

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0069 of 4 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Bolt Anchor FAZ II

Torque controlled expansion anchor of sizes M8, M10, M12, M16, M20 and M24 for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

21 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-05/0069

Page 2 of 21 | 4 March 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-05/0069

Page 3 of 21 | 4 March 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FAZ II is an anchor made of galvanised steel (FAZ II) or made of stainless steel (FAZ II A4) or high corrosion resistant steel (FAZ II C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for design according to ETAG 001 Annex C or CEN/TS 1992-4:2009	See Annex C 1 to C 3
Characteristic resistance for Seismic performance categories C1 and C2	See Annex C 6 to C 7
Displacements under static and quasi static action	See Annex C 8
Displacements under seismic action	See Annex C 9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic resistance under fire exposure	See Annex C 4,C 5

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

European Technical Assessment ETA-05/0069

Page 4 of 21 | 4 March 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

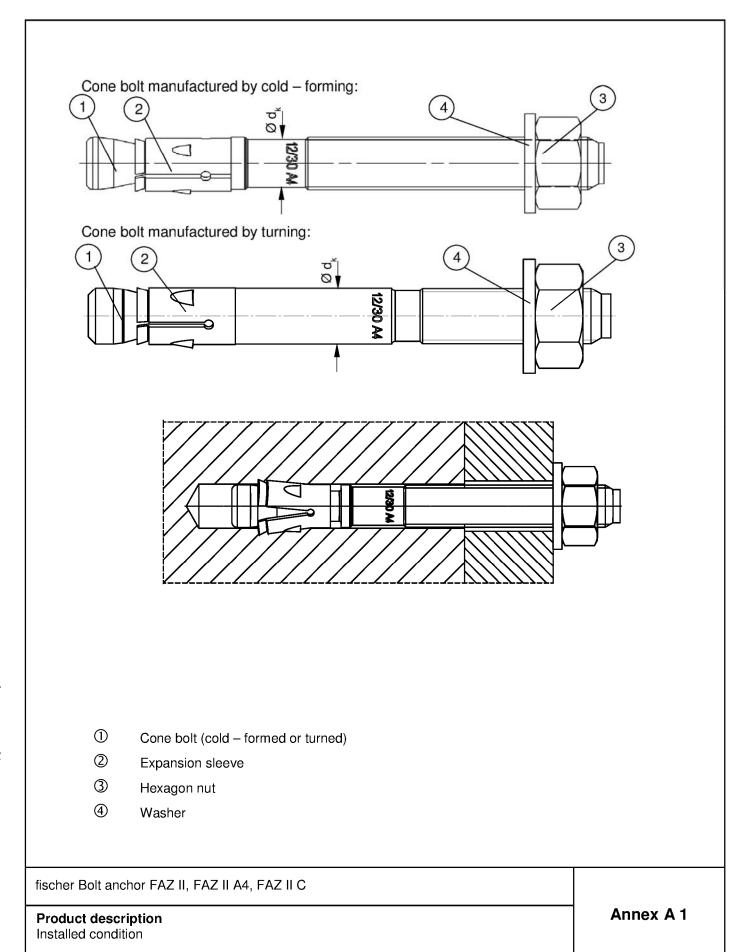
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

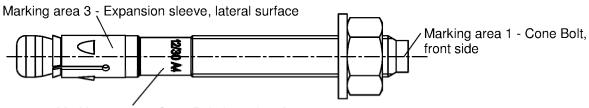
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 4 March 2015 by Deutsches Institut für Bautechnik


Uwe Benderbeglaubigt:Head of DepartmentLange

FAZ II for use with standard and reduced anchorage depth (hef, sta and hef, red):

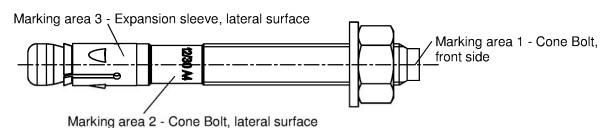
Marking area 2 - Cone Bolt, lateral surface

Product label, example:

FAZ II 12/10 A4

Brand | type of anchor placed on marking area 2 or marking area 3

thread size / max. thickness of fixture (t_{fix}) for $h_{\text{ef, sta}}$


identification A4

placed on marking area 2

Table A1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix}:

marking		(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
max. t _{fix} for h _{ef. sta}	M8-M24	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
max. t _{fix} for h _{ef, red}	M10- M16	25	30	35	40	45	50	55	60	65	70	80	90	100	110	120	140	160	180	200	220	270	320	370	420

FAZ II K for use with reduced anchorage depth only (hef. red):

Product label, example:

Brand | type of anchor placed on marking area 2 or marking area 3

FAZ II 12/10 K A4

thread size / max. thickness of fixture (t_{fix}) identification K for h_{ef, red} | identification A4 placed on marking area 2

