

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-03/0032 of 27 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti bonded anchor HVZ / HVZ R / HVZ HCR

Torque controlled bonded anchor for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

15 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-03/0032

Page 2 of 15 | 27 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z51698.15 8.06.01-144/15

European Technical Assessment ETA-03/0032

Page 3 of 15 | 27 August 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti adhesive anchor HVZ / HVZ R / HVZ HCR is a torque controlled bonded anchor consisting of a foil capsule with mortar Hilti HVU-TZ and an anchor rod (including nut and washer) in the sizes of M10/75, M12/95, M16/105, M16/125 and M20/170. The anchor rod (including nut and washer) is made of galvanized steel (HAS-(E-)TZ), stainless steel (HAS-(E-)RTZ) or high corrosion resistant steel (HAS-(E-)HCR-TZ). The foil capsule is set into a drilled hole in the concrete. The special formed anchor rod is driven into the foil capsule by machine with simultaneous hammering and turning. The load transfer is realized by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for static and quasi static action and displacements	See Annex C1 – C3		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z51698.15 8.06.01-144/15

European Technical Assessment ETA-03/0032

Page 4 of 15 | 27 August 2015

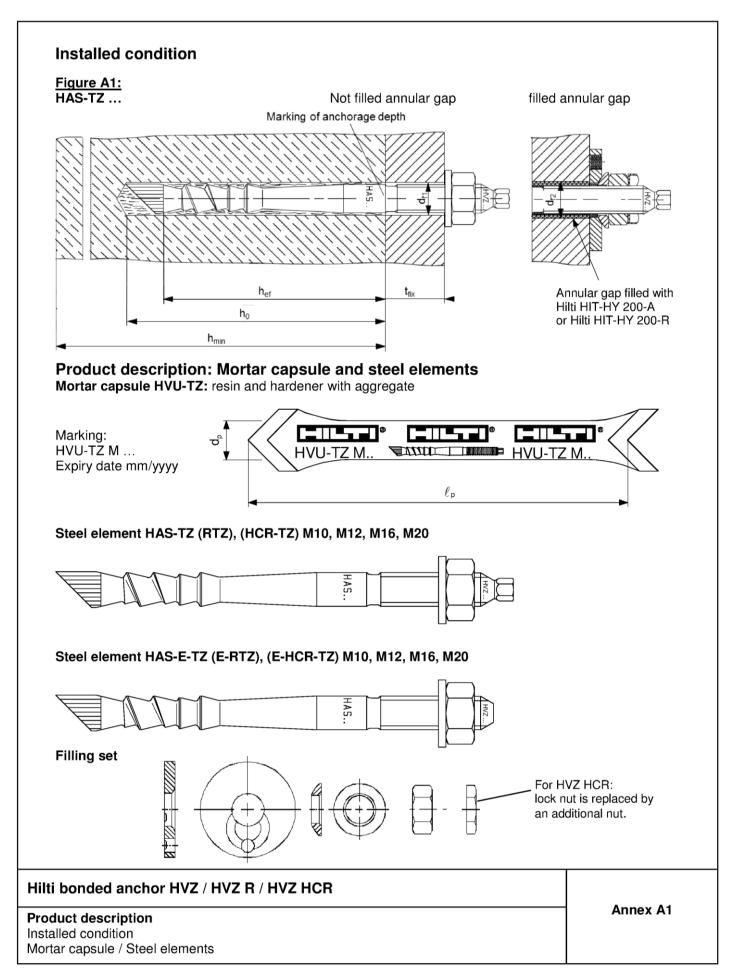
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 27 August 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

Z51698.15 8.06.01-144/15

Table A1: Materials

Designation	Material
Metal parts made of	zinc coated steel
Anchor rod HAS-TZ	$f_{uk} = 800 \text{ N/mm}^2$; $f_{yk} = 640 \text{ N/mm}^2$ Elongation at fracture (I_0 =5d) > 8% ductile; Coated Fe/Cu 3Ni 10
Washer	Electroplated zinc coated ≥ 5 μm
Filling washer	Case hardened steel or cast iron part EN-GJMB-550 Electroplated zinc coated ≥ 5 μm
Spherical washer	DIN 6319; Electroplated zinc coated ≥ 5 μm
Nut	Strength class 8; Electroplated zinc coated ≥ 5 µm
Lock nut	Self locking counter nut DIN 7967: 1970; Electroplated zinc coated ≥ 5 μm
Metal parts made of	stainless steel
Anchor rod HAS-RTZ	$f_{uk} = 800 \text{ N/mm}^2$; $f_{yk} = 640 \text{ N/mm}^2$ Elongation at fracture (I_0 =5d) > 8% ductile; Stainless steel 1.4401, 1.4404
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Filling washer	Precision casting 1.4401
Spherical washer	DIN 6319; Stainless steel 1.4401, 1.4571, 1.4362 EN 10088-1:2014
Nut	Strength class 70 or 80 Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Lock nut	Self locking couter nut DIN 7967; Stainless steel A4
Metal parts made of	high corrosion resistant steel
Anchor rod HAS-HCR-TZ	$f_{uk} = 800 \text{ N/mm}^2$; $f_{yk} = 640 \text{ N/mm}^2$ Elongation at fracture (I_0 =5d) > 8% ductile; Stainless steel 1.4529
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Filling washer	Precision casting 1.4529
Spherical washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	Strength class 80 High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Product description Materials	Annex A2

