser B	eton	
Temperaturbereich	I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperaturbereich		[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0	
Charakteristische	Verk			erisse	nen Bet	on C20	/25. Wa	sserge	fülltes	Bohrlo	ch 1)	
Temperaturbereich	I ²⁾	$ au_{Rk,ucr}$	[N/mm ²]				9,5	8,5	8,0	7,5	7,0	7,0
Temperaturbereich	²⁾		[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Charakteristische		ssenei	n Beton	C20/25	. Trock	ener u	nd nass	er Beto	on			
Temperaturbereich	emperaturbereich I ²⁾		[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
Temperaturbereich II ²⁾ $\tau_{Rk,}$			[N/mm ²]			5,0	5,0	5,0	5,0	4,0	3,5	3,5
Charakteristische	Verk	oundfestigk	eit im geri	ssenei	n Beton	C20/25	. Wass	ergefül	Ites Bo	hrloch	1)	•
			[N/mm ²]				5,0	5,0	4,5	4,0	3,5	3,5
Temperaturbereich	²⁾	$ au_{Rk,cr}$	[N/mm ²]				4,0	4,0	4,0	3,5	3,0	3,0
		C25/30	[-]		•			1,05		•	•	
		C30/37						1,10				
Erhöhungsfaktor Ψ		C35/45						1,15				
Emonungsiaktor +	С	C40/50						1,19				
		C45/55						1,22				
		C50/60	[-]					1,26				
Faktor gemäß	k ₈	gerissener						7,2				
CEN/TS 1992-	_	Beton										
4:2009 Abschnitt	k ₈	un- gerissener	[-]					10,1				
6.2.2.3	~ 8	Beton						10, 1				
Betonversagen		Deton										
	k _{cr}	gerissener										
Faktor gemäß	Beton						7,2					
CEN/TS 1992-		un-										
	2009 Abschnitt gerissener [_]							10,1				
6.2.3.1	- 401	Beton										
	\top	h/h _{ef} ≥2,0						1,0 h _{ef}				
Randabstand c _{cr,sp}	2	2,0>h/h _{ef} >1,3					4,6	3 h _{ef} – 1,	8 h			
51,00		h/h _{ef} ≤1,3		2,26 h _{ef}								
				2,26 η _{ef} 2 c _{cr,sp}								

¹⁾ Nur Koaxial Kartuschen: 380 ml, 400 ml und 410 ml

²⁾ Siehe Anhang B1

Injektionsanker System UPM 44	
Leistungen	Anhang C 7
Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen in ungerissenem und gerissenem Beton (Bemessung gemäß CEN/TS-1992-4)	

Tabelle C10: Charakteristische Werte für die Zugtragfähigkeit von Upat Innengewindeankern IST in ungerissenem Beton (Bemessung gemäß CEN/TS 1992-4)

Größe				M8	M10	M12	M16	M20	
	Trockene	r und nasser			1				
Montagesicherheits-		Beton	[-]			1,0			
beiwert γ_{inst}	Wa	ssergefülltes	r 1	1,21)					
		Bohrloch	[-]			1,2			
Stahlversagen									
0	Festigkeits-		[kN]	19	29	43	79	123	
Charakteristischer Widerstand mit	klasse	8.8	[kN]	29	47	68	108	179	
Schraube N _{Rk.s}	Festigkeits	- A4	[kN]	26	41	59	110	172	
Ochradbe N _{Rk,s}	klasse 70		[kN]	26	41	59	110	172	
	Festigkeits	- 5.8	[-]			1,50	I	I	
Teilsicherhe	klasse		[-]			1,50			
itsbeiwert	Festigkeits		[-]			1,87			
γ _{Ms,N}	klasse 70		[-]			1,87			
Kombiniertes Versage	ehruch		1,07						
Kombiniertes Versagen durch Herausziehen und Betonausbruch Rechnerischer Durchmesser d [mm] 12 16 18 22									
Charakteristische Ver							28		
Trockener und nasser		•		0 0	,				
Temperaturbereich I ²⁾	$N^0_{Rk,p}$	[kN]	30	40	50	75	115		
Temperaturbereich II ²⁾		$N_{Rk,p}^0$	[kN]	25	30	40	60	95	
Charakteristische Ver	bundfestigkei	t im ungeriss	enen Bet	on C20	/25				
Wassergefülltes Bohr	loch 1)	-							
Temperaturbereich I ²⁾		N ⁰ _{Rk,p}	[kN]	25	35	50	60	95	
Temperaturbereich II ²⁾		$N_{Rk,p}$	[kN]	20	25	35	50	75	
		C25/30	[-]			1,05			
		C30/37	[-]			1,10			
Erhöhungsfaktor Ψ _c		C35/45	[-]			1,15			
Emonangsiaktor + c		C40/50	[-]			1,19			
		C45/55	[-]			1,22			
		C50/60	[-]			1,26			
Faktor gemäß CEN/TS	1992-4-5:2009) k.	r_1			10,1			
Abschnitt 6.2.2.3 K ₈ [-] 10,1									
Betonversagen									
Faktor gemäß CEN/TS		k _{ucr}	[-]			10,1			
5:2009 Abschnitt 6.2.3.	<u>1 </u>			<u> </u>					
		h/h _{ef} ≥2,0	[mm]			1,0 h _{ef}			
Randabstand c _{cr,sp}	_2	,0>h/h _{ef} >1,3	[mm]		4,0	6 h _{ef} – 1,8	3 h		
		h/h _{ef} ≤1,3	[mm]			2,26 h _{ef}			
Achsabstand		$s_{cr,sp}$ [mm] 2 $c_{cr,sp}$							