Table A2: Letter-code on marking area 1 and maximum thickness of fixture t_{sc}:

marking		(a)	(b)	(c)	(d)
max. t _{fix} for h _{ef. red}	M10-M16	5	10	15	20

Identification for hef, red are lower-case letters

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Product description Anchor Types	Annex A 2

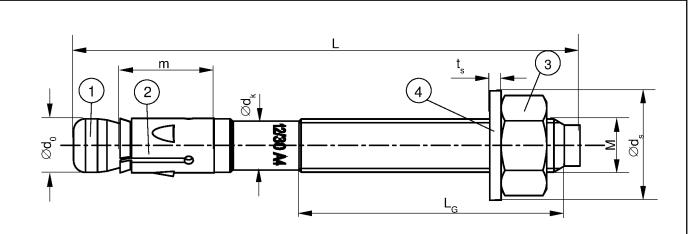


Table A3: Anchor dimensions [mm]

Part	Designation				FAZ II, FAZ II A4, FAZ II C								
ran	Designation			М8	M10	M12	M16	M20	M24				
		thread	size M	M8	M10	M12	M16	M20	M24				
	Canabalt	$\emptyset d_0$		7,8	9,8	11,8	15,7	19,8	23,5				
'	Cone bolt	$\emptyset d_k$		7,1	8,9	10,7	14,5	19,8	23,5				
		L _G	≥	19	26	31	40	50	57				
	Evenencies electro	m		17,8	20,0	20,6	27,5	33,4	40,2				
2	Expansion sleeve	sheet th	nickness	1,3	1,4	1,6	2,4	2,4	3,0				
3	Hexagon nut	wrench	size	13	17	19	24	30	36				
)	t _S	≥	1,4	1,8	2,3	2,7	2,7	3,7				
4	Washer	$\emptyset d_s$	≥	15	19	23	29	36	43				
Thieles	age of fixture		≥	0	0	0	0	0	0				
THICK	ness of fixture	t _{fix}	\leq	200	250	300	400	500	600				
Longth	Length of anchor		=	64,5	64,5	79	102	141	174				
Lengti	i di anchui	L _{max}	=	267	336	401	524,5	644	777				

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Product description Anchor dimensions	Annex A 3

Electronic copy of the ETA by DIBt: ETA-05/0069

Table A4: Materials FAZ II

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel (zinc plated) Nominal steel tensile strength: $f_{uk} \le 1000 \text{ N/mm}^2$
2	Expansion sleeve	Cold strip, EN 10139:2013 (zinc plated)
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012 (zinc plated)
4	Washer	Cold strip, EN 10139:2013 (zinc plated)

Table A5: Materials FAZ II A4

Part	Designation	Material
1	Cone bolt	stainless steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve	stainless steel EN 10088:2014
3	Hexagon nut	stainless steel EN 10088:2014; ISO 3506-2: 2009; property class – min. 70
4	Washer	stainless steel EN 10088:2014

Table A6: Materials FAZ II C

Part	Designation	Material
1	Cone bolt	high corrosion resistant steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve	stainless steel EN 10088:2014
3	Hexagon nut	high corrosion resistant steel EN 10088:2014; ISO 3506-2:2009; property class – min. 70
4	Washer	high corrosion resistant steel EN 10088:2014

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Product description
Materials

Annex A 4

Specifications of intended use

Anchorages subject to:

Standard anchorage depth					/								
	M8	M10	M12	M16	M20	M24							
				/									
				/									
				/									
C1		/											
C2 ¹⁾	-			-									
			1										
		M10	M12	M16		,							
	-		/		-								
	-		/										
Fire exposure			· -										
C1	646	1				-							
C2 ¹⁾	9-0		1	-									
	C2 ¹⁾	C1 C2 ¹⁾ - - - - - - C1	C1 C2 ¹⁾ -	C1	C1	C1							

¹⁾ FAZ II C: Only valid for cold-formed version (see A1)

Base materials:

- Reinforced and unreinforced normal weight concrete (cracked and non-cracked according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FAZ II, FAZ II A4, FAZ II C).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist. (FAZ II A4, FAZ II C).
- Structures subject to external atmospheric exposure and permanently damp internal condition or in other particular aggressive conditions (FAZ II C).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are to be designed in accordance with (please choose the relevant design method):
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are to be designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed.
- Anchorages under fire exposure are to be designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur.

