

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-06/0136 vom 9. Juni 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

TILCA Bolzenanker B

Kraftkontrolliert spreizender Dübel zur Verankerung im ungerissenen Beton

Egli, Fischer & Co. AG Zürich Gotthardstraße 6 8022 Zürich SCHWEIZ

Werk 1, Deutschland

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-06/0136

Seite 2 von 16 | 9. Juni 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-06/0136

Seite 3 von 16 | 9. Juni 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der TILCA Bolzenanker B in den Größen M6, M8, M10, M12, M16 und M20 ist ein Dübel aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristischer Widerstand	Siehe Anhang C 1 bis C 3			
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 4			

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1			
Feuerwiderstand	Keine Leistung bewertet			

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

Europäische Technische Bewertung ETA-06/0136

Seite 4 von 16 | 9. Juni 2015

3.8 Allgemeine Aspekte

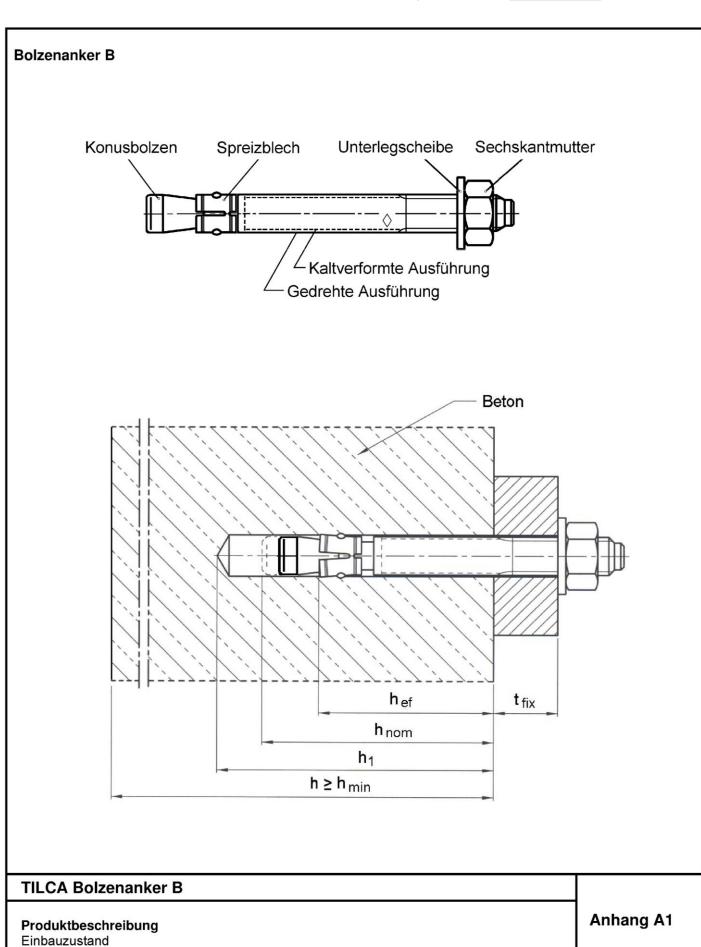
Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

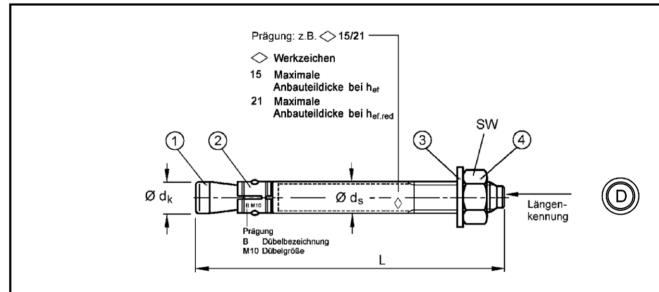
Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 9. Juni 2015 vom Deutschen Institut für Bautechnik


Andreas Kummerow	
i.V. Abteilungsleiter	

Beglaubigt:

Längenkennung	Α	В	С	D	E	F	G	Н	ı	J	K	L	М
Dübellänge min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Dübellänge max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Lännankannunn	L NI	_	_	_	_		_		\ <u>'</u>	14/	v	V	7
Längenkennung	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
Längenkennung Dübellänge min ≥	N 203,2	O 215,9	P 228,6		R 254,0	S 279,4	T 304,8	U 330,2	•	W 381,0	X 406,4	Y 431,8	Z 457,2

