

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0158 of 4 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

MÜPRO Heavy Duty Anchor BZ and BZ-IG

Torque controlled expansion anchor for use in concrete

MÜPRO Services GmbH Hessenstraße 11 65719 Hofheim-Wallau DEUTSCHLAND

MÜPRO Werk 1, Deutschland

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Page 2 of 32 | 4 March 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 32 | 4 March 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The MÜRPO Heavy duty anchor BZ and BZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type BZ with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for static and quasi static action for BZ	See Annex C 1 to C 5		
Characteristic resistance for seismic performance categories C1 and C2 for BZ	See Annex C 6		
Characteristic resistance for static and quasi static action for BZ-IG	See Annex C 10 to C 12		
Displacements under tension loads for BZ	See Annex C 8		
Displacements under shear loads for BZ	See Annex C 9		
Displacements under tension and shear loads for BZ-IG	See Annex C 14		

Page 4 of 32 | 4 March 2015

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for BZ	See Annex C 7
Resistance to fire for BZ-IG	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

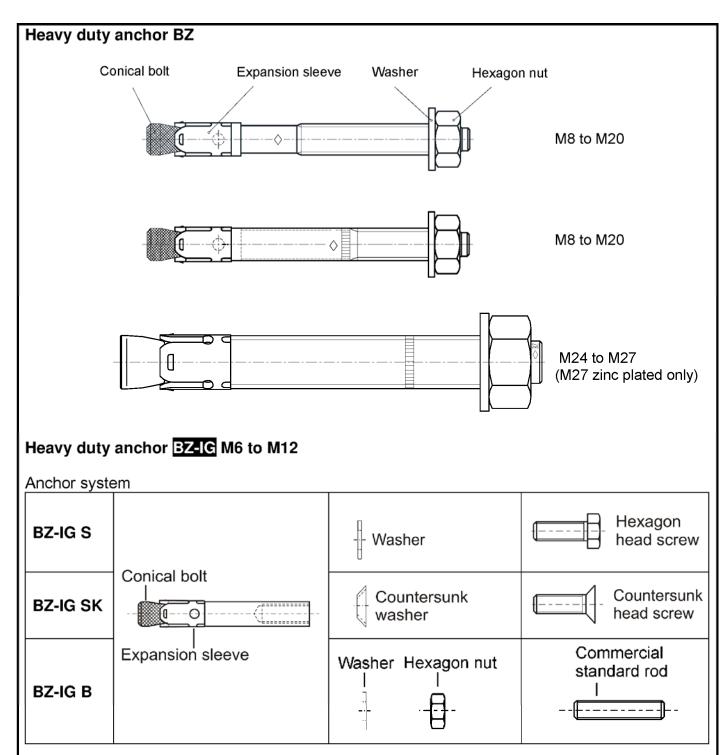
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

Page 5 of 32 | 4 March 2015

English translation prepared by DIBt

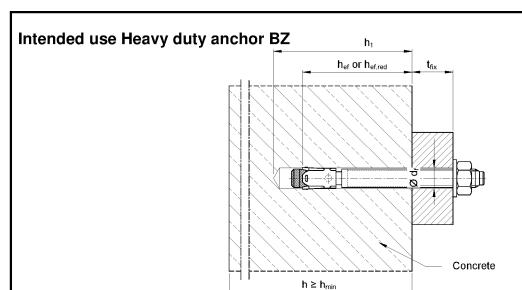
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 04 March 2015 by Deutsches Institut für Bautechnik

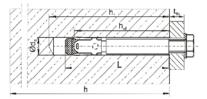
Uwe Bender Head of Department *beglaubigt:*Baderschneider

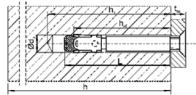
English translation prepared by DIBt



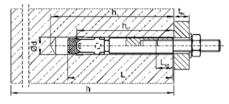
Anchor version	Product description	Intended use	Performance
BZ	Annex A1 – Annex A4	Annex B1 – Annex B4	Annex C1 – Annex C9
BZ-IG	Annex A1 – Annex A2 Annex A5 – Annex A6	Annex B1 Annex B5 – Annex B7	Annex C10 – Annex C14

Heavy duty anchor BZ and BZ-IG	
Product description Anchor types	Annex A1

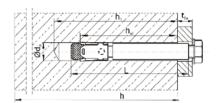



Intended use Heavy duty anchor BZ-IG Installation type V pre-setting installation

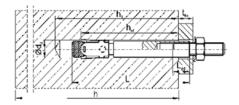
pre-set anchor body, the fixture bears on the screw or thread rod only