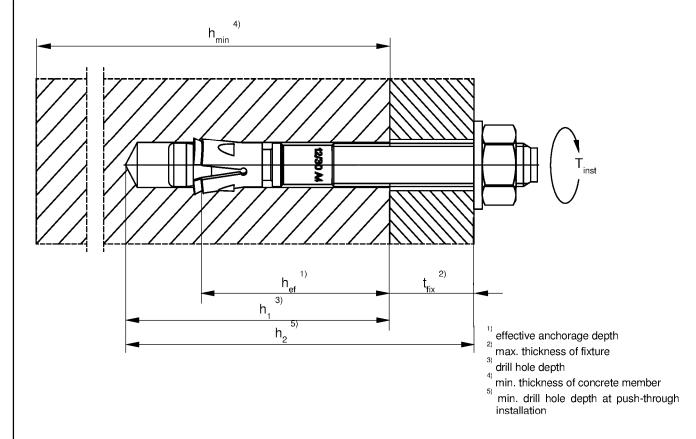

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters

Type of anchor / size			FAZ II, FAZ II A4, FAZ II C							
			M10	M12	M16	M20	M24			
Nominal drill hole diameter	$d_0 = [mm]$	8	10	12	16	20	24			
Cutting diameter of drill bit	$d_{cut} \leq [mm]$	8,45	10,45	12,5	16,5	20,55	24,55			
Standard anchorage depth	$h_{\text{ef,sta}} \geq [mm]$	45	60	70	85	100	125			
Depth of drill hole in concrete for h _{ef,sta}	$h_{1,\text{sta}} \geq [mm]$	55	75	90	110	125	155			
Reduced anchorage depth	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	ı	-			
Depth of drill hole in concrete for h _{ef,red}	$h_{1,\text{red}} \geq [mm]$	-	55	70	90	-	-			
Diameter of clearance hole in the fixture ¹⁾	$d_f \leq \ [mm]$	9	12	14	18	22	26			
Required torque moment	$T_{inst} = [Nm]$	20	45	60	110	200	270			

¹⁾ If a larger diameter of the clearance hole in the fixture is used, see Chapter 4.2.2.1 of ETAG 001, Annex C

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Intended Use
Installation parameters

Annex B 2

Table B2: Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **standard anchorage depth (h**_{ef, sta})

Type of anchor / size		FAZ II, FAZ II A4, FAZ II C							
		М8	M10	M12	M16	M20	M24		
Standard effective anchorage depth $h_{ef,sta} \ge [mm]$			45	60	70	85	100	125	
Minimum thickness of concrete member Non – cracked concrete		h _{min, 1} [mm]	100	120	140	170	200	250	
2 x	Non – cracked concrete								
1 2 1	Minimum spacing	s _{min} [mm]	40	40	50	65	95	100	
SS9	Willimum spacing	for c ≥ [mm]	50	60	70	95	180	200	
¥ ¥	Minimum odgo distance	c _{min} [mm]	40	45	55	65	95	135	
Applications with concrete members of thickness ≥ 2 x h	Minimum edge distance	for $s \ge [mm]$	100	80	110	150	190	235	
lio of t	Cracked concrete								
ical	Minimum spacing	s _{min} [mm]	35	40	50	65	95	100	
l dd J du	Willindin spacing	for c ≥ [mm]	50	55	70	95	140	170	
ner A	Minimum edge distance	c _{min} [mm]	40	45	55	65	85	100	
_	Willimum edge distance	for $s \ge [mm]$	70	80	110	150	190	220	
with bers of x h _{ef}	Minimum thickness of concrete member	h _{min, 2} [mm]	80	100	120	140	160	200	
s w	Cracked and non-cracked co	oncrete							
Applications with concrete members thickness < 2 x h _e	Minimum spacing	s _{min} [mm]	35	40	50	80	125	150	
lica ste r	wiiminum spacing	for c ≥ [mm]	70	100	90	130	220	230	
Application of the control of the co	Minimum edge distance	c _{min} [mm]	40	60	60	65	125	135	
7 5 ≠	wiiminum eage distance	for $s \ge [mm]$	100	90	120	180	230	235	

Intermediate values for s_{min} and c_{min} inside of the same thickness of concrete member by linear interpolation.

Table B3: Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for **reduced anchorage depth (h**_{ef, red})

Type of anchor / size		FAZ	II, FAZ II A4, FAZ	ZIIC	
	Type of anchor / size		M10	M12	M16
Reduced	effective anchorage depth	$\mathbf{h}_{ef,red} \geq [mm]$	40	50	65
h _{ef}	Minimum thickness of concrete member	h _{min, 3} [mm]	80	100	140
2 x	Non – cracked concrete				
	Minimum angoing	s _{min} [mm]	40	50	65
l cc	Minimum spacing	for c ≥ [mm]	100	110	130
with	Minimum adaa diatanaa	c _{min} [mm]	45	55	65
ns with cond thickness ≥	Minimum edge distance	for $s \ge [mm]$	180	220	250
l jö of t	Cracked concrete				
cat	Minimum analina	s _{min} [mm]	40	50	65
Applications embers of thi	Minimum spacing	for c ≥ [mm]	90	110	130
Applica members	Minimum adap diatara	c _{min} [mm]	45	55	65
	Minimum edge distance	for s ≥ [mm]	180	220	250

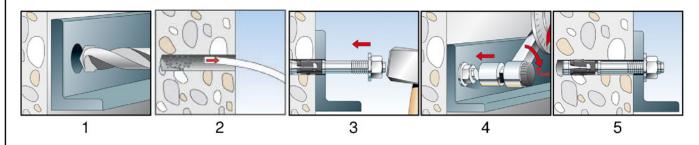
Intermediate values for s_{min} and c_{min} by linear interpolation.