Maße in mm

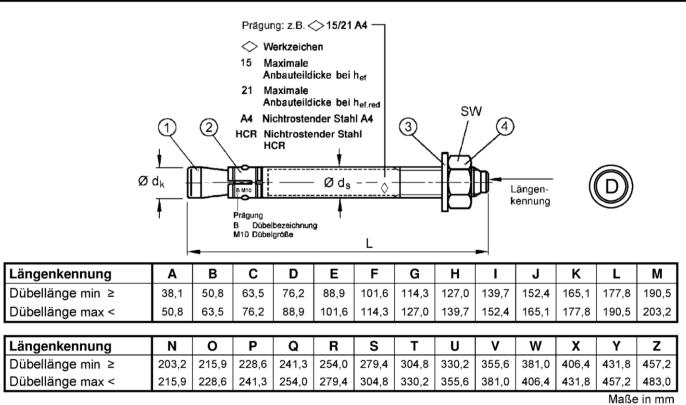
Tabelle A1: Dübelabmessungen, verzinkt

			Dübell	Schlüs-					
Dübelgröße	Ø d _k	Ø d _s	Standard- verankerungstiefe	Reduzierte Verankerungstiefe	selweite [SW]				
Stahl galvanisch v	Stahl galvanisch verzinkt und feuerverzinkt								
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10				
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13				
M10	10	10 / 8,9 ¹⁾	$t_{fix} + 74,0$	t _{fix hef,red} + 68,0	17				
M12	12	12 / 10,7 ¹⁾	t _{fix} + 97,3	t _{fix hef,red} + 82,3	19				
M16	16	16 / 14,5 ¹⁾	t _{fix} + 121,0	t _{fix hef,red} + 103,0	24				
M20	20	20 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30				

Kaltverformte Version

Tabelle A2: Benennung und Werkstoffe, verzinkt

		Werkstoffe						
Teil	Benennung	Stahl, galvanisch verzinkt ≥ 5 μm nach EN ISO 4042:1999	Stahl feuerverzinkt ≥ 40 μm, nach EN ISO 1461:2009					
1	Konusbolzen	Kaltstauch- bzw. Automatenstahl	Kaltstauch- bzw. Automatenstahl					
2	Spreizblech	Stahl nach EN 10088:2005, Werkstoff Nr. 1.4301 oder 1.4303	Stahl nach EN 10088:2005, Werkstoff Nr. 1.4301 oder 1.4303					
3	Unterlegscheibe	Stahl	Stahl					
4	Sechskantmutter	Festigkeitsklasse 8 nach EN ISO 898-2:2012	Festigkeitsklasse 8 nach EN ISO 898-2:2012					


TILCA Bolzenanker B

Produktbeschreibung

Dübelgrößen, Prägung und Werkstoffe, verzinkt

Anhang A2

Tabelle A3: Dübelabmessungen, nichtrostender Stahl A4/HCR

			Dübell		
Dübelgröße	\emptyset d _k	Ø d _s	Standard Verankerungstiefe	Reduzierte Verankerungstiefe	SW
Nichtrostender S	Stahl	A4/HCR			
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 96,5	t _{fix hef,red} + 81,5	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 117,8	t _{fix hef,red} + 101,8	24
M20	19,7	19,7 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

kaltverformte Version

Tabelle A4: Benennung und Werkstoffe, nichtrostender Stahl A4/HCR

Teil	Benennung	Nichtrostender Stahl A4	Hochkorrosionsbeständiger Stahl HCR			
1	Konusbolzen	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2005, beschichtet	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565, EN 10088:2005, beschichtet			
2	Spreizhülse	Nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088:2005				
3	Unterlegscheibe	Nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088:2005	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565, EN 10088			
4	Sechskantmutter	ISO 3506:2009, A4-70, nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088:2005, beschichtet	ISO 3506:2009, Festigkeitsklasse 70, hochkorrosionsbeständiger Stahl 1.4529, 1.4565, EN 10088:2005, beschichtet			

TILCA Bolzenanker B	
Produktbeschreibung Dübelgrößen, Prägung und Werkstoffe, nichtrostender Stahl A4/HCR	Anhang A3