¹⁾ Nur Koaxial Kartuschen: 380 ml, 400 ml und 410 ml

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Upat Innengewindeankern IST in ungerissenem Beton (Bemessung gemäß CEN/TS 1992-4)	Anhang C 8

²⁾ Siehe Anhang B1

Tabelle C11: Charakteristische Werte für die Zugtragfähigkeit von Betonstählen in ungerissenem und gerissenem Beton (Bemessung gemäß CEN/TS 1992-4)

Größe		ф	[mm]	8	10	12	14	16	20	25	28		
Montagesicherheits	sbeiw	ert γ _{inst}	[-]				1	,0					
Stahlversagen													
Charakteristischer Widerstand		$N_{Rk,s}$	[kN]	$A_s \times f_{uk}$									
Kombiniertes Vers	sagei	n durch Hera	usziehen	und Bet	tonausb	ruch							
Rechnerischer Durchmesser		d	[mm]	8	10	12	14	16	20	25	28		
Charakteristische	Verb	undfestigkei	t im unge	rissene	n Beton	C20/25.	Trocke	ner und	nasser	Beton			
Temperaturbereich	ı I ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5		
Temperaturbereich	і II ¹⁾	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0		
Charakteristische		undfestigkei		senen E	eton C2	20/25. Tr	ockenei	und na	sser Be	ton			
Temperaturbereich	ı I ¹⁾	$ au_{Rk,cr}$	[N/mm ²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0		
Temperaturbereich	⊢ll ¹⁾	$ au_{Rk,cr}$	[N/mm ²]	$\begin{bmatrix} 1^2 \end{bmatrix}$ - 3,0 4,5 4,5 4,5 4,0 3,5						3,5	3,5		
		C25/30	[-]				1,	05					
	C30/37				1,10								
Erhähungsfaktor III	[-]				1,	15							
Erhöhungsfaktor Ψ	С	C40/50	[-]				1,	19					
	[-]	1,22											
		C50/60	[-]				1,:	26					
Faktor gemäß CEN/TS 1992-4-	k ₈	gerissener Beton	[-]				7	,2					
5: 2009 Abschnitt 6.2.3.3	k ₈	un- gerissener Beton	[-]				10),1					
Betonversagen													
Faktor gemäß CEN/TS 1992-4-	k _{cr}	gerissener Beton	[-]				7	,2					
5: 2009 Abschnitt 6.2.3.1	k _{ucr}	un- gerissener Beton	[-]	10,1									
Randabstand		$c_{cr,N}$	[mm]	1,5 h _{ef}									
Achsabstand		s _{cr,N}	[mm]	3,0 h _{ef}									
Spalten													
		h/h _{ef} ≥2,0	[mm]				1,0	h _{ef}					
Randabstand $c_{\text{cr,sp}}$		2,0>h/h _{ef} >1,3	[mm]				4,6 h _{ef}	– 1,8 h					
		h/h _{ef} ≤1,3	[mm]				2,26	3 h _{ef}					
Achsabstand		S _{cr,sp}	[mm]				2 c	cr,sp					