BZ-IG S consisting of BZ-IG and S-IG

BZ-IG SK consisting of BZ-IG and SK-IG

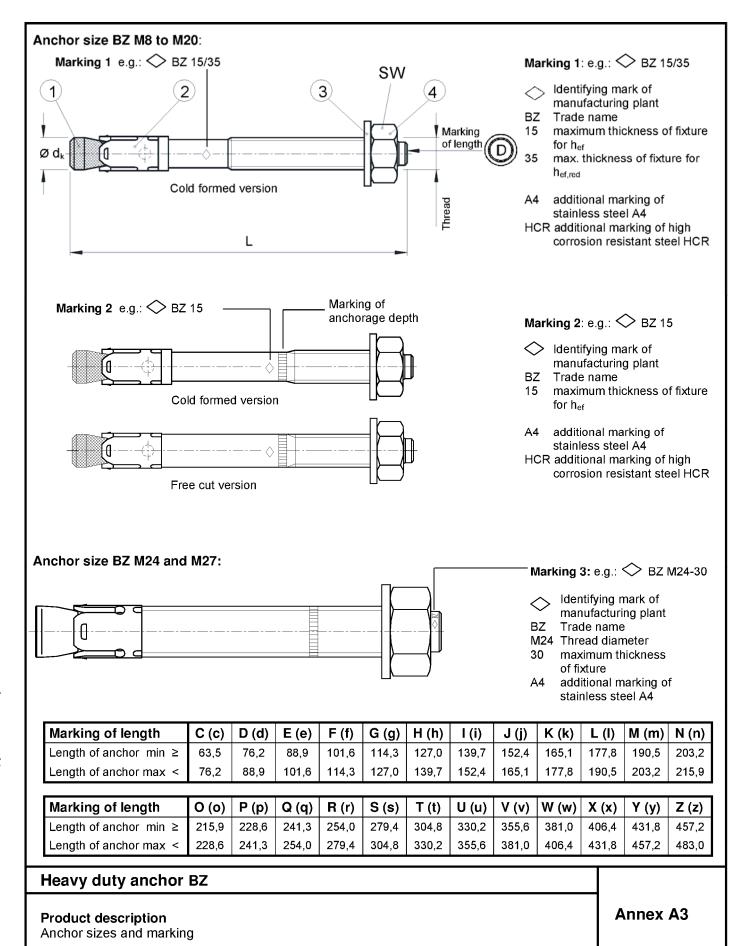



BZ-IG B consisting of BZ-IG and MU-IG



Installation type D through-setting installation

the anchor is set through the fixture, the fixture bears on the conical bolt BZ-IG



Heavy duty anchor BZ and BZ-IG

Product description Installation situation Annex A2

Table A1: Anchor dimensions BZ

	Anchor	size		М8	M10	M12	M16	M20	M24	M27
1	1 Conical bolt		Thread	M8	M10	M12	M16	M20	M24	M27
			Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Length	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	
	anchor	red. anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}			
2	Expansion	on sleeve				s	ee Table A	.2		
3	3 Washer					s	ee Table A	.2		
4	Hexagor	nut	SW	13	17	19	24	30	36	41

Dimensions in mm

Table A2: Materials BZ

No.	Part	Steel, zinc plated M8 to M20	zinc plated zinc plated		High corrosion resistant steel (HCR)	
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated	
2	Expansion sleeve	Expansion sleeve Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401		Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005	
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088:2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005	
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated	

Heavy duty anchor BZ	
Product description Dimensions and materials	Annex A4

English translation prepared by DIBt

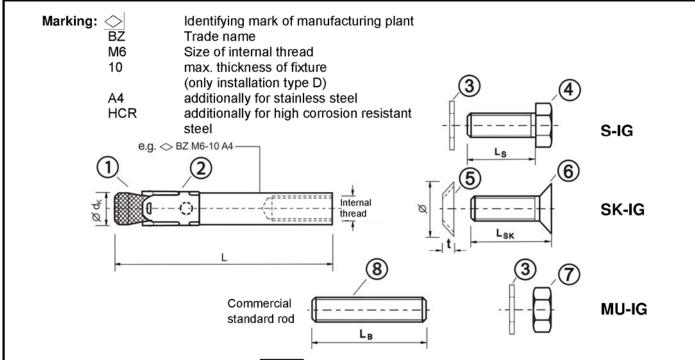


Table A3: Anchor dimensions BZ-IG

No.	Anchor size		М6	M8	M10	M12
	Conical bolt with Internal thread	$\varnothing d_k$	7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ıble A4	
3	Washer			see ta	ible A4	
	Hexagon head scre	width across flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D L _s		14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk	Ø countersink	17,3	21,5	25,9	30,9
Ľ	washer	t	3,9	5,0	5,7	6,7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Installation type V L _{SK} Installation type D L _{SK} Hexagon nut width across flats		t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
			16 to 20	20 to 25	25	30
7			10	13	17	19
8	4)	type VL _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
L	standard rod ¹⁾	type D L _B ≥	21	28	34	41

1) acc. to specifications (Table A4)

Dimensions in mm

Heavy duty anchor BZ-IG

Product description

Anchor parts, marking and dimensions

Annex A5

Table A4: Materials BZ-IG

No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR		
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated		
2	Expansion sleeve BZ-IG	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005		
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005		
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated		
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated		
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated		
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated		
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009		

Heavy duty anchor BZ-IG	
Product description Materials	Annex A6

Specifications of intended use

Heavy duty anchor BZ	M8	M10	M12	M16	M20	M24	M27
Static or quasi-static action				✓			
Seismic action (Categorie C1 + C2) 1) 2)		✓	✓	✓	✓		
Reduced anchorage depth 2)	✓	✓	✓	✓			
Fire exposure 1)				✓			
Cracked and non-cracked				✓			

Heavy duty anchor BZ-IG	M6	M8	M10	M12
Static or quasi-static action		v	/	
Seismic action				
Fire exposure		y	/	
Cracked and non-cracked		٧	/	

¹⁾ only for standard anchorage depth

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009, Annex D
 (It must be ensured that local spalling of the concrete cover does not occur)

Heavy duty anchor BZ and BZ-IG	
Intended use Specifications	Annex B1

²⁾ only cold formed anchors acc. to Annex A3

Table B1: Installation parameters BZ

Anchor size				М8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	d_0	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	300
torque	A4, HCR	T_{inst}	[Nm]	20	35	50	110	200	290	
Diameter of on the fixed hole in the fixed hole.		$d_f\!\leq\!$	[mm]	9	12	14	18	22	26	30
Standard an	Standard anchorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	
Effective anchorage	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
depth	A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	
Reduced and	Reduced anchorage depth									
Depth of drill hole		$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
	Reduced effective anchorage depth		[mm]	35	40	50	65			

Table B2: Minimum spacings and edge distances, reduced anchorage depth, BZ

Anchor size			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	50	50	65
Willimum Spacing	for c ≥	[mm]	60	100	160	170
Minimum adaa distance	C _{min}	[mm]	40	65		100
Minimum edge distance	for s ≥	[mm]	185	180	250	250
Non-cracked concrete						
Minimum angaing	S _{min}	[mm]	50	50	50	65
Minimum spacing	for c ≥	[mm]	60	100	160	170
Minimum adaa distance	C _{min}	[mm]	40	65	100	170
Minimum edge distance	for s ≥	[mm]	185	180	185	65