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Intended Use

Installation parameters

Annex B 3


Table B4: Minimum spacings and minimum edge distances of anchors according to TR 020 and ETAG 001, Annex C under fire exposure and according to CEN/TS 1992-4: 2009, Annex D under fire exposure

Turne	Type of anabor / size				FAZ II, FAZ II A4, FAZ II C				
Type of anchor / size			M8	M10	M12	M16	M20	M24	
Spacing	S _{min}	[mm]	35	40	45	60	95	100	
Edge distance	C _{min}	[mm]	$c_{min} = 2 \times h_{ef},$ for fire exposure from more than one side $c_{min} \ge 300 \text{ mm}$					00 mm	

Installation instructions

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply.
- · Check of concrete being well compacted, e.g. without significant voids
- · Edge distances and spacing not less than the specified values without minus tolerances.

No.	Description
	Create drill hole
1	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2	Clean bore hole
3	Set anchor
4	Expand anchor with prescribed installation torque T _{inst}
5	Finished installation

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Installation parameters	Annex B 4

Table C1: Characteristic values of tension resistance for standard anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or **CEN/TS 1992-4**)

CEN/TS 1992-4)				ГАЗ	II FAZ	U A 4 E	17 II C	
Type of anchor / size			MO			II A4, FA		BAO 4
Stool failure for standard anchores	an donth		M8	M10	M12	M16	M20	M24
Steel failure for standard anchorage Characteristic resistance		[kN]	16,0	27,0	41,5	66,0	111,0	150,0
Partial safety factor	N _{Rk,s}	[KIV]	16,0	27,0		1,5	111,0	150,0
Pullout failure for standard anchor	γ _{Ms} γ _{Ms}	<u> </u>				1,5		
Effective anchorage depth	<u> </u>	[mm]	45	60	70	85	100	125
Characteristic resistance in cracked concrete C20/25	$h_{ef,sta} \ge N_{Rk,p}$	[kN]	5	9	16	00	- ¹⁾	120
Characteristic resistance in non - cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25		_ 1)	
		C25/30			1	,10		
		C30/37			1	,22		
Increasing factors for N _{Rk,p} for cracked and non – cracked		C35/45			1	,34		
concrete	Ψ¢	C40/50			1	,41		
		C45/55			1	,48		
		C50/60			1	,55		
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1,0		
Concrete cone and splitting failure members of thickness ≥ 2x h _{ef}	for stanc	dard anch	orage	depth ir	n applic	ations v	vith con	crete
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125
Factor for non-cracked concrete	k _{ucr}	[-]			1	0,1		
Factor for cracked concrete	k _{cr}	[-]			7	7,2		
Min. thickness of concrete member	h _{min,1}	[mm]	100	120	140	170	200	250
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}		
Characteristic edge distance	C _{cr,N}	[mm]			1,:	5 h _{ef}		
Spacing (splitting failure) 2)	S _{cr,sp}	[mm]	140	180	210	260	370	430
Edge distance (splitting failure) 2)	C _{cr,sp}	[mm]	70	90	105	130	185	215
Concrete cone and splitting failure members of thickness < 2x hef	for stanc	dard anch	orage	depth ir	applic	ations v	vith con	crete
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125
Factor for non-cracked concrete	k _{ucr}	[-]			1	0,1		
Factor for cracked concrete	k _{cr}	[-]				7,2		
Min. thickness of concrete member	h _{min,2}	[mm]	80	100	120	140	160	200
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}	· · · · ·	
Characteristic edge distance	C _{cr,N}	[mm]				5 h _{ef}		
Spacing (splitting failure) 2)	S _{cr,sp}	[mm]	180	240	280	340	480	550
Edge distance (splitting failure) 2)	C _{cr,sp}	[mm]	90	120	140	170	240	275

¹⁾ Pullout failure not relevant.

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C Annex C 1 **Performances** Characteristic values of resistance under tension loads for standard anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4)

8.06.01-266/14 Z16212.15

²⁾ Intermediate values for $s_{cr,sp}$ and $c_{cr,sp}$ between concrete thickness $h_{min,2}$ and $h_{min,1}$ by linear interpolation.