Specifications of intended use

Anchorages subject to:

Static and quasi static loading.

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and non-cracked concrete.

Temperature in the base material:

at installation

-5 °C to +40 °C

· in-service

Temperature range: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

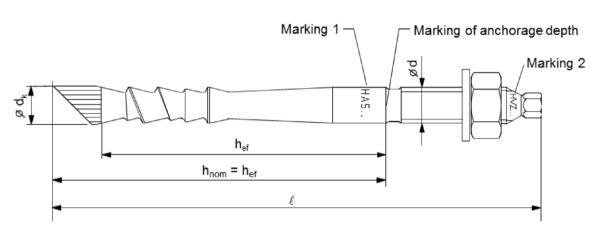
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: "EOTA ETAG 001 Annex C, 08/2010" or "CEN/TS 1992-4:2009, design method A".

Installation:

- · Use category: dry or wet concrete (not in flooded holes).
- Drilling technique: hammer drilling and hammer drilling with hollow drill bit TE-CD, TE-YD.
- · Overhead installation is admissible.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended Use Specifications	Annex B1


Table B1: Installation parameters

HAS-TZ / HAS-RTZ / HAS-HCR-TZ		M10x75	M12x95	M16x105	M16x125	M20x170		
Nominal diam	neter	d	[mm]	10	12	16		20
Nominal diam	neter of drill bit	d ₀	[mm]	12	14	1	8	25
Fixture thicknestandard	iess 1)	t_{fix}	[mm]	15 / 30 50	25 / 40 50 / 100	30 / 60) / 100	40
Fixture thickness 1)	HVZ HVZ-RTZ	t_{fix}	[mm]	6/21/41	15 / 30 40 / 90	19 / 49 / 89		-
with filling set	HVZ-HCR-TZ	t_{fix}	[mm]	-	10 / 25 35 / 85	11 / 4	1 / 81	-
Total length of element 1)	of the steel	ℓ	[mm]	124 / 139 159	158 / 173 183 / 233	181 / 211 251	201 / 231 271	269
Diameter at t	he tip	$\varnothing d_k$	[mm]	10,8	12,8	16	5,8	22,7
Nominal emb	edment depth depth	h_{nom} = h_0	[mm]	90	110	125	145	195
Maximum dia clearance ho	meter of le in the fixture	d _{f1}	[mm]	12	14	18	18	22
Maximum diameter of clearance hole in the fixture		d _{f2}	[mm]	14	16	20		-
Installation	Installation torque HAS-TZ HAS-RTZ HAS-HCR-TZ		[Nm]	40	50	90		150
1			[Nm]	50	70	100		150
Minimum thic concrete mer		h _{min}	[mm]	150	190	160	190	340
Cracked con	rcrete							
Minimum spacing s _{min} [mm]		50	60	70		80		
Minimum edge distance c _{min} [mm]		50	60	70		80		
Non-cracked	d concrete							
Minimum spa	cing	S _{min}	[mm]	50	60	70		80
Minimum edg	ge distance	C _{min}	[mm]	50	70	8	5	80

¹⁾ Other fixture thickness' and lengths are possible; max. I = 1500 mm

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended Use	Annex B2
Installation parameters	

Marking 1: anchor type HAS-(E-)TZ / HAS-(E-)RTZ / HAS-(E-)HCR-TZ

anchor size $$M_{\mbox{\tiny I}}$$ fixture thickness $$t_{\mbox{\tiny fix}}$$

e.g.: HAS-TZ M12/50

Marking 2: anchor type and anchorage depth $HVZ \dots h_{ef}$

e.g.:

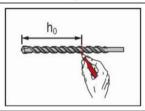
HVZ 95

Table B2: Setting tool

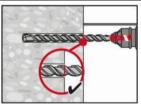
HAS-(E-)TZ	M10	M12	M16	M20
HAS-TZ	TE-C HEX M10	TE-C HEX M12	TE-C HEX M16	TE-C HEX M20
HAS-E-TZ	TE-C E M10	TE-C E M12	TE-C(Y) E M16	TE-C E M20