8.06.01-160/15 Z42677.15

Spezifizierung des Verwendungszwecks

Bol	zenanker B		М6	М8	M10	M12	M16	M20		
	Stabl versinkt	galvanisch verzinkt	✓	✓	✓	✓	✓	✓		
<u>ra</u>	_ Stahl verzinkt	feuerverzinkt	-	✓	✓	✓	✓	✓		
Material	Nichtrostender Stahl	A4	✓	✓	✓	✓	✓	✓		
2	Hochkorrosionsbe- ständiger Stahl	HCR	✓	✓	✓	✓	✓	✓		
Stat	Statische oder quasi-statische Einwirkung				v	/				
Red	Reduzierte Verankerungstiefe			✓						
Ungerissener Beton			✓							

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1: 2000
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1: 2000

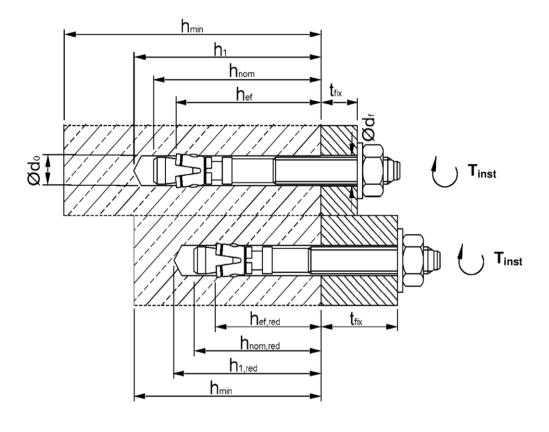
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4: 2009, Bemessungsmethode A

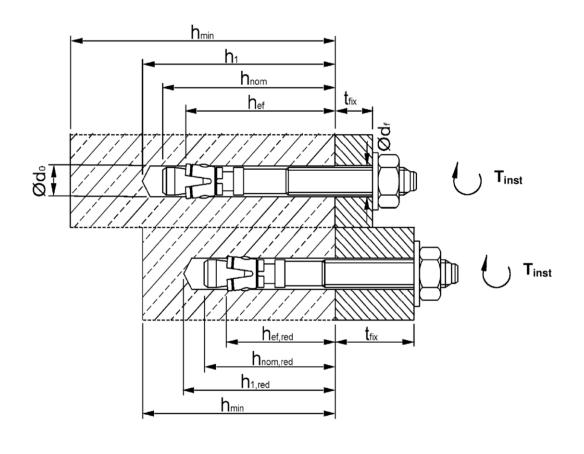

Einbau der Dübel:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die vorhandene Dicke des anzuschließenden Bauteils nicht größer ist als die am Dübel geprägte maximale Anbauteildicke entsprechend Anhang A1 und A2 und sich die Sechskantmutter wie im vormontierten Zustand geliefert am Ende des Konusbolzens befindet.

TILCA Bolzenanker B Verwendungszweck Spezifikationen Anhang B1

Tabelle B1: Montagekennwerte, Stahl verzinkt

Dübelgröße			М6	M8	M10	M12	M16	M20
Bohrernenndurchmesser	$d_0 =$	[mm]	6	8	10	12	16	20
Bohrerschneidendurchmesser	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Drehmoment beim Verankern (galvanisch verzinkt)	T _{inst} =	[Nm]	8	15	30	50	100	200
Drehmoment beim Verankern (feuerverzinkt)	T _{inst} =	[Nm]	-	15	30	40	90	120
Durchgangsloch im Anbauteil	$d_f \! \leq \!$	[mm]	7	9	12	14	18	22
Standardverankerungstiefe								
Bohrlochtiefe	h₁ ≥	[mm]	55	65	70	90	110	130
Setztiefe	$h_{nom} \geq$	[mm]	49	56	62	82	102	121
Verankerungstiefe	h _{ef} ≥	[mm]	40	44	48	65	82	100
Reduzierte Verankerungstiefe								
Bohrlochtiefe	$h_{1,red} \ge$	[mm]	45	55	65	75	95	110
Setztiefe	$h_{\text{nom,red}} \geq$	[mm]	39	47	56	67	84	99
Reduzierte Verankerungstiefe	$h_{\text{ef,red}} \geq$	[mm]	30	35	42	50	64	78