¹⁾ Siehe Anhang B1

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von Betonstählen in ungerissenem und gerissenem Beton (Bemessung gemäß CEN/TS-1992-4)	Anhang C 9

Tabelle C12: Charakteristische Werte für die Zugtragfähigkeit von Upat Bewehrungsankern in ungerissenem und gerissenem Beton (Bemessung gemäß CEN/TS 1992-4)

Größe				M12	M16	M20	M24		
Montagesicherheitsb	eiwert	γinst	[-]	WITZ		.0	IVIZ		
Stahlversagen	CIWOIL	rinst			<u>'</u>	,0			
Charakteristischer Widerstand		$N_{Rk,s}$	[kN]	63	111	173	270		
Teilsicherheits- beiwert		γ _{Ms,N} 1)	[-]		1,	,4			
Kombiniertes Versa	igen d	urch Herauszie	hen und	Betonausbrud	ch				
Rechnerischer Durch	messe	er d	[mm]	12	16	20	25		
Charakteristische V	'erbun	dfestigkeit im ı	ungerisse	enen Beton C2	0/25. Trocken	er und nasse	r Beton		
Temperaturbereich I		$ au_{Rk,ucr}$	[N/mm ²]	11,0	10,0	9,5	9,0		
Temperaturbereich II	2)	$ au_{Rk,ucr}$	[N/mm ²]	9,0	8,5	8,0	7,5		
Charakteristische Verbundfestigkeit im gerissenen Beton C20/25. Trockener und nasser Beton									
Temperaturbereich I		$ au_{Rk,cr}$	[N/mm ²]	5,0	5,0	4,5	4,0		
Temperaturbereich II	2)	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,0	3,5		
	C25/30	[-]		1,	05				
		C30/37	[-]	1,10					
Erhähungefekter III		C35/45	[-]	1,15					
Erhöhungsfaktor Ψ _c		C40/50	[-]		1,19				
		C45/55	[-]		1,:	22			
		C50/60	[-]		1,:	26			
Faktor gemäß CEN/TS 1992-4-5:	k ₈	gerissener Beton	[-]		7	,2			
2009 Abschnitt 6.2.2.3	k ₈	ungerissener Beton	[-]		10),1			
Betonversagen									
Faktor gemäß CEN/TS 1992-4-5:	k _{cr}	gerissener Beton	[-]		7	,2			
2009 Abschnitt 6.2.3.1	k_{ucr}	ungerissener Beton	[-]	10,1					
		h/h _{ef} ≥2,0	[mm]		1,0	h _{ef}			
Randabstand c _{cr,sp}		2,0>h/h _{ef} >1,3	[mm]		4,6 h _{ef}	– 1,8 h			
		h/h _{ef} ≤1,3	[mm]		2,26	6 h _{ef}			
Achsabstand		$s_{cr,sp}$	[mm]	2 C _{cr,sp}					

¹⁾ Sofern keine nationale Regelungen vorliegen

Injektionsanker System UPM 44	
Leistungen	Anhang C 10
Charakteristische Werte für die Zugtragfähigkeit von Upat Bewehrungsankern in ungerissenem und gerissenem Beton(Bemessung gemäß CEN/TS-1992-4)	

²⁾ Siehe Anhang B1

Tabelle C13: Charakteristische Werte für die Quertragfähigkeit von Ankerstangen (Bemessung gemäß CEN/TS 1992-4)

Größe			М6	М8	M10	M12	M16	M20	M24	M27	M30
Montagesicherheitsbeiwert	γinst	[-]					1,0				
Stahlversagen ohne Hebelarm	1										
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]				0,	5 A _s x fւ	ık			
Duktilitätsfaktor gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.3.2.1	k ₂	[-]	0,8								
Stahlversagen mit Hebelarm											
Charakteristischer Widerstand	М ⁰ _{Rk,s}	[Nm]	$1.2 \times W_{el} \times f_{uk}$								
Betonausbruch auf der lastab	gewar	ıdten S	eite								
Faktor in Gleichung aus CEN/TS 1992-4-5:2009 Abschnitt 6.3.3	S k₃	[-]	2,0								
Betonkantenbruch	Betonkantenbruch										
Effektive Verankerungslänge	I_f	[mm]	$I_f = min (h_{ef}; 8 d_{nom})$								
Rechnerischer Durchmesser	d_{nom}	[mm]	6	8	10	12	16	20	24	27	30