Table B3: Curing time t_{rel} and t_{cure}¹⁾

Temperature in the base material T	Curing time: release screwed on setting tool t_{rel}	Curing time: full load t _{cure}
- 5 °C to - 1 °C	60 min	5 hour
0 °C to 9 °C	30 min	1 hour
10 °C to 19 °C	20 min	30 min
20 °C to 40 °C	8 min	20 min

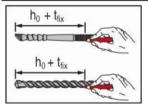

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended Use	Annex B3
Installation parameters	
Setting tool, Curing time	


Installation instruction

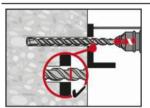
Hole drilling

Pre-setting:


Mark drill hole depth h_0 on drill bit TE-C, TE-Y, TE-CD or TE-YD or sett the depth gauge of the drilling machine to drill hole depth h_0 .

Pre-setting:

Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


Do not drill deeper.

Through-setting:

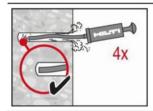
Mark setting depth h₀ + t_{fix} on element.

Mark drill hole depth $h_0 + t_{fix}$ on drill bit TE-C, TE-Y, TE-CD or TE-YD or sett the depth gauge of the drilling machine to drill hole depth $h_0 + t_{fix}$.

Through-setting:

Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

Do not drill deeper.


Pre- / Through-setting:

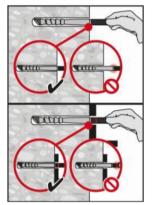
Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment.

This drilling removes dust while drilling. After drilling is complete, proceed to the "check setting depth" step in the instructions for use.

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

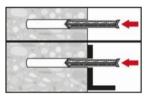
Pre- / Through-setting:


The Hilti hand pump may be used for blowing out drill holes.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

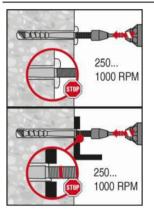
Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended Use Installation instruction	Annex B4

Check setting depth


Pre- / Through-setting:

Check the setting depth with the marked element.

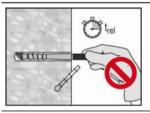
The element has to fit in the hole until the required embedment depth (pre-setting) or until the fixture surface.


If it is not possible to insert the element to the required embedment depth, drill deeper.

Setting the element

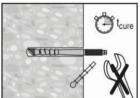
Pre- / Through-setting:

Push the anchor foil capsule with the peak ahead to the back of the hole.



Pre- / Through-setting:

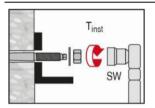
Drive the anchor rod with the plugged on or screwed on tool into the hole, applying moderate pressure and with the hammering action switched on (250 RPM to maximum 1000 RPM).


Setting tool see Table B2.

After reaching the embedment depth switch off setting machine.

Pre- / Through-setting:

After required curing time t_{rel} (see Table B3) the screwed on setting tool can be removed.

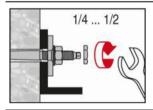


Pre- / Through-setting:

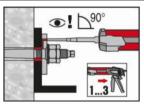
After required curing time t_{cure} (see Table B3) remove excess mortar.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR Intended Use Installation instructions Annex B5

Pre-setting:


Use of washer and nut with the anchor rod delivered. Apply installation torque T_{inst} given in Table B1. The anchor can be loaded.

Through-setting:


Use of filling set.

Apply installation torque T_{inst} given in Table B1.

Through-setting:

Apply the lock nut and tighten with a 1/4 to 1/2 turn.

Through-setting:

Fill annular gap between anchor rod and fixture with injection mortar Hilti HIT-HY 200-A or Hilti HIT-HY 200-R with approximately 1 to 3 trigger pull. Set mixing nozzle vertical in the filling hole.

Handling and curing time of the mortar see instruction for use packed with the mortar foil packs. After required curing time t_{cure} the anchor can be loaded.

electronic copy of the eta by dibt: eta-03/0032

Hilti bonded anchor HVZ / HVZ R / HVZ HCR

Intended Use
Installation instructions

Annex B6

Table C1: Characteristic resistance for HVZ (R) (HCR) under tension load in case of static and quasi static loading