Heavy duty anchor BZ

Intended use

Installation parameters,

Minimum spacings and edge distances for reduced anchorage depth

Annex B2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	m] 40 45 60 60 m] 70 70 100 100 m] 40 45 60 60 m] 80 90 140 180 m] 40 45 60 65 m] 80 70 120 120 m] 50 50 75 80 m] 100 100 150 150 m] 40 50 60 60 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 50 60 75 80 m] 40 45 60 70 m] 40 45 60 70 <tr< th=""><th>60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<</th><th>250 125 300 180 540 125 300 180 540</th></tr<>	60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<	250 125 300 180 540 125 300 180 540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 45 60 60 m] 70 70 100 100 m] 40 45 60 60 m] 80 90 140 180 m] 40 45 60 65 m] 80 70 120 120 m] 50 50 75 80 m] 100 100 150 150 m] 40 50 60 60 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 50 60 75 80 m] 40 45 60 70 m] 40 45 60 70 <tr< th=""><th>60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<</th><th>125 300 180 540 125 300 180</th></tr<>	60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<	125 300 180 540 125 300 180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 45 60 60 m] 70 70 100 100 m] 40 45 60 60 m] 80 90 140 180 m] 40 45 60 65 m] 80 70 120 120 m] 50 50 75 80 m] 100 100 150 150 m] 40 50 60 60 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 50 60 75 80 m] 40 45 60 70 m] 40 45 60 70 <tr< th=""><th>60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<</th><th>125 300 180 540 125 300 180</th></tr<>	60 95 100 00 150 180 90 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 250 250 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20 80 125 20<	125 300 180 540 125 300 180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 45 60 60 m] 70 70 100 100 m] 40 45 60 65 m] 80 70 120 120 120 m] 50 50 75 80 m] 100 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 40 55 60 65 m] 80 75 120 120 m] 50 60 65 m] 80 75 120 120 m] 50 60 65 m] 80 75 120 120 m] 50 60 60 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 140 180 m] 40 55 60 75 80 m] 100 120 150 150 m] 40 50 60 75 80 m] 100 120 150 150 m] 40 50 60 75 80 m] 100 120 150 150 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] 80 140 150 200 m] 80 140 150 200 m] 50 90 75 90 m] 100 140 150 200 m]	00 150 180 00 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125	300 180 540 125 300 180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		00 150 180 00 95 100 80 200 220 85 90 100 20 180 180 80 240 220 80 240 220 80 95 125 80 95 125 80 95 125 80 200 125 80 200 125 80 200 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125	300 180 540 125 300 180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		95 100 95 100 80 200 220 100 20 180 180 80 130 100 50 240 220 80 95 125 80 95 125 80 95 125 80 95 125 80 125 125 80 125 125 80 125 125 80 130 125 80 130 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125 125 80 125<	180 540 125 300 180
Non-cracked concrete Minimum spacing Smin [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm	mj 80 90 140 180 mj 40 45 60 65 mj 80 70 120 120 mj 50 50 75 80 mj 100 100 150 150 mj 100 120 140 160 mj 40 50 60 60 mj 70 75 100 100 mj 40 55 60 60 mj 80 90 140 180 mj 80 75 120 120 mj 50 60 75 80 mj 40 45 60 70 mj 70 90 100 160 mj 40 50 60 80 mj 40 50 60 80 mj 40 50 60 80	80 200 220 85 90 100 20 180 180 80 130 100 50 240 220 80 200 250 80 95 125 80 95 125 80 95 125 80 200 125 85 90 125 20 180 125 20 130 125 50 240 125	125 300 180
Non-cracked concreteMinimum spacing s_{min} [mm] 40 45 for c ≥ [mm] 80 70 Minimum edge distance c_{min} [mm] 50 50 for s ≥ [mm] 100 100 Stainless steel A4, HCRStandard thickness of member $h_{min,1}$ [mm] 100 120 Cracked concreteMinimum spacing s_{min} [mm] 40 50 for c ≥ [mm] 70 75 Minimum edge distance c_{min} [mm] 40 55 Minimum spacing s_{min} [mm] 40 50 Minimum edge distance c_{min} [mm] 40 50 Minimum thickness of concrete memberSteel zinc plated and stainless steel A4, HCRMinimum thickness of member $h_{min,2}$ [mm] 80 100 Cracked concreteMinimum spacing s_{min} [mm] 40 45 for c ≥ [mm] 70 90 Minimum edge distance c_{min} [mm] 40 50 for s ≥ [mm] 80 115 Non-cracked concreteMinimum spacing s_{min} [mm] 40 60 for c ≥ [mm] 80 115 Non-cracked concreteMinimum spacing s_{min} [mm] 40 60 for c ≥ [mm] 80 115	m] 40 45 60 65 m] 80 70 120 120 m] 50 50 75 80 m] 100 100 150 150 m] 100 120 140 160 m] 40 50 60 60 m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 40 50 60 80 m] 80 100 120 140 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	35 90 100 20 180 180 30 130 100 50 240 220 30 200 250 30 95 125 30 95 125 30 95 125 30 95 125 30 95 125 30 200 125 35 90 125 20 180 125 30 130 125 50 240 125	125 300 180
Minimum spacing s_{min} [mm] for c ≥ [mm] so for c ≥ [mm] so for s ≥ [mm] so so for s ≥ [mm] so so for s ≥ [mm] so so so for c ≥ [mm] so so so for c ≥ [mm] so so so for s ≥ [mm] so so so for s ≥ [mm] so so so for c ≥ [mm] so so so for c ≥ [mm] so so so for c ≥ [mm] so so so for s ≥ [mm] so so so so for s ≥ [mm] so so so so so so for s ≥ [mm] so	mj 80 70 120 120 mj 50 50 75 80 mj 100 100 150 150 mj 100 120 140 160 mj 40 50 60 60 60 mj 70 75 100 100 100 mj 40 55 60 60 60 mj 80 90 140 180 mj 80 75 120 120 mj 50 60 75 80 mj 50 60 75 80 mj 40 45 60 70 mj 40 45 60 70 mj 40 50 60 80 mj 40 50 60 80 mj 40 60 60 80 mj 40 60	20 180 180 30 130 100 50 240 220 60 200 250 60 95 125 60 95 125 60 95 125 60 95 125 80 200 125 80 200 125 20 180 125 80 130 125 80 240 125	300 180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mj 80 70 120 120 mj 50 50 75 80 mj 100 100 150 150 mj 100 120 140 160 mj 40 50 60 60 60 mj 70 75 100 100 100 mj 40 55 60 60 60 mj 80 90 140 180 mj 80 75 120 120 mj 50 60 75 80 mj 50 60 75 80 mj 40 45 60 70 mj 40 45 60 70 mj 40 50 60 80 mj 40 50 60 80 mj 40 60 60 80 mj 40 60	20 180 180 30 130 100 50 240 220 60 200 250 60 95 125 60 95 125 60 95 125 60 95 125 80 200 125 80 200 125 20 180 125 80 130 125 80 240 125	300 180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30 130 100 50 240 220 30 200 250 30 95 125 30 95 125 30 95 125 30 200 125 35 90 125 30 130 125 30 130 125 30 240 125	180
	m] 100 120 140 160 m] 40 50 60 60 m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 40 45 60 70 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	50 240 220 60 200 250 60 95 125 60 95 125 60 95 125 80 95 125 80 200 125 20 180 125 80 130 125 50 240 125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 100 120 140 160 m] 40 50 60 60 m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	60 200 250 60 95 125 00 150 125 60 95 125 80 200 125 85 90 125 20 180 125 80 130 125 50 240 125	540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 50 60 60 m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 150 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] 50 90 75 90 m] 100 140 150 200	50 95 125 50 150 125 50 95 125 80 200 125 85 90 125 20 180 125 50 130 125 50 240 125	