Tabelle C14: Charakteristische Werte für die Quertragfähigkeit von Upat Innengewindeankern IST in ungerissenem Beton (Bemessung gemäß CEN/TS 1992-4)

Größe				М8	M10	M12	M16	M20
Montagesicherheitsbeiwer	t	γinst	[-]		•	1,0	•	
Stahlversagen ohne Heb	elarm							
	Festigkeitsklasse	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Charakteristischer		8.8	[kN]	14,6	23,2	33,7	62,7	90,0
Widerstand V _{Rk,s}	Festigkeitsklasse	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Duktilitätsfaktor gemäß CE 5:2009 Abschnitt 6.3.2.1	k ₂	[-]			0,8			
Stahlversagen mit Hebel								
-	Festigkeitsklasse	5.8	[Nm]	20	39	68	173	337
Charakteristischer		8.8	[Nm]	30	60	105	266	519
Widerstand M ⁰ _{Rk,s}	Festigkeitsklasse	A4	[Nm]	26	52	92	232	454
	70	С	[Nm]	26	52	92	232	454
Betonausbruch auf der la	astabgewandten Se	eite						
Faktor in Gleichung of CEN/TS 1992-4-5:2009 Abschnitt 6.3.3		k ₃	[-]			2,0		
Betonkantenbruch								
Rechnerischer Durchmess	ser	d_{nom}	[mm]	12	16	18	22	28

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Quertragfähigkeit von Ankerstangen und Upat Innengewindeankern IST (Bemessung gemäß CEN/TS 1992-4)	Anhang C 11

Tabelle C15: Charakteristische Werte für die Quertragfähigkeit von Betonstählen (Bemessung gemäß CEN/TS 1992-4)

ф	[mm]	8	10	12	14	16	20	25	28			
γinst	[-]				1	,0						
$V_{Rk,s}$	[kN]				0,5 A	s x f _{uk}						
k ₂	[-]	0,8										
$M^0_{Rk,s}$	[Nm]	1,2 x W _{el} x f _{uk}										
gewand	lten Sei	te										
k ₃	[-]	2,0										
Betonkantenbruch												
d_{nom}	[mm]	8	10	12	14	16	20	25	28			
	$\gamma_{ m inst}$ $V_{ m Rk,s}$ k_2 $M^0_{ m Rk,s}$ $gewand$ k_3	γ_{inst} [-] $V_{\text{Rk,s}}$ [kN] k_2 [-] $M^0_{\text{Rk,s}}$ [Nm] gewandten Sei k_3 [-]	γ_{inst} [-] $V_{Rk,s}$ [kN] k_2 [-] $M^0_{Rk,s}$ [Nm] gewandten Seite k_3 [-]	γ_{inst} [-] $V_{Rk,s}$ [kN] k_2 [-] $M^0_{Rk,s}$ [Nm] gewandten Seite k_3 [-]	γ_{inst} [-] $V_{Rk,s}$ [kN] k_2 [-] $M^0_{Rk,s}$ [Nm] gewandten Seite k_3 [-]	γ_{inst} [-] 1 $V_{Rk,s}$ [kN] 0,5 A k_2 [-] 0 $M^0_{Rk,s}$ [Nm] 1,2 x V gewandten Seite k_3 [-] 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Tabelle C16: Charakteristische Werte für die Quertragfähigkeit von Upat Bewehrungsankern (Bemessung gemäß CEN/TS 1992-4)

Größe			M12	M16	M20	M24			
Montagesicherheitsbeiwert	γinst	[-]		1	,0				
Stahlversagen ohne Hebelarm									
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	30	55	86	124			
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}, \vee}$ 1)	[-]	1,56						
Duktilitätsfaktor gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.3.2.1	k ₂	[-]	0,8						
Stahlversagen mit Hebelarm									
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]	92	233	454	785			
Teilsicherheitsbeiwert	$\gamma_{\text{Ms,V}}$ 1)	[-]		1,	56				
Betonausbruch auf der lastabgewa	andten Seite								
Faktor in Gleichung aus CEN/TS 1992-4-5, Abschnitt 6.3.3	k ₃	[-]	2,0						
Betonkantenbruch									
Rechnerischer Durchmesser	d_{nom}	[mm]	12	16	20	24			

