

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-05/0070 vom 12. Mai 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

mungo Stahlbolzen m2, m2-C, m2-CG

Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 Olten SCHWEIZ

Mungo Werk Olten

14 Seiten, davon 3 Anhänge

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-05/0070

Seite 2 von 14 | 12. Mai 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z22000.15 8.06.01-344/14

Europäische Technische Bewertung ETA-05/0070

Seite 3 von 14 | 12. Mai 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der mungo m2 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird. Nach der verwendeten Unterlegscheibe werden die Dübeltypen m2, m2-C und m2-CG bezeichnet.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für statische und quasi-statische Einwirkung zur Bemessung nach ETAG 001 Anhang C und Verschiebungen	Siehe Anhänge C 1 und C 2

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1			
Feuerwiderstand	Siehe Anhänge C 3 und C 4			

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

Z22000.15 8.06.01-344/14

Europäische Technische Bewertung ETA-05/0070

Seite 4 von 14 | 12. Mai 2015

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

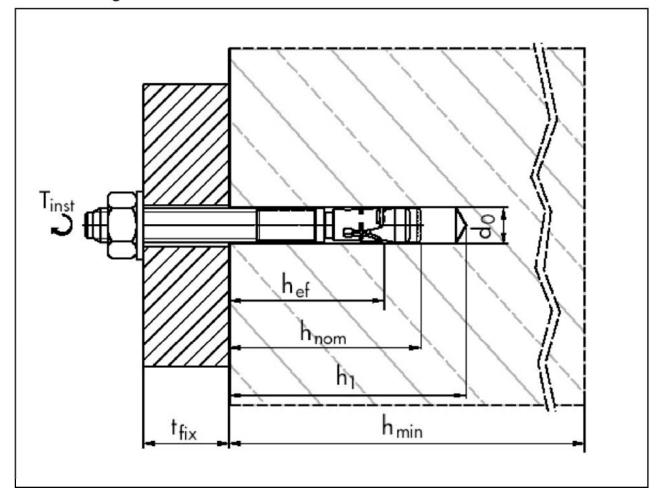
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 12. Mai 2015 vom Deutschen Institut für Bautechnik

Uwe Bender Abteilungsleiter Beglaubigt

Z22000.15 8.06.01-344/14

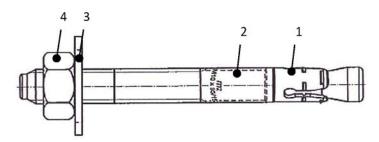
Dübel im eingebauten Zustand

Legende: h_{ef} = effektive Verankerungstiefe

h_{nom} = Gesamtlänge des Dübels im Beton

 $\begin{array}{lll} h_1 &= Bohrlochtiefe \\ h_{min} &= Mindestbauteildicke \\ d_0 &= Bohrernenndurchmesser \\ t_{fix} &= Dicke \ des \ Anbauteils \\ T_{inst} &= Installationsdrehmoment \end{array}$

m2, m2-C, m2-CG


Produktbeschreibung

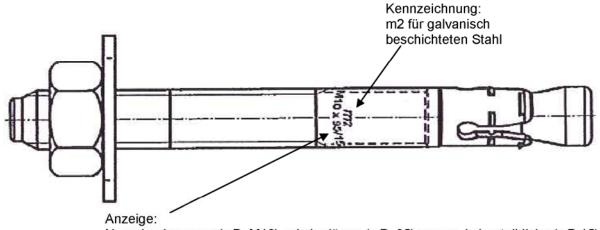
Einbauzustand

Anhang A 1

Ankertyp

- 1 Spreizblech
- 2 Bolzen
- 3 Unterlegscheibe
- 4 Sechskantmutter

Gestaltung Spreizbleche:



m2 M6 m2 M16 Typ A m2 M20

m2 M8 m2 M10 m2 M12

m2 M16 Typ B

Nenndurchmesser (z.B. M10) x Ankerlänge (z.B. 95) x max. Anbauteildicke (z.B.15)

