

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-06/0078 vom 21. Januar 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

SORMAT MULTI-MONTI MMS

Betonschraube zur Verankerung im Beton

Sormat Oy Harjutie 5 21290 RUSKO FINNLAND

Sormat Werk 5 Sormat Plant 5

12 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 3: "Hinterschnittdübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-06/0078

Seite 2 von 12 | 21. Januar 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z91468.14 8.06.01-319/14

Europäische Technische Bewertung ETA-06/0078

Seite 3 von 12 | 21. Januar 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Betonschraube SORMAT MULTI-MONTI MMS ist ein Dübel aus verzinktem Stahl in den Größen 7,5, 10, 12, 14 und 16. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristische Werte unter Zug- und Querbeanspruchung	Siehe Anhang C 1 und C 2			
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 1 und C 2			

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C 3 und C 4

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

Z91468.14 8.06.01-319/14

Europäische Technische Bewertung ETA-06/0078

Seite 4 von 12 | 21. Januar 2015

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

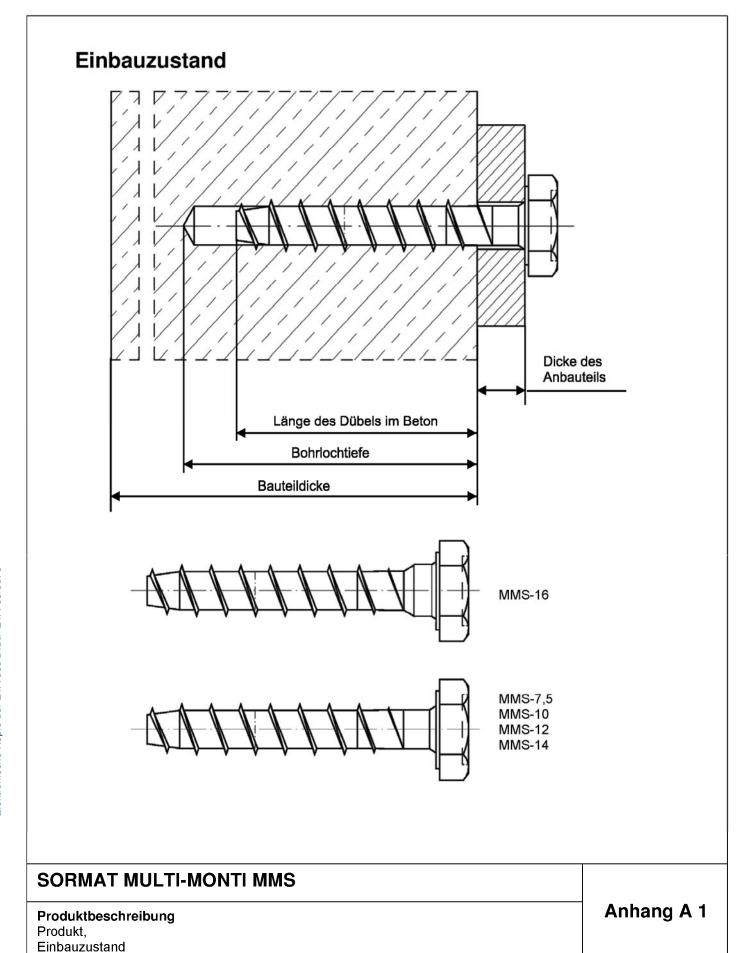
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI L 254 vom 08.10.96 S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metalldübel zur Verwendung im Beton (hoch belastbar)	Zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 21. Januar 2015 vom Deutschen Institut für Bautechnik

Andreas Kummerow	
i.V. Abteilungsleiter	

Beglaubigt:

Z91468.14 8.06.01-319/14

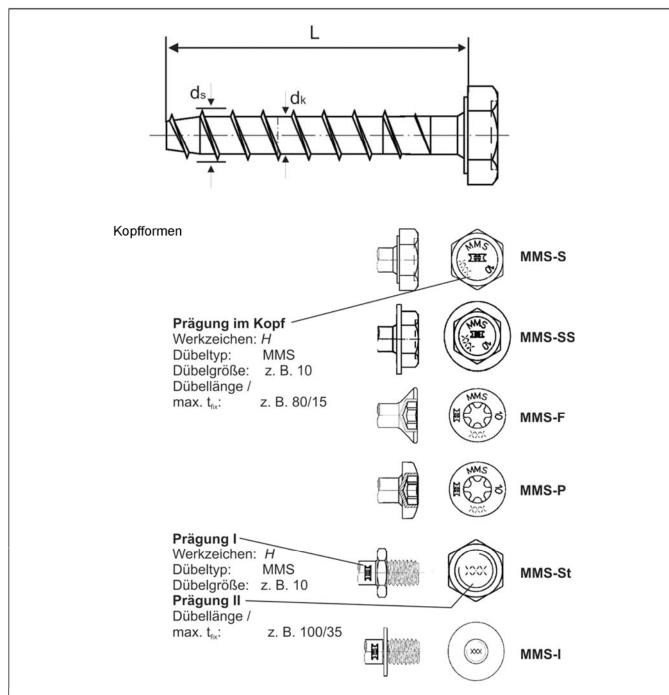


Tabelle A1: Abmessungen und Werkstoffe

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16	
Schraubenlänge	L≥	[mm]	60	70	80	100	120	
Schraubenlänge	L≤	[mm]	200	200	400	400	400	
Kerndurchmesser	d _k	[mm]	5,7	7,6	9,4	11,3	13,3	
Aussendurchmesser	ds	[mm]	7,5	10,1	12,0	14,3	16,7	
Werkstoff			verzinkter Stahl nach EN 10263-4:2001					