TILCA Bolzenanker B

Verwendungszweck Montagekennwerte, Stahl verzinkt **Anhang B2**

Tabelle B2: Montagekennwerte, nichtrostender Stahl A4/HCR

Dübelgröße			М6	М8	M10	M12	M16	M20
Bohrernenndurchmesser	$d_0 =$	[mm]	6	8	10	12	16	20
Bohrerschneidendurchmesser	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Drehmoment beim Verankern	T _{inst} =	[Nm]	6	15	25	50	100	160
Durchgangsloch im Anbauteil	$d_f \leq$	[mm]	7	9	12	14	18	22
Standardverankerungstiefe								
Bohrlochtiefe	h₁ ≥	[mm]	55	65	70	90	110	130
Setztiefe	$h_{nom} \geq$	[mm]	49	56	62	81	99	121
Verankerungstiefe	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	80	100
Reduzierte Verankerungstiefe								
Bohrlochtiefe	$h_{1,red} \ge$	[mm]	45	55	65	75	95	110
Setztiefe	$h_{nom,red}\!\geq\!$	[mm]	39	47	56	66	83	99
Reduzierte Verankerungstiefe	$h_{\text{ef,red}}\!\geq\!$	[mm]	30	35	42	50	64	78

TILCA Bolzenanker B Verwendungszweck Montagekennwerte, nichtrostender Stahl A4/HCR Anhang B3

Tabelle B3: Minimale Achs- und Randabstände, Stahl verzinkt

Dübelgröße			М6	М8	M10	M12	M16	M20
Standardverankerungstiefe h _{ef}								
Mindestbauteildicke	h _{min}	[mm]	100	100	100	130	170	200
Minimaler Achsabstand	S _{min}	[mm]	35	40	55	75	90	105
Minimaler Randabstand	C _{min}	[mm]	40	45	65	90	105	125
Reduzierte Verankerungstiefe hef,red	i							
Mindestbauteildicke	h _{min}	[mm]	80	80	100	100	130	160
Minimaler Achsabstand	S _{min}	[mm]	35	40	55	100	100	140
Minimaler Randabstand	C _{min}	[mm]	40	45	65	100	100	140

Tabelle B4: Minimale Achs- und Randabstände, nichtrostender Stahl A4/HCR

Dübelgröße			М6	М8	M10	M12	M16	M20	
Standardverankerungstiefe h _{ef}									
Mindestbauteildicke	\mathbf{h}_{min}	[mm]	100	100	100	130	160	200	
Minimaler Achsabstand	S _{min}	[mm]	35	35	45	60	80	100	
	für c ≥	[mm]	40	65	70	100	120	150	
Minimaler Randabstand	C _{min}	[mm]	35	45	55	70	80	100	
	für s ≥	[mm]	60	110	80	100	140	180	
Reduzierte Verankerungstiefe hef,red	ı								
Mindestbauteildicke	h_{min}	[mm]	80	80	100	100	130	160	
Minimaler Achsabstand	S _{min}	[mm]	35	60	55	100	110	140	
Minimaler Randabstand	C _{min}	[mm]	40	60	65	100	110	140	

Zwischenwerte dürfen interpoliert werden.

TILCA Bolzenanker B

Verwendungszweck
Minimale Achs- und Randabstände

Anhang B4

Montageanweisung

90°	Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen, ohne die Bewehrung zu beschädigen. Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
	Bohrloch vom Grund her ausblasen.
3	Position der Mutter kontrollieren.
	Anker soweit einschlagen, bis h _{ef} bzw. h _{ef,red} erreicht ist. Diese Bedingung ist erfüllt, wenn die Dicke des Anbauteils nicht größer ist als die maximale Anbauteildicke laut Dübelprägung gemäß Anhang A2 bzw. A3.
5 T _{inst}	Montagemoment T _{inst} mit Drehmomentschlüssel aufbringen.