Ankertypen:

m2 Bolzen m2 mit Unterlegscheibe EN ISO 7089:2000 und Sechskantmutter DIN 934:1987-10 m2-C Bolzen m2 mit Unterlegscheibe EN ISO 7093-1:2000 und Sechskantmutter DIN 934:1987-10 m2-CG Bolzen m2 mit Unterlegscheibe EN ISO 7094:2000 und Sechskantmutter DIN 934:1987-10

m2, m2-C, m2-CG	
Produktbeschreibung Bezeichnung und Kennzeichnung	Anhang A 2

Tabelle A1: Abmessungen

Teil	Вє	ezeichnung		М6	М8	M10	M12	M16	M20	
		d	k	[mm]	6	8	10	12	16	20
		d	h	[mm]	4	5,6	7,2	8,5	11,5	15,2
		d _s	i1	[mm]	5,25	7,05	8,9	10,7	14,5	-
1	Bolzen	ds	i2	[mm]	-	ı	ı	12	16	20
'	Buizell	min	l I _G	[mm]	19	43	23	32	33	70
		max	k l _G	[mm]	62	120	120	120	120	120
	_	mir	ı L	[mm]	50	80	95	80	90	130
	ma		x L	[mm]	95	165	180	360	440	270
2	Spreiz-	Тур А		[mm]	9,5	13,2	15,2	17,5	19,3	21,6
	blech	Тур В	l _s	[[[]]]	-	-	-	-	19,7	-
		EN ISO	du	[mm]	12	16	20	24	30	37
		7089:2000	s	[mm]	1,6	1,6	2	2,5	3	3
3	Unterleg-	EN ISO 7093-	du	[mm]	18	24	30	37	50	60
	scheibe	1:2000	s	[mm]	1,6	2	2,5	3	3	4
	EN	EN ISO	- 	[mm]	22	28	34	44	56	72
		7094:2000		[mm]	2	3	3	4	5	6
4	Sechskantmutter		sw	[mm]	10	13	17	19	24	30

m2, m2-C, m2-CG

m2, m2-C, m2-CG L≥185mm (M12 bis M20)

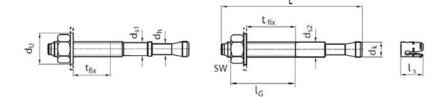


Tabelle A2: Werkstoffe

Teil	Bezeichnung		Werkstoff
1	Bolzen	L ≤ 185 mm	Kaltstauchdraht EN10263-2:2001, galvanisiert ≥ 5 μm
'	Duizeii	L > 185 mm ¹⁾	Automatenstahl EN 10087:1998, galvanisiert ≥ 5 μm
	L ≤ 185 mm		Kaltwalzblech EN10139:1997, galvanisiert ≥ 5 μm
	Spreizblech	L > 185 mm ¹⁾	Edelstahl-Kaltwalzblech EN10088-2:2014, unbeschichtet
3	Unterlegscheibe		Stahl EN10139:1997, galvanisiert ≥ 5 μm
4	Sechskantmutter		Stahl, Werkstoffklasse 8, DIN 934:1987-10, galvanisiert ≥ 5 µm

¹⁾ gilt für Grössen M12 und M16, gilt für Grösse M20 unabhängig von der Länge

m2, m2-C, m2-CG	
Produktbeschreibung Abmessungen und Werkstoffe	Anhang A 3

Spezifikation des vorgesehenen Anwendungsbereichs

Beanspruchung der Verankerung:

- Statische oder quasi-statische Lasten
- Feuer

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäss EN 206:2013
- Festigkeitsklasse ab C20/25 bis maximal C50/60 gemäss EN 206:2013
- Ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

 Bauteile unter den Bedingungen trockener Innenräume (galvanisierter Stahl)

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Lage des Dübels ist auf den Bemessungsplänen angegeben (z.B. Position des Dübels relativ zur Bewehrung oder zur Verstärkung, etc).
- Die Bemessung der Verankerungen unter statischen oder quasi-statischen Lasten erfolgt in Übereinstimmung mit ETAG 001, Anhang C, Bemessungsverfahren A, Ausgabe August 2010.
- Bei Anwendungen mit Widerstand unter Brandbeanspruchung erfolgt die Bemessung der Verankerungen in Übereinstimmung mit dem in TR 020. Ausgabe Mai 2004, vorgeschlagenen Bemessungsverfahren.
- Es ist sicherzustellen, dass lokale Abplatzungen der Betonüberdeckung nicht auftreten.