³⁾ In absence of other national regulations

Table C2: Characteristic values of **tension** resistance for **reduced anchorage depth** under static and quasi-static action (Design method A, according to **ETAG 001, Annex C** or **CEN/TS 1992-4:2009**)

Tune of analyst / size			FAZ	II, FAZ II A4, FA	Z II C	
Type of anchor / size			M10	M12	M16	
Steel failure for reduced anchorage	edepth					
Characteristic resistance	$N_{Rk,s}$	[kN]	27,0	41,5	66,0	
Partial safety factor	γ _{Ms} 2)			1,5		
Pullout failure for reduced anchora	ge depth					
Effective anchorage depth	$h_{ef,red} \ge$	[mm]	40	50	65	
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]		_ 1)		
Characteristic resistance in non - cracked concrete 20/25	$N_{Rk,p}$	[kN]		- 1)		
		C25/30		1,10		
Increasing factors for N for		C30/37		1,22		
Increasing factors for N _{Rk,p} for cracked and non – cracked	116	C35/45		1,34		
concrete	Ψс	C40/50	1,41			
		C45/55		1,48		
		C50/60		1,55		
Installation safety factor	$\gamma_2 = \gamma_{inst}$			1,0		
Concrete cone an	d splittin	g failure f	for reduced and	horage depth		
Effective anchorage depth	h _{ef}	[mm]	40	50	65	
Factor for non-cracked concrete	k _{ucr}	[-]		10,1		
Factor for cracked concrete	k_{cr}	[-]		7,2		
Min. thickness of concrete member	$h_{min,3}$	[mm]	80	100	140	
Characteristic spacing	scr,N	[mm]		3 h _{ef}		
Characteristic edge distance	$C_{cr,N}$	[mm]		1,5 h _{ef}		
Spacing (splitting failure)	$s_{cr,sp}$	[mm]	160	200	260	
Edge distance (splitting failure)	$C_{cr,sp}$	[mm]	80	100	130	

¹⁾ Pullout failure not relevant.

Electronic copy of the ETA by DIBt: ETA-05/0069

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Performances
Characteristic values of resistance under tension for reduced anchorage depth
(Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

²⁾ In absence of other national regulations

Table C3: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009))

Type of analysis			FAZ II, FAZ II A4, FAZ II C					
Type of anchor / size			М8	M10	M12	M16	M20	M24
Steel failure without lever arm for stan	dard and i	educed	anchor	age dep	th			
Characteristic resistance	$V_{Rk,s}$	[kN]	12,0	20,0	29,5	55,0	70,0	86,0
Partial safety factor	γ _{Ms} 1)				1,	25		
Factor for ductility	k_2	[-]			1	,0		
	Standard a	anchoraç	je deptl	า				
Steel failure with lever arm								
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	487	769
Partial safety factor	γ _{Ms} 1)				1,	25		
Factor for ductility	k_2	[-]			1	,0		
Concrete pryout failure								
k-factor	$k_{(3)}$		2	,2	2,4		2,8	
Concrete edge failure								
Effective length of anchor in shear loading	l _f	[mm]	45	60	70	85	100	125
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24
Installation safety factor	γ _{2 =}				1	,0		
	Reduced a	ınchoraç	je depti	1				
Steel failure with lever arm								
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	-	40	89	171	-	-
Partial safety factor	γ _{Ms} 1)				1,	25		
Factor for ductility	k_2	[-]			1	,0		
Concrete pryout failure								
k-factor	k ₍₃₎		-	2,0	2	,,3	-	-
Concrete edge failure								
Effective length of anchor in shear loading	l _f	[mm]	-	40	50	65	-	-
Effective diameter of anchor	d _{nom}	[mm]	-	10	12	16	-	-

¹⁾ In absence of other national regulations

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Performances Characteristic values of resistance under shear loads (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)	Annex C 3

Table C4: Characteristic values of tension resistance under fire exposure in cracked and noncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