TILCA Bolzenanker B	
Verwendungszweck Montageanweisung	Anhang B5

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung, Stahl verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			М6	M8	M10	M12	M16	M20
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1	,0		
Stahlversagen								
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107
Teilsicherheitsbeiwert	γMs	[-]		1	,5	•	1,6	
Herausziehen								
Standardverankerungstiefe hef								
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	9	12	16	1)	1)	1)
Reduzierte Verankerungstiefe hef,red								
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	6 ²⁾	1) 2)	1)	1)	1)	1)
Erhöhungsfaktor für N _{Rk,p}	ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$					
Spalten								
Standardverankerungstiefe hef								
Achsabstand	S _{cr,sp}	[mm]	160	220	240	330	410	500
Randabstand	C _{cr,sp}	[mm]	80	110	120	165	205	250
Reduzierte Verankerungstiefe hef,red								
Achsabstand	S _{cr,sp}	[mm]	180	210	230	240	320	400
Randabstand	C _{cr,sp}	[mm]	90	105	115	120	160	200
Betonausbruch								
Standardverankerungstiefe hef								
Effektive Verankerungstiefe	$h_{\text{ef}} \geq$	[mm]	40	44	48	65	82	100
Achsabstand	$s_{\text{cr},N}$	[mm]			3	h _{ef}		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Reduzierte Verankerungstiefe hef,red								
Effektive Verankerungstiefe	$h_{\text{ef,red}} \geq$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Achsabstand	S _{cr,N}	[mm]			3 h	ef,red		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef,red}		
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]			1	0,1		

¹⁾ Herausziehen ist nicht maßgebend.

TILCA Bolzenanker B Leistung Charakteristische Werte bei Zugbeanspruchung, Stahl verzinkt, (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4) Anhang C1

²⁾ Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.

Tabelle C2: Charakteristische Werte bei **Zugbeanspruchung, nichtrostender Stahl A4/HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			М6	M8	M10	M12	M16	M20
Installationssicherheitsfaktor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Stahlversagen								
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	10	18	30	44	88	134
Teilsicherheitsbeiwert	γMs	[-]			1,50			1,68
Herausziehen	71110				,			,
Standardverankerungstiefe het								
Charakteristische Tragfähigkeit im			7.5	10	40	0.5	1)	1)
ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	7,5	12	16	25	,,	
Reduzierte Verankerungstiefe hef,red								
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)
Spalten Beim Spaltennachweis ist für N ⁰ _R	der hier ar	aeaehene	N/ert N ⁰ -	zu verwend	<u>-</u>			
Standardverankerungstiefe hef	K,C GCI TIICI AI	igegeberie	S VVCIL IV RK,S	p Zu verwend	511.			
Es darf der höhere Widerstand aus Fall 1 ur	nd Fall 2 and	esetzt wer	den					
Fall 1	2 4119	- 30 - 1101						
Charakteristische Tragfähigkeit	• • • •							
im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	6	9	12	20	30	40
Achsabstand	S _{cr,sp}	[mm]		•		h _{ef}		
Randabstand	C _{cr,sp}	[mm]			1,5	5 h _{ef}		
Fall 2								
Charakteristische Tragfähigkeit	NI ⁰	[LAI]	7.5	12	16	25	1)	1)
im ungerissenen Beton C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	12	16	25		
Achsabstand	S _{cr,sp}	[mm]	160	220	240	340	410	560
Randabstand	C _{cr,sp}	[mm]	80	110	120	170	205	280
Reduzierte Verankerungstiefe hef,red								
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N^{\sigma}_{Rk,sp}$	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)
Achsabstand	S _{cr,sp}	[mm]	180	210	230	300	320	400
Randabstand	C _{cr,sp}	[mm]	90	105	115	150	160	200
Erhöhungsfaktor für N _{Rk,p} und N ⁰ _{Rk,sp}	Ψc	[-]			$\left(\frac{f_{ck,c}}{2!}\right)$	$\left(\frac{ube}{5}\right)^{0.5}$		
Betonausbruch								
Standardverankerungstiefe								
Effektive Verankerungstiefe	h _{ef}	[mm]	40	44	48	65	80	100
Achsabstand	S _{cr,N}	[mm]				h _{ef}		
Randabstand	C _{cr,N}	[mm]			1,5	5 h _{ef}		
Reduzierte Verankerungstiefe			2)	25 21			T	T =-
Effektive Verankerungstiefe	h _{ef,red}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Achsabstand	S _{cr,N}	[mm]				h _{ef}		
Randabstand	C _{cr,N}	[mm]				5 h _{ef}		
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]			1	0,1		

¹⁾ Herausziehen ist nicht maßgebend.

TILCA Bolzenanker B

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **nichtrostender Stahl A4 / HCR**, (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C2

²⁾ Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.