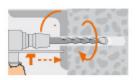
Einbau:

- Loch bohren nur mit Schlagbohren.
- Einbau der Verankerung in Übereinstimmung mit der Spezifikation des Herstellers unter Einsatz geeigneter Werkzeuge, ausgeführt durch entsprechend qualifiziertes Personal und unter der Aufsicht derjenigen Person, die verantwortlich zeichnet für technische Angelegenheit auf der Baustelle.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Prüfen der Betonfestigkeit vor Anbringen des Ankers, um sicherzustellen, dass die Betonfestigkeitsklasse von dieser Zulassung abgedeckt ist.
- Positionieren der Bohrlöcher ohne Schädigung der Bewehrung.
- Reinigung des Bohrlochs von Verunreinigungen und Bohrmehl.
- · Rand- und Achsabstände nicht kleiner als die spezifizierten Werte ohne Minustoleranzen.
- Ankereinbau so, dass die effektive Verankerungstiefe erfüllt ist. Diese Bedingung ist erfüllt, wenn die Setzmarkierung des Dübels nicht über die Betonoberfläche hinausragt.
- Der Anker darf nur einmal gesetzt werden.
- Bei Fehlbohrungen Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Aufbringen des angegebenen Drehmoments unter Verwendung eines kalibrierten Drehmomentschlüssels.

m2, m2-C, m2-CG	
Vorgesehene Verwendung Spezifikationen	Anhang B 1

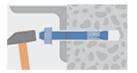
Tabelle B1: Montagekennwerte

Ankergrösse			М6	М8	M10	M12	M16	M20
Bohrlochnenndurchmesser	d_0	[mm]	6	8	10	12	16	20
Effektive Verankerungstiefe	h _{ef}	[mm]	40	50	58	68	80	100
Installationsdrehmoment	T _{inst}	[Nm]	5	15	30	50	100	200
Obergrenze für Bohrerschneidendurchmesser	d _{cut,max}	[mm]	6,4	8,45	10,45	12,5	16,5	20,55
Bohrlochtiefe	h ₁	[mm]	60	70	80	90	110	130
Durchgangsloch im Anbauteil	d _f	[mm]	7	9	12	14	18	22
Minimale Befestigungsdicke	t _{fix,min}	[mm]	1	1	1	1	1	1
Maximale Befestigungsdicke	t _{fix,max}	[mm]	25	95	130	265	325	140


Tabelle B2: Mindestbauteildicke, minimaler Achs- und Randabstand

Ankergrösse			М6	M8	M10	M12		M16		M20
Ankerlänge	L	[mm]				≤ 185	> 185	≤ 185	> 185	
Mindestbauteildicke	h _{min}	[mm]	100	100	120	14	40	16	30	200
Minimaler Achsabstand	S _{min}	[mm]	40	45	50	75	110	100	120	200
für Randabstand	С	[mm]	70	45	50	80	200	190	320	400
Minimaler Randabstand	C _{min}	[mm]	40				150	130	240	300
für Achsabstand	s	[mm]	80	-	_	_	210	190	240	350

m2, m2-C, m2-CG	
Vorgesehene Verwendung Montagekennwerte Mindestbauteildicke, minimale Achs- und Randabstände	Anhang B 2


Setzanweisung

Bohren des Lochs

Reinigen des Lochs

Dübel und Bauteil positionieren

Anziehen mit Drehmomentschlüssel und vorgegebenem Installationsdrehmoment

Angezogene Befestigung

m2, m2-C, m2-CG	
Vorgesehene Verwendung Setzanweisung	Anhang B 3

Tabelle C1: Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung

Ankergrösse			М6	M8 ²⁾	M10 ²⁾	М1	2 ²⁾	M16	M20
Ankerlänge	L	[mm]				≤ 185	> 185		
Installationssicherheits- beiwert	γ2	[-]		1	,0			1,2	
Stahlversagen									
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	10	19	33	43	43	77	124
Teilsicherheitsbeiwert	$\gamma_{Ms}^{1)}$	[-]				1,4			
Herausziehen									
Charakteristische Tragfähigkeit	$N_{Rk,p}$	[kN]	7,5	12	16	25	25	30	50
		C30/37				1,17			
Erhöhungsfaktor für N _{Rk,p}	Ψc	C40/50				1,32			
		C50/60				1,42			
Betonausbruch									
Effektive Verankerungstiefe	h _{ef}	[mm]	40	50	58	6	8	80	100
Achsabstand	S _{Cr,N}	[mm]	120	150	175	20)5	240	300
Randabstand	C _{Cr,N}	[mm]	60	75	87	102		120	150
Betonspalten									
Achsabstand	S _{Cr,sp}	[mm]	200	250	290	340		400	500
Randabstand	C _{Cr,sp}	[mm]	100	125	145	17	70	200	250