¹⁾ Sofern keine nationale Regelungen vorliegen

Injektionsanker System UPM 44	
Leistungen Charakteristische Werte für die Quertragfähigkeit von Betonstählen und Upat Bewehrungsankern (Bemessung gemäß CEN/TS 1992-4)	Anhang C 12

Tabelle C17: Verschiebungen unter Zuglast¹⁾ für Ankerstangen

Größe		М6	М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton										
δ_{N0} -Faktor	[mm/N/mm ²]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Gerissener Beton	Gerissener Beton									
δ_{N0} -Faktor	[mm/N/mm ²]			0,12	0,12	0,13	0,13	0,13	0,14	0,15
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]			0,27	0,30	0,30	0,30	0,35	0,35	0,40

¹⁾ Ermittlung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau$

Tabelle C18: Verschiebungen unter Querlast¹⁾ für Ankerstangen

Größe		М6	M8	M10	M12	M16	M20	M24	M27	M30
δ_{V0} -Faktor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
$\delta_{V\infty}$ -Faktor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Ermittlung der Verschiebung

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Faktor} \cdot \text{V}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V$

Tabelle C19: Verschiebungen unter Zuglast¹⁾ für Upat Innengewindeanker IST

Größe		М8	M10	M12	M16	M20
δ_{No} -Faktor	[mm/N/mm ²]	0,1	0,11	0,12	0,13	0,14
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]	0,13	0,14	0,15	0,16	0,18

¹⁾ Ermittlung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$

Tabelle C20: Verschiebungen unter Querlast¹⁾ für Upat Innengewindeanker IST

Größe		М8	M10	M12	M16	M20
δ_{V0} -Faktor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
$\delta_{V\infty}$ -Faktor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

¹⁾ Ermittlung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V

Injektionsanker System UPM 44

Leistungen

Verschiebungen Ankerstangen und Upat Innengewindeanker IST

Anhang C 13

Tabelle C21: Verschiebungen unter Zuglast¹⁾ für Betonstähle

Größe ф	[mm]	8	10	12	14	16	20	25	28
Ungerissener Beton									
δ_{N0} -Faktor	[mm/N/mm ²]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Gerissener Beton									
δ_{N0} -Faktor	[mm/N/mm ²]		0,12	0,12	0,13	0,13	0,13	0,13	0,14
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]		0,27	0,30	0,30	0,30	0,30	0,35	0,37

¹⁾ Ermittlung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau$

Tabelle C22: Verschiebungen unter Querlast¹⁾ für Betonstähle

Größe	ф	[mm]	8	10	12	14	16	20	25	28
δ_{V0} -Faktor		[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
$\delta_{V\infty}$ -Faktor		[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09

¹⁾ Ermittlung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V$

Tabelle C23: Verschiebungen unter Zuglast¹⁾ für Upat Bewehrungsanker

Größe		M12	M16	M20	M24
Ungerissener Beton					
δ_{N0} -Faktor	[mm/N/mm ²]	0,10	0,10	0,10	0,10
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]	0,12	0,12	0,12	0,13
Gerissener Beton					
δ_{N0} -Faktor	[mm/N/mm ²]	0,12	0,13	0,13	0,13
$\delta_{N\infty}$ -Faktor	[mm/N/mm ²]	0,30	0,30	0,30	0,35

¹⁾ Ermittlung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau$

Tabelle C24: Verschiebungen unter Querlast¹⁾ für Upat Bewehrungsanker

Größe		M12	M16	M20	M24
δ_{V0} -Faktor	[mm/kN]	0,1	0,1	0,09	0,09
$\delta_{V\infty}$ -Faktor	[mm/kN]	0,11	0,11	0,10	0,1

¹⁾ Ermittlung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V$

Injektionsanker System UPM 44		
Leistungen Verschiebungen für Betonstähle und Upat Bewehrungsanker	Anhang C 14	