		R30		R60				
Type of anchor / size	Fire re	Fire resistance 30 minutes			Fire resistance 60 minutes			
FAZ İİ, FAZ II A4, FAZ II C	$N_{Rk,s,fi,30} \ [kN]$	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]		
Standard anchorage depth								
M8	1,4	1,3	2,4	1,2	1,3	2,4		
M10	2,8	2,3	5,0	2,3	2,3	5,0		
M12	5,0	4,0	7,4	4,1	4,0	7,4		
M16	9,4	7,1	12,0	7,7	7,1	12,0		
M20	14,7	9,0	18,0	12,0	9,0	18,0		
M24	21,1	12,6	31,4	17,3	12,6	31,4		
Reduced anchorage depth								
M10	2,8	2,3	1,8	2,3	2,3	1,8		
M12	5,0	3,2	3,2	4,1	3,2	3,2		
M16	9,4	4,7	6,1	7,7	4,7	6,1		
	Fire re-	R90) minutaa	R120 Fire resistance 120 minutes				
		sistance 90						
	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	$N_{Rk,s,fi,120}$ [kN]	$N_{Rk,p,fi,120} \ [kN]$	N ⁰ _{Rk,c,fi,120} [kN]		
Standard anchorage depth								
M8	0,9	1,3	2,4	0,8	1,0	1,9		
			_, .	-,-		۱,۶		
M10	1,9	2,3	5,0	1,6	1,8	4,0		
M10 M12	1,9 3,2				1,8 3,2			
		2,3	5,0	1,6	· ·	4,0		
M12	3,2	2,3 4,0	5,0 7,4	1,6 2,8	3,2	4,0 5,9		
M12 M16	3,2 6,0	2,3 4,0 7,1	5,0 7,4 12,0	1,6 2,8 5,2	3,2 5,6	4,0 5,9 9,6		
M12 M16 M20	3,2 6,0 9,4	2,3 4,0 7,1 9,0	5,0 7,4 12,0 18,0	1,6 2,8 5,2 8,1	3,2 5,6 7,2	4,0 5,9 9,6 14,4		
M12 M16 M20 M24	3,2 6,0 9,4	2,3 4,0 7,1 9,0	5,0 7,4 12,0 18,0	1,6 2,8 5,2 8,1	3,2 5,6 7,2	4,0 5,9 9,6 14,4		
M12 M16 M20 M24 Reduced anchorage depth	3,2 6,0 9,4 13,5	2,3 4,0 7,1 9,0 12,6	5,0 7,4 12,0 18,0 31,4	1,6 2,8 5,2 8,1 11,6	3,2 5,6 7,2 10,1	4,0 5,9 9,6 14,4 25,1		

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Performances:

Characteristic values of resistance under tension loads and

(Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

Annex C 4

Table C5: Characteristic values of shear resistance under fire exposure in cracked and non-cracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CENT/TS 1992-4:2009, Anhang D)

	: ::	R30		R60 Fire resistance 60 minutes				
Type of anchor / size FAZ II, FAZ II A4, FAZ II C	V _{Rk,s,fi,30}	stance 30 minut		V _{Rk,s,fi,60}	M ⁰ _{Rk,s,fi,60}			
17.E 11, 17.E 11 7.11, 17.E 11 0	V Hk,s,fi,30 [kN]	[Nm]	k	V Rk,s,fi,60 [kN]	[Nm]	k		
Standard anchorage depth								
M8	1,8	1,4	2,2	1,6	1,2	2,2		
M10	3,6	3,6	2,2	2,9	3,0	2,2		
M12	6,3	7,8	2,4	4,9	6,4	2,4		
M16	11,7	19,9	2,8	9,1	16,3	2,8		
M20	18,2	39,0	2,8	14,2	31,8	2,8		
M24	26,3	67,3	2,8	20,5	55,0	2,8		
Reduced anchorage depth								
M10	3,6	3,6	2,0	2,9	3,0	2,0		
M12	6,3	7,8	2,3	4,9	6,4	2,3		
M16	11,7	20,0	2,3	9,1	16,3	2,3		
					D400			
	Fire resis	R90 stance 90 minut	es	R120 Fire resistance 120 minutes				
	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	k	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]	k		
Standard anchorage depth			•					
M8	1,3	1,0	2,2	1,2	0,8	2,2		
M8 M10	1,3 2,2	1,0 2,4	2,2	1,2 1,9	0,8 2,1	2,2		
					· · · · · · · · · · · · · · · · · · ·			
M10	2,2	2,4	2,2	1,9	2,1	2,2		
M10 M12	2,2 3,5	2,4 5,0	2,2 2,4	1,9 2,8	2,1 4,3	2,2 2,4		
M10 M12 M16	2,2 3,5 6,6	2,4 5,0 12,6	2,2 2,4 2,8	1,9 2,8 5,3	2,1 4,3 11,0	2,2 2,4 2,8		
M10 M12 M16 M20	2,2 3,5 6,6 10,3	2,4 5,0 12,6 24,6	2,2 2,4 2,8 2,8	1,9 2,8 5,3 8,3	2,1 4,3 11,0 21,4	2,2 2,4 2,8 2,8		
M10 M12 M16 M20 M24	2,2 3,5 6,6 10,3	2,4 5,0 12,6 24,6	2,2 2,4 2,8 2,8 2,8 2,8	1,9 2,8 5,3 8,3	2,1 4,3 11,0 21,4	2,2 2,4 2,8 2,8 2,8 2,8		
M10 M12 M16 M20 M24 Reduced anchorage depth	2,2 3,5 6,6 10,3 14,8	2,4 5,0 12,6 24,6 42,6	2,2 2,4 2,8 2,8 2,8	1,9 2,8 5,3 8,3 11,9	2,1 4,3 11,0 21,4 37,0	2,2 2,4 2,8 2,8 2,8		

Concrete pryout failure: In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the k-factor of Table 8 and the relevant values of $N_{\text{ORk,c,fi}}$ of Table 10 have to be considered.