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Installation safety factor	$\gamma_2^{(1)} = \gamma_{inst}^2$	[-]			1,0		
Steel failure							
Characteristic resistance HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$N_{Rk,s}$	[kN]	35	51	9	0	182
Pull-out failure							
Characteristic bond resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	_3)	_3)	_3)	_3)	_3)
Characteristic bond resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	_3)	40	_3)	_3)	_3)
		C30/37			1,22		
Increasing factors for τ_{Rk} in concrete	Ψc	C40/50			1,41		
		C50/60			1,55		
Concrete cone failure							
Effective anchorage depth	h_{ef}	[mm]	75	95	105	125	170
Cracked concrete							
Factor acc. to section 6.2.3.1 of CEN/TS 1992-4:2009 part 5	$k_8=k_{cr}^{\ 2)}$	[-]			7,2		
Non-cracked concrete							
Factor acc. to section 6.2.3.1 of CEN/TS 1992-4:2009 part 5	$k_8 = k_{\text{ucr}}^{2)}$	[-]			10,1		
Splitting failure							
Spacing	S _{cr,sp}	[mm]			2·c _{cr,sp}		
For member thickness $h \ge 2 h_{ef}$							
Edge distance	C _{cr,sp}	[mm]			$1,5 h_{\text{ef}}$		
Minimum member thickness 4)	h _{min}	[mm]	150	190	210	250	340
For member thickness h < 2 h _{ef}							
Edge distance	C _{cr,sp}	[mm]	-	-	2 h _{ef}	3 h _{ef}	-
Minimum member thickness 4)	h _{min}	[mm]	-	-	160	190	-
41							

¹⁾ Parameter for design according to EOTA ETAG 001 Annex C, 08/2010.
2) Parameter for design according to CEN/TS 1992-4:2009.
3) Pull out failure is not decisive.
4) Minimum member thickness to be used for splitting failure.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Performances Characteristic resistance under tension loads Design according to "ETAG 001 Annex C, 08/2010" or "CEN/TS 1992-4:2009"	Annex C1

English translation prepared by DIBt

Table C2: Characteristic resistance for HVZ (R) (HCR) under shear loads in case of static and quasi static loading

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Steel failure without lever arm							
Factor according to section 6.3.2.1 of CEN/TS 1992-4: 2009 part 5	k ₂ ²⁾	[-]	1,0				
Characteristic resistance HAS-TZ	$V_{Rk,s}$	[kN]	18	27	27 51		88
Characteristic resistance HAS-RTZ / HAS-HCR-TZ	$V_{Rk,s}$	[kN]	20	30 56		6	98
Steel failure with lever arm							
Characteristic resistance HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$M_{Rk,s}$	[kN]	48	86 227		27	519
Concrete pry out failure							
Factor acc. to equation (5.6) of ETAG001 Annex C, 5.2.3.3 or acc. to equation (27) of CEN/TS 1992-4: 2009 part 5	$k^{1)} = k$	3 ²⁾ [-]	2,0				
Concrete edge failure							
Effective length of anchor in shear loading	l _f	[mm]	75	95	105	125	170
Diameter of anchor	d_{nom}	[mm]	10	12 16 20			20

¹⁾ Parameter for design according to EOTA ETAG 001 Annex C, 08/2010.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	A
Performances Characteristic resistance under shear loads and displacements Design according to "ETAG 001 Annex C, 08/2010" or "CEN/TS 1992-4:2009"	Annex C2

Parameter for design according to CEN/TS 1992-4:2009.

Table C3: Displacements under tension load for HVZ (R) (HCR) in case of static and quasi static loading

HAS-TZ / HAS-RTZ / HAS-HCR-TZ		M10x75	M12x95	M16x105	M16x125	M20x170	
Displacement cracked concrete	δ_{N0} – factor	[mm/10 kN]	0,30	0,19	0,16	0,13	0,08
	$\delta_{N\infty}$ – factor	[mm/10 kN]	1,08	0,94	0,54	0,46	0,32
Displacement non-cracked concrete	δ_{N0} – factor	[mm/10 kN]	0,06	0,11	0,08	0,06	0,04
	$\delta_{N\infty}$ – factor	[mm/10 kN]	0,77	0,63	0,46	0,36	0,23

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - factor \cdot N / 10$

 $\delta_{N^{\infty}} = \delta_{N^{\infty}} - factor \cdot N/10 \hspace{1cm} \text{(N: action tension load)}$

Table C4: Displacements under shear load for HVZ (R) (HCR) in case of static and quasi static loading

HAS-TZ / HAS-RTZ / HAS-HCR-TZ		M10x75	M12x95	M16x105 M16x125	M20x170	
Displacement	δ_{V0} – factor	[mm/10 kN]	1,32	1,46	0,94	0,63
	$\delta_{V\infty}$ – factor	[mm/10 kN]	2,02	2,22	1,41	0,89

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - factor \cdot V/10$

 $\delta_{V\infty} = \delta_{V\infty} - \text{factor} \cdot \text{V/10}$ (V: action shear load)

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Performances Displacements	Annex C3