¹⁾ sofern andere nationale Regelungen fehlen.
2) gilt für Spreizbleche Anhang A2

Tabelle C2: Verschiebungen unter Zuglast

Ankergrösse			М6	M8	M10	M12	M16	M20			
Zuglast	N	[kN]	3,6	5,7	7,6	9,9	11,9	19,8			
Verschiebung	δ_{N0}	[mm]	0,3								
Verschiebung	δ _{N∞}	[mm]		1,3							

m2, m2-C, m2-CG	
Leistung Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung Verschiebungen unter Zuglast	Anhang C 1

Tabelle C3: Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung

Ankergrösse			М6	M8 ²⁾	M10 ²⁾	M12 ²⁾		M16	M20	
Ankerlänge	L	[mm]				≤ 185	> 185			
Stahlversagen ohne Hebel	larm									
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]	4,5	11	18	24	28	33	51	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,5	1,29	1,27	1,25	1,33	1	1,5	
Stahlversagen mit Hebelar	rm									
Charakteristische Tragfähigkeit	M ⁰ _{Rk,s}	[Nm]	12,0	27	56,8	91,6	104,7	249	486,2	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,5	1,29	1,27	27 1,25 1,33 1,5				
Betonausbruch auf der lastabgewandten Seite										
Faktor in Gleichung (5.6), ETAG Anhang C 5.2.3.3	k	[-]	1	,0	2,0					
Betonkantenbruch										
Wirksame Dübellänge bei Querkraft	I _f	[mm]	40	50	58	68		80	100	
Aussendurchmesser	d _{nom}	[mm]	6	8	10	1	2	16	20	

¹⁾ sofern andere nationale Regelungen fehlen.
2) gilt für Spreizbleche Anhang A2

Tabelle C4: Verschiebungen unter Querlast

Ankergrösse			М6	М8	M10	M12	M16	M20
Querlast		[kN]	1,9	3,5	5,5	7,5	14	21,9
Vereshiehung	δ_{VO}	[mm]	1,6	2,2	2,4	2,7	3,3	3,8
Verschiebung	δ√∞	[mm]	2,4	3,2	3,6	4,1	4,9	5,7

m2, m2-C, m2-CG	
Leistung Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung Verschiebungen unter Querlast	Anhang C 2

Tabelle C5: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung in ungerissenem Beton C20/25 bis C50/60: Bemessungsverfahren A gemäss ETAG 001, Anhang C

Ankergrösse				М6	M6 M8 M10		M12		M16		M20		
Ankerlänge L [mr					≤ 185 > 185 ≤ 185 > 185								
Teilsicherheitsbeiw	ert	γ _{M,fi} 1)	[-]				1	,0					
Stahlversagen		. ,											
Charakteristische	R30	$N_{Rk,s,fi}$	[kN]	0,13	0,25	0,6	1,1	1,1	2,1	2,1	3,6		
Tragfähigkeit	R60	$N_{Rk,s,fi}$	[kN]	0,11	0,22	0,5	0,9	0,9	1,6	1,6	2,7		
	R90	$N_{Rk,s,fi}$	[kN]	0,09	0,17	0,41	0,7	0,7	1,4	1,4	2,4		
	R120	$N_{Rk,s,fi}$	[kN]	0,06	0,12	0,33	0,6	0,6	1,0	1,0	1,8		
Herausziehen													
Charakteristische	R30												
Tragfähigkeit in	R60	$N_{Rk,p,fi}$	[kN]	1,9	3,0	4,0	6,3	6,3	7,5	7,5	12,5		
Beton	R90												
≥ C20/25	R120	N _{Rk,p,fi}	[kN]	1,5	2,4	3,2	5,0	5,0	6,0	6,0	10,0		
Betonausbruch													
Charakteristische	R30												
Tragfähigkeit in	R60	N ⁰ _{Rk,c,fi}	[kN]	1,8	3,2	4,6	6,9	6,9	10,3	10,3	18,0		
Beton	R90												
≥ C20/25	R120	N ⁰ _{Rk,c,fi}	[kN]	1,5	2,5	3,7	5,5	5,5	8,2	8,2	14,4		
Verankerungstiefe		h _{ef}	[mm]	40	50	58	68	68	80	80	100		
Mindestbauteil- dicke		h _{min}	[mm]	100	100	120	140	140	160	160	200		
Achsabstand		$s_{\text{cr},\text{N},\text{fi}}$	[mm]				$4*h_{\text{ef}}$						
		S _{min}	[mm]	40	45	50	75	110	100	120	200		
Randabstand c _{Cr,N,fi} [mm]			[mm]				2'	'h _{ef}					
Brandbeanspruchung nur von einer Seite		[mm]	80	100	120	140	140	200	320	400			
Brandbeanspruchu mehr als einer Seit				≥ 300 mm						320	400		