SORMAT MULTI-MONTI MMS	
Produktbeschreibung	Anhang A 2
Kopfformen, Abmessungen und Werkstoffe	
Abinessungen und Werkstone	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: alle Größen.
- Brandbeanspruchung: alle Größen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Gerissener oder ungerissener Beton: alle Größen.

Anwendungsbedingungen (Umweltbedingungen):

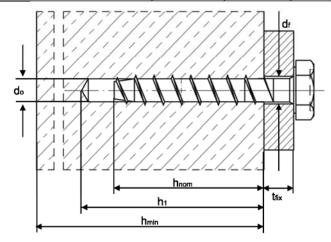
Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerung unter statischen und quasi-statischen Lasten und unter Brandbeanspruchung erfolgt für das Bemessungsverfahren A nach:
 - ETAG 001, Annex C, Fassung August 2010
- Bei Anforderungen an den Brandschutz ist sicherzustellen, dass lokale Abplatzungen vermieden werden.

Einbau:

- · Bohrlochherstellung nur durch Hammerbohren.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- · Der Dübel darf nur einmal verwendet werden.
- Vollständiges Anpressen des Anbauteils gegen den Beton ohne Zwischenschichten.
- · Leichtes Weiterdrehen des Dübels ist nicht möglich.
- Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt.
- Für MMS-St: erreichen der vorgeschrieben Setztiefe. Sicherung des Dübels gegen verdrehen


SORMAT MULTI-MONTI MMS Verwendungszweck Spezifikationen Anhang B 1

Z91526.14 8.06.01-319/14

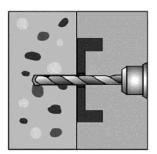
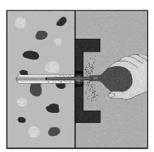
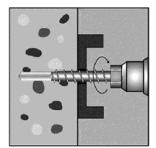
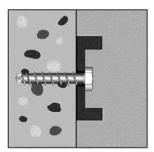


Tabelle B1: Montagekennwerte


Dübelgröße	MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16			
Bohrernenndurchmesser	d _o	[mm]	6,0	8,0	10,0	12,0	14,0	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,4	8,45	10,45	12,5	14,5	
Bohrlochtiefe	h₁≥	[mm]	65	75	85	105	130	
Einschraubtiefe	h _{nom} ≥	[mm]	55	65	75	95	115	
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	9,0	12,0	14,0	16,0	18,0	
	Elektrischer Tangential-Schlagschrauber, max.							
empfohlenes Setzgerät			Leistu	Leistungsangabe T _{max} gemäß Herstellerangabe				
			100 Nm	250 Nm	250 Nm	350 Nm	500 Nm	


Montageanweisungen


Bohren Bohrdurchmesser d₀ und Bohrtiefe h₁ einhalten

Bohrmehl entfernen z. Bsp. Ausblasen

Einschrauben z. Bsp. manuell oder mit Tangential-Schlagschrauber

Fertig prüfen: Kopfauflage / Einschraubtiefe h_{nom}

Tabelle B2: Mindestbauteildicke und minimale Rand- und Achsabstände

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16		
Mindestbauteildicke	h _{min}	[mm]	100	115	125	150	180		
gerissener und ungerissenen Beton									
min. Achsabstand	s _{min} =	[mm]	40	50	60	90	100		
min. Randabstand	c _{min} =	[mm]	40	50	60	90	100		

SORMAT MULTI-MONTI MMS

Verwendungszweck

Montagekennwerte, Montageanweisungen Mindestbauteildicke, minimale Rand- und Achsabstände Anhang B 2

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16
Stahlversagen							
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	19,4	16	25	30	43
Teilsicherheitsbeiwert	$\gamma_{ extsf{Ms}}$	[-]			1,4		
Herausziehen							
Charakteristische Zugtragfähigkeit	$N_{Rk,p}$	[kN]	5	9	12	20	30
im gerissenen Beton C 20/25	™Rk,p	[KIN]	J	9	12	20	30
Charakteristische Zugtragfähigkeit	$N_{Rk,p}$	[kN]	7,5	12	16	30	40
im ungerissenen Beton C 20/25	INRk,p	[KIN]	7,5	12	10		40
		C 30/37	1,22				
Erhöhungsfaktor für Beton	ψ_{c}	C 40/50	1,41				
		C 50/60	1,55				
Montagesicherheitsbeiwert	γ_2	[-]			1,2		
Betonausbruch und Spalten							
effektive Verankerungstiefe	h_{ef}	[mm]	40	47,5	54,5	71,5	87,5
Achsabstand s	$c_{cr,N} = s_{cr}$	[mm]			3 h _{ef}		
Randabstand c	$c_{cr,N} = c_{cr}$	[mm]	1,5 h _{ef}				
Montagesicherheitsbeiwert	γ_2	[-]			1,2		