$ \begin{array}{c ccccc} \textbf{Cracked concrete} \\ \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 50 \\ \hline for c \geq & [mm] & 70 & 75 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 40 & 55 \\ \hline for s \geq & [mm] & 80 & 90 \\ \hline \textbf{Non-cracked concrete} \\ \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 50 \\ \hline for c \geq & [mm] & 80 & 75 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 50 & 60 \\ \hline for s \geq & [mm] & 100 & 120 \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated and stainless steel A4, HCR} \\ \hline \textbf{Minimum thickness of member} & h_{min,2} & [mm] & 80 & 100 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 45 \\ \hline for c \geq & [mm] & 70 & 90 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 40 & 50 \\ \hline for s \geq & [mm] & 80 & 115 \\ \hline \textbf{Non-cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline for c \geq & [mm] & 80 & 140 \\ \hline \textbf{Mon-cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \textbf{for c} \geq & [mm] & 80 & 140 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm$	m] 40 50 60 60 m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 180 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 150 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] 50 90 75 90 m] 100 140 150 200	50 95 125 50 150 125 50 95 125 80 200 125 85 90 125 20 180 125 50 130 125 50 240 125	
$ \begin{array}{c cccc} \textbf{Cracked concrete} \\ \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 50 \\ \hline for c \geq & [mm] & 70 & 75 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 40 & 55 \\ \hline for s \geq & [mm] & 80 & 90 \\ \hline \textbf{Non-cracked concrete} \\ \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 50 \\ \hline for c \geq & [mm] & 80 & 75 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 50 & 60 \\ \hline for s \geq & [mm] & 100 & 120 \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated and stainless steel A4, HCR} \\ \hline \textbf{Minimum thickness of member} & h_{min,2} & [mm] & 80 & 100 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 45 \\ \hline for c \geq & [mm] & 70 & 90 \\ \hline \textbf{Minimum edge distance} & c_{min} & [mm] & 40 & 50 \\ \hline for s \geq & [mm] & 80 & 115 \\ \hline \textbf{Non-cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline for c \geq & [mm] & 80 & 114 \\ \hline \textbf{Non-cracked concrete} \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \hline \textbf{for c} \geq & [mm] & 80 & 114 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \hline \textbf{for c} \geq & [mm] & 80 & 114 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \hline \textbf{for c} \geq & [mm] & 80 & 114 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \hline \textbf{for c} \geq & [mm] & 80 & 114 \\ \hline \textbf{Minimum spacing} & s_{min} & [mm] & 40 & 60 \\ \hline \hline \textbf{for c} \geq & [mm] & 80 & 114 \\ \hline \end{tabular}$	m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 120 120 m] 70 75 80 m] 100 120 140 150 m] 80 100 120 150 150 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] 80 140 150 200 m] 80 140 150 200	00 150 125 60 95 125 80 200 125 85 90 125 20 180 125 80 130 125 50 240 125	
$\begin{tabular}{ c c c c c }\hline for $c \geq & [mm] & 70 & 75\\\hline Minimum edge distance & c_{min} & [mm] & 40 & 55\\\hline for $s \geq & [mm]$ & 80 & 90\\\hline \hline Non-cracked concrete\\\hline Minimum spacing & s_{min} & [mm] & 40 & 50\\\hline for $c \geq & [mm]$ & 80 & 75\\\hline\hline Minimum edge distance & c_{min} & [mm] & 50 & 60\\\hline for $s \geq & [mm]$ & 100 & 120\\\hline \hline Minimum thickness of concrete member\\\hline Steel zinc plated and stainless steel A4, HCR\\\hline Minimum thickness of member & $h_{min,2}$ & [mm] & 80 & 100\\\hline \hline Cracked concrete\\\hline Minimum spacing & s_{min} & [mm] & 40 & 45\\\hline for $c \geq & [mm]$ & 70 & 90\\\hline Minimum edge distance & c_{min} & [mm] & 40 & 50\\\hline for $s \geq & [mm]$ & 80 & 110\\\hline \hline Non-cracked concrete\\\hline Minimum spacing & s_{min} & [mm] & 40 & 60\\\hline for $c \geq & [mm]$ & 80 & 140\\\hline \hline Non-cracked concrete\\\hline Minimum spacing & s_{min} & [mm] & 40 & 60\\\hline for $c \geq & [mm]$ & 80 & 140\\\hline \hline \end{tabular}$	m] 70 75 100 100 m] 40 55 60 60 m] 80 90 140 120 120 m] 70 75 80 m] 100 120 140 150 m] 80 100 120 150 150 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] 80 140 150 200 m] 80 140 150 200	00 150 125 60 95 125 80 200 125 85 90 125 20 180 125 80 130 125 50 240 125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 55 60 60 m] 80 90 140 180 m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	95 125 80 200 125 55 90 125 20 180 125 90 130 125 50 240 125 40	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m]	80 200 125 85 90 125 20 180 125 80 130 125 80 240 125 40	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 50 60 65 m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	95 90 125 20 180 125 30 130 125 50 240 125	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 140 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	20 180 125 50 130 125 50 240 125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 80 75 120 120 m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 140 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	20 180 125 50 130 125 50 240 125	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 140 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	130 125 50 240 125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 50 60 75 80 m] 100 120 150 150 m] 80 100 120 140 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	50 240 125	/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 80 100 120 140 m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	40	/
	m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200		
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200		
$\begin{array}{c ccccc} \mbox{Minimum thickness of member} & h_{min,2} & [mm] & 80 & 100 \\ \mbox{Cracked concrete} & & & & & & & & & & & & & & & & & & &$	m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	m] 40 45 60 70 m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 70 90 100 160 m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	'o / /	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	0 / /	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	m] 40 50 60 80 m] 80 115 140 180 m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200	60 / /	/
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	m] 40 60 60 80 m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] See normal an		/
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] See normal an	30 //	/
for c ≥ [mm] 80 140	m] 80 140 120 180 m] 50 90 75 90 m] 100 140 150 200 m] See normal an		
for c ≥ [mm] 80 140	m] 50 90 75 90 m] 100 140 150 200 m] See normal an	0 /	
	m] 100 140 150 200 m] See normal an	30 / /	/
	m] See normal an		/
for s ≥ [mm] 100 140		00 / /	
Fire exposure from one side			
Minimum spacing S _{min,fi} [mm]		I ambient temperature	
Minimum edge distance $c_{min,fi}$ [mm]	mi i See normai arr	I ambient temperature	