Concrete edge failure: The characteristic resistance $V^0_{Rk,c,fi}$ in concrete C20/25 to C50/60 is determined by: $V^0_{Rk,c,fi} = 0.25 \times V^0_{Rk,c}$ (R30, R60, R90), $V^0_{Rk,c,fi} = 0.20 \times V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M.fi} = 1,0$ is recommended.

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Performances:
Characteristic values of resistance under shear loads and fire exposure
(Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4:2009, Annex D)

Table C6: Valid anchor sizes for seismic design, performance category C1, standard and reduced anchorage depth

Time of analogy / aims			FAZ	II, FAZ I	I A4, FA	ZIIC	
Type of anchor / size		М8	M10	M12	M16	M20	M24
Standard effective anchorage depth	$h_{\text{ef,sta}} \geq [mm]$	45	60	70	85	100	125
Thickness of fiveurs	$t_{\text{fix,min}} = [mm]$	0	0	0	0	0	0
Thickness of fixture –	$t_{\text{fix,max}} = [mm]$	100	100	120	160	250	300
I amente of amelon	$L_{min} = [mm]$	64,5	84,5	99	122	141	174
Length of anchor —	$L_{max} = [mm]$	167	186	221	284,5	394	477
Reduced effective anchorage depth	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	-
Thickness of five ves	$t_{\text{fix,min}} = [mm]$	-	0	0	0	-	-
Thickness of fixture —	$t_{\text{fix,max}} = [mm]$	-	120	140	180	-	-
Longth of anchor	$L_{min} = [mm]$	-	64,5	79	102	-	-
Length of anchor —	$L_{max} = [mm]$	-	186	221	284,5	-	-

Table C7: Valid anchor sizes for seismic design, performance category C2, standard and reduced anchorage depth

Type of anabor / size			FAZ I	I, FAZ II	A4, FAZ	II C 1)	
Type of anchor / size		M8	M10	M12	M16	M20	M24
Standard effective anchorage depth	$h_{\text{ef},\text{sta}} \geq [mm]$	-	60	70	85	100	-
Thickness of fixture —	$t_{\text{fix,min}} = [mm]$	-	0	0	0	0	-
THICKHESS OF HATURE	$t_{\text{fix,max}} = [mm]$	-	100	120	160	250	-
Longth of anabor	$L_{min} = [mm]$	-	84,5	99	122	141	-
Length of anchor –	$L_{max} = [mm]$	-	186	221	284,5	394	-
Reduced effective anchorage depth	$h_{\text{ef,red}} \geq [mm]$	-	40	50	65	-	1
Thickness of fixture	$t_{\text{fix,min}} = [mm]$	-	0	0	0	-	-
Thickness of fixture –	$t_{fix,max} = [mm]$	-	120	140	180	-	-
Length of anchor	$L_{min} = [mm]$	-	64,5	79	102	-	-
Length of anchor –	$L_{max} = [mm]$	-	186	221	284,5	-	-

¹⁾ FAZ II C: Only valid for cold-formed version (see A1)

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Performances: Valid sizes in cracked concrete for seismic design	Annex C 6

Table C8: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action

(Design according to TR 045: Performance category C1)

T				FAZ	II, FAZ	II A4, FA	ZIIC	
Type of anchor / size			M8	M10	M12	M16	M20	M24
Steel failure for standard ancho	rage dep	oth						
Characteristic resistance tension	h _{ef,sta}	N ⁰ _{Rk,s,C1} [kN]	16,0	07.0	41.0	66.0	111,0	150,0
load C1	h _{ef,red.}	IN Rk,s,C1 [KIN]	ı	27,0	41,0	66,0	-	-
Partial safety factor		$\gamma_{Ms,C1}^{}}}}}$ [-]			-	1,5		
Pullout failure for standard anch	norage d	lepth						
Characteristic resistance tension	h _{ef,sta}	NI [LNI]	4,6	0.0	10.0	00.0	36,0	50,3
load in cracked concrete C1	h _{ef,red.}	$N_{Rk,p,C1}$ [kN]	-	8,0	16,0	28,2	-	-
Installation safety factor		γ _{2,C1} [-]				1,0		
Steel failure without lever arm fo	or stand	ard anchorage	e depth					
Characteristic resistance shear	h _{ef,sta}	V ⁰ _{Rk,s,C1} [kN]	11	47	0.7	47	56	69
load C1	h _{ef,red.}	V _{Rk,s,C1} [KIN]	-	17	27	47	-	-
Partial safety factor		γ _{Ms,C1} 1) [-]	1,25					

Table C9: Characteristic values of tension and shear resistance for standard- and reduced anchorage depth under seismic action