m2, m2-C, m2-CG	
Leistung Charakteristische Zugtragfähigkeit unter Brandbeanspruchung: Bemessungsverfahren A gemäss ETAG 001, Anhang C	Anhang C 3

Tabelle C6: Charakteristische Quertragfähigkeit unter Brandbeanspruchung in ungerissenem Beton C20/25 bis C50/60: Bemessungsverfahren A gemäss ETAG 001, Anhang C

Ankergrösse				М6	М8	M10	M12		M16		M20
Ankerlänge		L	[mm]				≤ 185	> 185	≤ 185	> 185	
Teilsicherheitsbeiw	ert	γ _{M,fi} 1)	[-]				1	,0			
Stahlversagen oh	ne Hebel	arm									
Charakteristische	R30	$V_{Rk,s,fi}$	[kN]	0,20	0,37	0,9	1,7	1,7	3,1	3,1	4,9
Tragfähigkeit	R60	$V_{Rk,s,fi}$	[kN]	0,18	0,33	0,8	1,3	1,3	2,3	2,3	3,7
	R90	$V_{Rk,s,fi}$	[kN]	0,14	0,26	0,6	1,1	1,1	2,0	2,0	3,2
	R120	$V_{Rk,s,fi}$	[kN]	0,10	0,18	0,46	0,8	0,8	1,6	1,6	2,4
Stahlversagen mit	Hebelar	m									
Charakteristische	R30	M ⁰ _{Rk,s,fi}	[kN]	0,08	0,21	0,7	1,4	1,4	3,6	3,6	8,3
Tragfähigkeit	R60	M ⁰ _{Rk,s,fi}	[kN]	0,07	0,19	0,6	1,1	1,1	2,7	2,7	6,2
	R90	M ⁰ _{Rk,s,fi}	[kN]	0,05	0,14	0,44	0,9	0,9	2,3	2,3	5,4
	R120	$M^0_{Rk,s,fi}$	[kN]	0,04	0,10	0,35	0,7	0,7	1,8	1,8	4,1
Stahlversagen mit	Hebelar	m									
Faktor in Gleichung ETAG 001, Anh. C,		k	[-]	1,0	1,0	2,0	2,0	2,0	2,0	2,0	2,0
Charakteristische	R30										
Tragfähigkeit	R60	$V_{Rk,cp,fi}$	[kN]	1,8	3,2	9,2	13,7	13,7	20,6	20,6	36,0
	R90										
	R120	$V_{Rk,cp,fi}$	[kN]	1,5	2,5	7,4	11	11	16,5	16,5	28,8
Stahlversagen mit	Hebelar	m									
Der Ausgangswert V ⁰ _{Rk,c,fi} für die charakteristische Tragfähigkeit in Beton C20/25 bis C50/60 unter Brandbeanspruchung kann bestimmt werden durch folgende Gleichungen mit V ⁰ _{Rk,c} als Ausgangswert für die charakteristische Tragfähigkeit in Beton C20/25:											
ca.a.c.iotiooiio i	≤ R90	$V_{Rk,c,fi}$	[kN]			V	$O_{Rk,c,fi} = 0$.25 * V ⁰ .			
	R120	$V_{Rk,c,fi}$	[kN]				$P_{\text{Rk,c,fi}} = 0$				

R120 ¹⁾ sofern andere nationale Regelungen fehlen.

m2, m2-C, m2-CG	
Leistung Charakteristische Quertragfähigkeit unter Brandbeanspruchung: Bemessungsverfahren A gemäss ETAG 001, Anhang C	Anhang C 4