Intermediate values by linear interpolation.

Heavy duty anchor BZ

Minimum edge distance

Intended use

Minimum spacings and edge distances for standard anchorage depth

[mm]

Annex B3

≥ 300 mm

Installation instructions BZ

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

F	197-277777777	
1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Check position of nut.
4		Drive in anchor, such that h _{ef} or h _{ef,red} depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A3.
5	Tinst	Max. tightening torque T _{inst} shall be applied by using calibrated torque wrench.

Heavy duty anchor BZ	
Intended Use Installation instructions	Annex B4

Table B4: Installation parameters **BZ-IG**

Anchor size				М6	М8	M10	M12
Effective anchorage depth		h_{ef}	[mm]	45	58	65	80
Drill hole diameter		d ₀	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \ge$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
Installation moment		S	[Nm]	10	30	30	55
Installation moment,	T_{inst}	SK	[Nm]	10	25	40	50
Zilic piated steel		В	[Nm]	8	25	30	45
		S	[Nm]	15	40	50	100
	T _{inst}	SK	[Nm]	12	25	45	60
Stailless steel A4, HCK		В	[Nm]	8	8 10 12 16 ,45 10,45 12,5 16, 60 75 90 10 9 12 15 18 10 30 30 55 10 25 40 50 8 25 30 45 15 40 50 100 12 25 45 60 8 25 40 80 7 9 12 14 1 1 1 1 5 7 8 9 1 1 1 1 9 12 14 18 5 7 8 9	80	
Installation type V (Pre-setting ir	stallatio	n)					
Diameter of clearance hole in the f	ixture	$d_f \le$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	25 45 60 25 40 80 9 12 14 1 1 1 7 8 9	1	
Installation type D (Through-sett	ing insta	allation)					
Diameter of clearance hole in the fi	ixture	$d_f \le$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	$t_{fix} \ge$	SK	[mm]	9	12	14	16
inc plated steel Installation moment, Itainless steel A4, HCR Installation type V (Pre-setting in Diameter of clearance hole in the fill Installation type D (Through-setti Diameter of clearance hole in the fill		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.
2) see Annex A2

Minimum spacings and edge distances BZ-IG Table B5:

Anchor size			М6	M8	M10	M12	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160	
Cracked concrete							
Minimum spacing	S _{min}	[mm]	50	60	70	80	
	for c ≥	[mm]	60	80	100	120	
Minimum edge distance	C _{min}	[mm]	50	60	70	80	
	for s ≥	[mm]	75	100	100	120	
Non-cracked concrete							
Minimum spacing	S _{min}	[mm]	50	60	65	80	
	for c ≥	[mm]	80	100	120	160	
Minimum edge distance	C _{min}	[mm]	50	60	70	100	
	for s ≥	[mm]	115	155	170	210	
Fire exposure from one side							
Minimum spacing	S _{min,fi}	[mm]	See normal temperature				
Minimum edge distance	C _{min,fi}	[mm]	See normal temperature				
Fire exposure from more than one side					•		
Minimum spacing	S _{min,fi}	[mm]	(See normal	temperature	9	
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm		

Heavy duty anchor BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances

Annex B5

Installation instructions **BZ-IG**

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

	5 P. Mariana 1 - 5 C. P. Mariana	3
1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3	# SSI-Z8	Setting tool for pre-setting installation insert in anchor.
4	FIGS FI	Drive in anchor with setting tool.
5		Drive in srew.
6	Tinst	Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.