(Design according to TR 045: Performance category C2)

T			FAZ	II, FAZ II	A4, FAZ	: II C ²⁾	
Type of anchor / size		M8	M10	M12	M16	M20	M24
Steel failure for standard ancho	rage depth						
Characteristic resistance tension load C2	$\frac{h_{\text{ef,sta}}}{h_{\text{ef,red.}}} N^0_{\text{Rk,s,C2}} [\text{kN}]$	-	27	41	66	111	-
Partial safety factor	γ _{Ms,C2} 1) [-]	[-] 1,5					
Pullout failure for standard anch							
Characteristic resistance tension	h c N _{Rk,p,C2} [kN]		5,1	7,4	21,5	30,7	
load in cracked concrete C2	h _{ef,red.}	-	2,7	4,4	16,4	-	
Installation safety factor	γ _{2,C2} [-]			1	,0		
Steel failure without lever arm fo	or standard anchorag	e depth					
Characteristic resistance shear	h _{ef,sta}		10,0	17,4	27,5	39,9	
load C2	$\frac{h_{\text{ef,sta}}}{h_{\text{ef,red.}}} V^0_{\text{Rk,s,C2}} [\text{kN}]$	-	7,0	12,7	22,0	-	-
Partial safety factor	γ _{Ms,C2} 1) [-]			1,	25		

¹⁾ In absence of other national regulations

²⁾ FAZ II C: Only valid for cold-formed version (see A1)

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Performances: Characteristic values of resistance under tension and shear loads under seismic action	Annex C 7

Table C10: Displacements due to tension loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Trung of analysis				FAZ	II, FAZ I	II A4, FA	ZIIC	
Type of anchor / size			М8	M10	M12	M16	M20	M24
Values for standard anchorage depth								
Tension load in cracked concrete	N	[kN]	2,3	4,2	7,5	13,2	16,4	22,9
Displacement	δ_{N0}	[mm]	0,5	0,5	0,7	1,0	1,2	1,2
Displacement	$\delta_{N\infty}$	[mm]		1	,2		1,4	1,5
Tension load in non - cracked concrete	N	[kN]	4,2	7,5	11,7	18,7	23,3	32,5
Displacement	δ_{N0}	[mm]	0,3	0,3	0,5	0,7	1,2	1,2
Displacement	$\delta_{N\infty}$	[mm]	1,2				1,4	1,5
Values for reduced anchorage depth								
Tension load in cracked concrete	N	[kN]	-	4,2	6,0	9,0	-	-
Displacement	δ_{N0}	[mm]	-	0,5	0,7	1,0	-	-
Displacement	$\delta_{N\infty}$	[mm]		1	,2		-	-
Tension load in non - cracked concrete	N	[kN]	-	5,7	8,5	12,6	-	-
Displacement	δ_{N0}	[mm]	-	0,3	0,5	0,7	-	-
Displacement	$\delta_{N\infty}$	[mm]		1	,2		-	-

Table C11: Displacements due to shear loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of anchor / size			FAZ II, FAZ II A4, FAZ II C						
Type of afficient / Size			M8	M10	M12	M16	M20	M24	
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	16,9	31,4	39,4	48,5	
Displacement	δ_{V0}	[mm	2,4	4,2	4,5	3,0	3,6	3,6	
Displacement	$\delta_{\text{V}_{\infty}}$	[mm	3,6	6,3	6,8	4,5	5,4	5,4	

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C

Performances:
Displacements under tension and shear loads under seismic action

Annex C 8

Table C12: Displacements due to tension loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Time of such as / size	Type of anchor / size		FAZ II, FAZ II A4, FAZ II C						
Type of anchor / size			М8	M10	M12	M16	M20	M24	
Values for standard anchorage dep	th								
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	-	2,7	4,4	4,4	5,6	-	
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	1	11,5	13,0	12,3	14,4	-	
Values for reduced anchorage dept	h								
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	-	2,7	4,4	4,4	-	-	
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	-	11,5	13,0	12,3	-	-	

Table C13: Displacements due to shear loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Time of analysis	Type of anchor / size		FAZ II, FAZ II A4, FAZ II C						
Type of anchor / size		М8	M10	M12	M16	M20	M24		
Values for standard anchorage d	epth								
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	-	4,1	4,4	4,3	4,8	-	
Displacement ULS	$\delta_{\text{V,C2 (ULS)}}$	[mm]	-	6,2	7,8	8,1	11,2	-	
Values for reduced anchorage de	epth								
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	-	3,6	4,7	5,5	-	-	
Displacement ULS	$\delta_{\text{V,C2 (ULS)}}$	[mm]	-	5,0	7,5	10,1	-	-	

fischer Bolt anchor FAZ II, FAZ II A4, FAZ II C	
Performances: Displacements under tension and shear loads under seismic action	Annex C 9