Tabelle C3: Charakteristische Werte bei **Querbeanspruchung, Stahl verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			М6	M8	M10	M12	M16	M20
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]	1,0					
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit	$V_{Rk.s}$	[kN]	5	11	17	25	44	69
Duktilitätsfaktor	k ₂	[-]				1,0		
Stahlversagen mit Hebelarm								
Charakteristische Biegemomente	M ⁰ _{Rk.s}	[Nm]	9	23	45	78	186	363
Teilsicherheitsbeiwert für $V_{Rk,s}$ und $M^0_{Rk,s}$	γMs	[-]	1,25 1,					,33
Betonausbruch auf der lastabgewandten	Seite							
Faktor k gemäß ETAG 001, Anhang C bzw. k ₃ gemäß CEN/TS 1992-4 für h _{ef}	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Faktor k gemäß ETAG 001, Anhang C bzw. k ₃ gemäß CEN/TS 1992-4 für h _{ef,red}	k ₍₃₎	[-]	1,0 1)	1,0 ¹⁾	1,0	1,0	2,0	2,0
Betonkantenbruch								
Wirksame Dübellänge bei Querlast für h _{ef}	I _f	[mm]	40	44	48	65	82	100
Wirksame Dübellänge bei Querlast für h _{ef,red}	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Wirksamer Außendurchmesser	d _{nom}	[mm]	6	8	10	12	16	20

Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.

Tabelle C4: Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4/HCR (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			М6	M8	M10	M12	M16	M20
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	7	12	19	27	50	86
Duktilitätsfaktor	k ₂	[-]			1	,0		
Stahlversagen mit Hebelarm								
Charakteristische Biegemomente	${\sf M}^0_{\sf Rk,s}$	[Nm]	10	24	49	85	199	454
Teilsicherheitsbeiwert für V _{Rk,s} und M ⁰ _{Rk,s}	γMs	[-]			1,25			1,4
Betonausbruch auf der lastabgewandten S	Seite							
Faktor k gemäß ETAG 001, Anhang C bzw. k ₃ gemäß CEN/TS 1992-4 für h _{ef}	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Faktor k gemäß ETAG 001, Anhang C bzw. k ₃ gemäß CEN/TS 1992-4 für h _{ef,red}	k ₍₃₎	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Betonkantenbruch								
Wirksame Dübellänge bei Querlast für h _{ef}	I _f	[mm]	40	44	48	65	80	100
Wirksame Dübellänge bei Querlast für h _{ef,red}	$I_{f,red}$	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Wirksamer Außendurchmesser	d _{nom}	[mm]	6	8	10	12	16	20

⁾ Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.

TILCA Bolzenanker B Leistung Charakteristische Werte bei Querbeanspruchung (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4) Anhang C3

Tabelle C5: Verschiebung unter Zuglast, Stahl verzinkt

Dübelgröße			М6	М8	M10	M12	M16	M20		
Standardverankerungstiefe										
Zuglast	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8		
Verschiebung	δ_{N0}	[mm]	0,4	0,5						
Verschiebung	δ_{N_∞}	[mm]	0,7	2,3						
Reduzierte Verankerungstiefe										
Zuglast	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6		
Mara altialisma	δ_{N0}	[mm]	0,3	0,4						
Verschiebung	δ_{N_∞}	[mm]	0,6	1,8						

Tabelle C6: Verschiebung unter Zuglast, nichtrostender Stahl A4/HCR

Dübelgröße			М6	M8	M10	M12	M16	M20	
Standardverankerungstiefe									
Zuglast	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0	
Naga ahiah ung	δ_{N0}	[mm]	0,7	0,9	0,5	0,6	0,9	2,1	
Verschiebung	δ_{N_∞}	[mm]		4,2					
Reduzierte Verankerungstiefe									
Zuglast	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6	
Managhtah	δ_{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5	
Verschiebung	$\delta_{N_{\infty}}$	[mm]		1,3					

Tabelle C6: Verschiebung unter Querlast, Stahl verzinkt

Dübelgröße			М6	M8	M10	M12	M16	M20
Querlast	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Verschiebung	δ_{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	$\delta_{V\infty}$	[mm]	2,4	2,2	2,4	3,9	4,6	6,6

Tabelle C7: Verschiebung unter Querlast, nichtrostender Stahl A4/HCR

Dübelgröße			М6	М8	M10	M12	M16	M20
Querlast	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Verschiebung	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	$\delta_{V\infty}$	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

TILCA Bolzenanker B	
Leistung Verschiebung	Anhang C4