Heavy duty anchor BZ-IG

Intended Use

Installation instructions for pre-setting installation

Annex B6

Installation instructions BZ-IG Through-setting installation Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application. Blow out dust. Alternatively vacuum clean down to the bottom of the hole. Setting tool for through-setting 3 **BZ-IGS** installation insert in anchor. **BZ-IGS** Drive in anchor with setting tool. 5 Drive in screw. T_{INST} Max. tightening torque T_{inst} may be applied by using calibrated torque wrench.

Heavy duty anchor BZ-IG Intended Use Installation instructions for through-setting installation Annex B7

Deutsches
Institut
für
Bautechnik

Table C1: Characteristic values for **tension loads**, BZ **zinc plated**, **cracked concrete**, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ2 = γinst	[-]				1,0			
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ̃Ms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth				•	•	•	'		
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)			
Increasing factor for N _{Rk,p} and N _{Rk,p,red}	ψε	[-]		•		$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	5		•
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
Factor according to CEN/TS 1992-4	k _{cr}	[-]		•	•	7,2			

¹⁾ Pullout is not decisive.

Performance Characteristic values for tension loads, BZ zinc plated cracked concrete, static and quasi-static action Annex C1

Use restricted to anchoring of structural components statically indeterminate.

Table C2: Characteristic values for **tension loads**, BZ **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24
Installation safety factor	γ ₂ = γinst	[-]				1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γ _{Ms}	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)		
Increasing factor for $N_{Rk,p \text{ and }} N_{Rk,p,\text{red}}$	ψς	[-]				25 0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65		
Factor according to CEN/TS 1992-4	k _{cr}	[-]				7,2		

¹⁾ Pullout is not decisive.

Heavy duty anchor BZ

Performance

Characteristic values for **tension loads**, BZ **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Annex C2

Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for **tension loads**, BZ **zinc plated**, **non-cracked concrete**, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ ₂ = γinst	[-]				1,0	•		
Steel failure		•	•						
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out	•								
Standard anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)			
Splitting For the proof against splitti	ng failure N ⁰ _{Rk,c} h	as to be	replaced b	y N ⁰ _{Rk,sp} with	n considera	tion of the n	nember thick	ness	
Standard anchorage depth									
Splitting for standard thickness the values $s_{cr,sp}$ and $c_{cr,sp}$ may be linea								ed;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1				•		•			•
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	1)	50
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]				3 h _{ef}			
Case 2									
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	1)	1)	1)
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Splitting for minimum thickness	of concrete m	ember							
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		/	1 /
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		/	1 /
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7,5	9	1)	1)			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300			
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψς	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
Factor according to CEN/TS 199		[-]			1	10,1			

¹⁾ Pullout is not decisive.

Heavy duty anchor BZ

Performance

Characteristic values for **tension loads**, BZ **zinc plated**, **non-cracked concrete**, static and quasi-static action

Annex C3

²⁾ Use restricted to anchoring of structural components statically indeterminate.

English translation prepared by DIBt

Table C4: Characteristic values for **tension loads**, BZ **A4** / **HCR**, **non-cracked concrete**, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0		
Steel failure	·							
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1	,5		1,68	1,5
Pull-out							'	
Standard anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth							'	
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)		
Splitting For the proof against splitting	g failure N ⁰ _{Rk,c} has to	be repla	aced by N ⁰ _{Rk}	,sp with consi	deration of th	ne member t	thickness	
Standard anchorage depth								
Splitting for standard thickness of the values $s_{\alpha,sp}$ and $c_{\alpha,sp}$ may be linearly							pplied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]			3	h _{ef}		
Case 2								
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	1)	1)
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	230	250	280	400	440	500
Splitting for minimum thickness o	f concrete meml	oer						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		/
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		/
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	1)	1)		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300	V	
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψc	[-]	(£ \ 0.5					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor according to CEN/TS 1992-		[-]			1	10,1	-	

Pullout is not decisive.

Heavy duty anchor BZ

Performance

Characteristic values for **tension loads**, BZ **A4** / **HCR**, **non-cracked concrete**, static and quasi-static action

Annex C4

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for **shear loads**, BZ, **cracked** and **non-cracked concrete**, static or quasi static action

Anchor size				M8	M10	M12	M16	M20	M24	M27
Installation safety fac	tor	γ2 = γinst	[-]				1,0			
Steel failure withou	ıt lever arm, Steel	zinc pla	ted							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility	Factor for ductility		[-]				1,0			
Partial safety factor γ_{Ms}			[-]		1,3	25	1,33	1,25	1,25	
Steel failure withou	ıt lever arm, Stain	less stee	el A4, H	CR						
Characteristic shear resistance V _{Rk}		$V_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Factor for ductility	Factor for ductility		[-]				1,0			
Partial safety factor γ		γ̃Ms	[-]		1,3	25		1,4	1,25	
Steel failure with le	ever arm, Steel zin	c plated								
Characteristic bending resistance		$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor γ_{N}		γ̃Ms	[-]		1,3	25		1,33	1,25	1,25
Steel failure with lever arm, Stainless steel A4, H			4, HCR							
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	26 52 92 200		200	454	785,4		
Partial safety factor		γ̃Ms	[-]	1,25			1,4 1,25			
Concrete pry-out fa	ailure									
Factor k acc. ETAG k ₃ acc. CEN/TS 199	•	k ₍₃₎	[-]		2,	4			2,8	
Concrete edge faile	ure									
Effective length of anchor in shear	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	l _f	[mm]	46	60	70	85	100	125	
Effective length of anchor in shear	Steel zinc plated	$I_{\rm f,red}$	[mm]	35	40	50	65			
loading with h _{ef,red}	Stainless steel A4, HCR	$I_{\rm f,red}$	[mm]	35	40	50	65			
Outside diameter of	anchor	d_{nom}	[mm]	8	10	12	16	20	24	27

Heavy duty anchor BZ	
Performance Characteristic values for shear loads, BZ, cracked and non-cracked concrete, static or quasi static action	Annex C5

Table C6: Characteristic resistance for seismic loading, BZ, standard anchorage depth, performance category C1 and C2

Tension loads						
Anchor size			M10	M12	M16	M20
Installation safety factor	γ2 = γinst	[-]		1,	,0	
Steel failure, steel zinc pl	ated					
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	27	40	60	86
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	27	40	60	86
Partial safety factor	γ̃Ms,seis	[-]	1,53	1	,5	1,6
Steel failure, stainless st	eel A4, HCR					
Characteristic resistance C1	N _{Rk,s,scis,C1}	[kN]	27	40	64	108
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	27	40	64	108
Partial safety factor	γ̃Ms,seis	[-]		1,5		1,68
Pull-out						
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	9	16	25	36
Characteristic resistance C2	$N_{Rk,p,seis,C2}$	[kN]	3,6	10,2	13,8	22,4

Shear loads											
Steel failure without leve	Steel failure without lever arm, Steel zinc plated										
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69					
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2					
Partial safety factor	γ̃Ms,seis	[-]		1,25		1,33					
Steel failure without leve	Steel failure without lever arm, Stainless steel A4, HCR										
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69					
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2					
Partial safety factor	γ̃Ms,seis	[-]		1,25		1,4					

Heavy duty anchor BZ

Performance

Characteristic resistance for $seismic\ loading$, BZ, $standard\ anchorage\ depth$, performance category C1 and C2

Annex C6

Table C7: Characteristic values **for tension and shear load** under **fire exposure**, BZ, **standard anchorage depth**, cracked and non-cracked concrete C20/25 to C50/60,

Anchor size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel zinc plate	ed									
	R30			1,4	2,2	3,2	6,0	9,4	13,6	17,6
Characteristic	R60	- N _{Rk,s,fi}	[kN]	1,1	1,8	2,8	5,2	8,2	11,8	15,3
resistance	R90	™Rk,s,fi -	ואואן	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
	R30	_		3,8	6,9	11,5	21,5	33,5	48,2	
Characteristic	R60	NI	[kN]	2,9	5,2	8,6	16	25,0	35,9] /
resistance	R90	- N _{Rk,s,fi}	[[[2,0	3,5	5,6	10,5	16,4	23,6] /
	R120			1,6	2,7	4,2	7,8	12,1	17,4	\vee
Shear load										
Steel failure wi	thout lever	arm								
Steel zinc plate	ed									
-	R30			1,6	2,6	3,8	7,0	11	16	20,6
Characteristic	R60			1,5	2,5	3,6	6,8	11	15	19,8
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120	-		1,0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR				•		•		•	
	R30			3,8	6,9	11,5	21,5	33,5	48,2	
Characteristic	R60	-		2,9	5,2	8,6	16	25,0	35,9	1 /
resistance	R90	$-V_{Rk,s,fi}$	[kN]	2,0	3,5	5,6	10,5	16,4	23,6	1 /
	R120	-		1,6	2,7	4,2	7,8	12,1	17,4	
Steel failure wi	th lever arm	1								
Steel zinc plate	ed									
-	R30			1,7	3,3	5,9	15	29	50	75
Characteristic	R60	- • •0	,, ,	1,6	3,2	5,6	14	28	48	72
resistance	R90	- M ⁰ _{Rk,s,fi}	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120	-		1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR									
	R30			3,8	9,0	17,9	45,5	88,8	153,5	
Characteristic	R60	0		2,9	6,8	13,3	33,9	66,1	114,3	1 /
resistance	R90	- M ⁰ _{Rk,s,fi}	[Nm]	2,1	4,5	8,8	22,2	43,4	75,1	1 /
	R120	-		1,6	3,4	6,5	16,4	32,1	55,5	1/

The characteristic resistance for pullout failure, concrete cone failure, concrete pryout and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pullout is not decisive $N_{Rk,p}$ in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by $N_{Rk,c}^0$.

Heavy duty anchor BZ

Performance

Characteristic values for tension and shear load under fire exposure, BZ, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Annex C7

Displacements for ULS

Displacement

Displacement

Reduced anchorage depth
Tension load in cracked concrete

Tension load in non-cracked concrete

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	$\delta_{\text{N}\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	Ν	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	$\delta_{\text{N}\infty}$	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension loa	ds C2								
Displacements for DLS $\delta_{N,s}$	eis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		
Displacements for ULS $\delta_{N,s}$	eis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	/
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	
	$\delta_{N^{\infty}}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	/
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	
	$\delta_{N\infty}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	

[mm]

[kN]

[mm]

[mm]

[kN]

[mm]

[mm]

2,4

0,8

1,2

3,7

0,1

0,7

 $\delta_{N,seis,C2(ULS)}$

Ν

 δ_{N0}

 $\delta_{N\infty}$

Ν

 δ_{N0}

 $\delta_{\underline{N}_{\infty}}$

13,8

3,6

0,7

1,0

4,3

0,2

0,7

15,7

6,1

0,5

0,8

8,5

0,2

0,7

9,5

9,0

1,0

1,1

12,6

0,2

0,7

15,2

Heavy duty anchor BZ	
Performance Displacements under tension load	Annex C8

English translation prepared by DIBt

Table C9: Displacements under shear load, B2	Table C9:	Displacements	under shear	load, BZ
--	-----------	---------------	-------------	----------

Anchor size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage dep	oth								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	٧	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	$\delta_{V_{\infty}}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seisr	nic shear	loads C	2						
וטו טבט	eis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS $\delta_{\text{V,s}}$	eis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	
	$\delta_{V_{\infty}}$	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seisr	nic shear	loads C	2						
IOI DES	eis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS $$\delta_{\text{V,s}}$$	eis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Reduced anchorage dep	th								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5			
	$\delta_{V_{\infty}}$	[mm]	3,0	4,7	5,5	5,3		/	
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3			
	$\delta_{\text{V}_{\infty}}$	[mm]	2,9	3,6	5,9	6,4		\bigvee	

Н	Las	IVI 6	Ы	ıtv	anc	hor	R7
	Car	/ V 1	-	ALV.	anc	IIOI	$\boldsymbol{\omega}$

Performance

Displacements under shear load

Annex C9

Table C10: Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Anchor size	М6	М8	M10	M12			
Installation safety factor $\gamma_2 = \gamma_{inst}$ [-]			1,2				
Steel failure							
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial safety factor	γ́Ms	[-]		1	,5		
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
Partial safety factor	γ́Ms	[-]	1,87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor	ψε	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$				
Concrete cone failure							
Effective anchorage depth h _{ef}		[mm]	45	58	65	80	
Factor according to CEN/TS 1992-4	k _{cr}	[-]	7,2				

Heavy duty anchor BZ-IG

Performance

Characteristic values for **tension loads**, **BZ-IG**, **cracked concrete**, static and quasi-static action

Annex C10

Table C11: Characteristic values for **tension loads**, **BZ-IG**, **non-cracked concrete**, static and quasi-static action

Anchor size			М6	M8	M10	M12
Installation safety factor		1,	2			
Steel failure						
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	γ̃Ms	[-]		1	,5	
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	γ̃Ms	[-]		1,	87	
Pull-out						
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Splitting (N ⁰ _{Rk,c} has to be replace	ed by N ⁰ _{Rk,sp.} The hi	gher resist	tance of Case 1	and Case 2 ma	y be applied.)	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	3 h _{ef}			
Case 2						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	5 h _{ef}			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψς	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$			
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor according to CEN/TS 1992	4 k _{ucr}	[-]		10),1	

Heavy	duty	ancho	BZ-IG
-------	------	-------	-------

Performance

Characteristic values for tension loads, **BZ-IG**, non-cracked concrete, static and quasi-static action

Annex C11

Table C12: Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12	
Installation safety factor	1,0						
BZ-IG, steel zinc plated							
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8	
Steel failure without lever arm, Installa		<u> </u>		•			
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3	
Steel failure with lever arm, Installation	າ type V						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6	
Steel failure with lever arm, Installation				•			
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207	
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γ _{Ms}	[-]		1,	25		
Factor of ductility	k ₂	[-]		1	,0		
BZ-IG, stainless steel A4, HCR							
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6	
Partial safety factor	γMs	[-]	1,25				
Steel failure without lever arm, Installa	tion type [<u> </u>					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6	
Partial safety factor	γ́ M s	[-]		1,	25		
Steel failure with lever arm, Installation	າ type V						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6	
Partial safety factor	γ́Ms	[-]		1,	56		
Steel failure with lever arm, Installation	າ type D						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	28,2	44,3	69,9	191,2	
Partial safety factor	γ́ M s	[-]		1,	25		
Factor of ductility	k ₂	[-]		1,	0		
Concrete pry-out failure							
Factor k acc. ETAG 001, Annex C or k ₃ acc. CEN/TS 1992-4	k ₍₃₎	[-]	1,5	1,5	2,0	2,0	
Concrete edge failure							
Effective length of anchor in shear loading	l _f	[mm]	45	58	65	80	
Effective diameter of anchor	d_{nom}	[mm]	8	10	12	16	

Heavy duty anchor BZ-IG	
Performance Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action	Annex C12

Table C13: Characteristic values for tension and shear load under fire exposure, EZ-IG cracked and non-cracked concrete C20/25 to C50/60

Anchor size				М6	M8	M10	M12
Tension load							
Steel failure							
Steel zinc plate	d						
-	R30			0,7	1,4	2,5	3,7
Characteristic	R60	.	[].813	0,6	1,2	2,0	2,9
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	.	[kN]	1,9	3,8	6,3	9,2
resistance	R90	N _{Rk,s,fi}	[KIN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Shear load							
Steel failure wit	hout lever arm						
Steel zinc plate	d						
	R30		[kN]	0,7	1,4	2,5	3,7
Characteristic	R60 ,	V _{Rk,s,fi}		0,6	1,2	2,0	2,9
resistance	R90	VRk,s,fi [KN]		0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel							
	R30			2,9	5,4	8,7	12,6
Characteristic	_R60	$V_{Rk,s,fi}$	[kN]	1,9	3,8	6,3	9,2
resistance	<u> 1890 </u>	♥ RK,S,fi	[KIN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure wit	h lever arm						
Steel zinc plate							
	R30			0,5	1,4	3,3	5,7
Characteristic	_R60	∕I ⁰ _{Rk,s,fi}	[Nm]	0,4	1,2	2,6	4,6
resistance	<u> </u>	·· rk,s,11	[,]	0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel						T	T
	R30		[2,2	5,5	11,2	19,6
Characteristic	_R60	∕I ⁰ _{Rk,s,fi}	[Nm]	1,5	3,9	8,1	14,3
resistance	<u> </u>	·· r.n, s, II	[]	0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

The characteristic resistance for pullout failure, concrete cone failure, concrete pryout failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Heavy duty anchor BZ-IG	
Performance Characteristic values for tension and shear loads under fire exposure, BZ-IG cracked and non-cracked concrete C20/25 to C50/60	Annex C13

Table C14: Displacements under tension load, BZ-IG

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4

Table C15: Displacements under shear load, BZ-IG

Anchor size			М6	М8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
Displacements	δ_{V^∞}	[mm]	4,2	4,4	3,8	5,3

Heavy duty anchor BZ-IG

PerformanceDisplacements under tension load and under shear load

Annex C14

Electronic copy of the ETA by DIBt: ETA-05/0158