Tabelle C2: Verschiebungen bei Zugbeanspruchung

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16
Zuglast im gerissenen Beton	Ν	[kN]	2,0	3,0	4,0	7,2	9,7
Zugehörige Verschiebung —	δ_{N0}	[mm]	0,1	0,1	0,2	0,3	0,4
	δ _{N∞}	[mm]	0,2	0,3	0,6	0,8	0,8
Zuglast im ungerissenen Beton	Ν	[kN]	3,0	4,0	5,3	10,1	13,7
Zugehörige Verschiebungen	δ_{N0}	[mm]	0,1	0,1	0,2	0,3	0,4
	δ _{N∞}	[mm]	0,2	0,3	0,6	0,8	0,8

SORMAT MULTI-MONTI MMS Leistungsmerkmale Charakteristische Werte bei Zugbeanspruchung Verschiebungen unter Zugbeanspruchung

Z91526.14 8.06.01-319/14

Tabelle C3: Charakteristische Werte bei Querbeanspruchung

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16
Stahlversagen ohne Hebelarm							
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	6,9	16	23	36	49
Teilsicherheitsbeiwert	γ _{Ms}	[-]			1,5		
Stahlversagen mit Hebelarm							
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	19	38	71	132	217
Teilsicherheitsbeiwert	γмѕ	[-]			1,5		
Betonausbruch auf der lastabgewa	ındten S	eite					
Faktor in der Gleichung 5.6							
entsprechend ETAG 001,	k		1,0		2	,0	
Anhang C Absatz 5.2.3.3							
Montagesicherheitsbeiwert	γ_2	[-]			1,0		
Betonkantenbruch							
Wirksame Dübellänge bei Querlast	Lf	[mm]	40	47,5	54,5	71,5	87,5
Wirksamer Außendurchmesser	d _{nom}	[mm]	6	8	10	12	14
Montagesicherheitsbeiwert	γ ₂	[-]			1,0		

Tabelle C4: Verschiebungen bei Querbeanspruchung

Dübelgröße			MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16
Querlast in gerissenem und ungerissenem Beton	V	[kN]	3,3	8,9	14,7	20,3	28,1
Zugobörige Versebiebung	δ_{vo}	[mm]	0,8	3,0	3,0	3,0	4,5
Zugehörige Verschiebung	δ _{ν∞}	[mm]	1,2	4,5	4,5	4,5	6,0

Hinweis zur Bemessung bei Querbeanspruchung:

Im allgemeinen sind die Bedingungen nach ETAG 001, Anhang C Abschnitt 4.2.2.1 a) und Abschnitt 4.2.2.2 b) nicht eingehalten, weil das Durchgangsloch im anzuschließenden Bauteil nach Tabelle B1 größer ist als die in Anhang C, Tabelle 4.1 angegebenen Werte für die entsprechenden Dübeldurchmesser. Der Hersteller kann jedoch für jede ausgeführte Dübellänge die Anbauteildicke angeben, für die diese Bedingungen erfüllt sind.

SORMAT MULTI-MONTI MMS	
Leistungsmerkmale Charakteristische Werte bei Querbeanspruchung	Anhang C 2
Verschiebungen unter Querbeanspruchung	

Tabelle C5: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung im gerissenen und ungerissenen Beton C20/25 bis C50/60

Dübelgröße				MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16		
Stahlversagen										
Charakteristische Tragfähigkeit	R30	– – N _{Rk,s,fi} –	[kN]	1,7	3,4	5,9	8,3	10,8		
	R60			1,2	2,5	4,4	6,3	8,1		
	R90			0,8	1,7	3,0	4,2	5,4		
	R120			0,6	1,2	2,2	3,1	4,1		
Charakteristische	R30	- - N _{Rk,s,fi} -	[kN]	1,7	1,8					
Tragfähigkeit für	R60			1,2	1,5					
die Ausführung	R90			0,8	1,1					
MMS-St	R120			0,6	1,0					
Herausziehen										
Charakteristische	R30	– – N ⁰ _{Rk,p,fi}	[kN]	1,3	2,3	3,0	5,0	7,5		
Tragfähigkeit in	R60									
Beton C20/25 bis	R90									
C50/60	R120			1,0	1,8	2,4	4,0	6,0		
Betonversagen										
Charakteristische	R30	- N _{Rk,c,fi} [kN]		[kN] 1,8	2,8	3,9	7,8	12,9		
Tragfähigkeit in	R60		[FVI]							
Beton C20/25 bis	R90		[KIN]							
C50/60	R120			1,5	2,2	3,2	6,2	10,3		
Achsabstand		S _{cr,N}	[mm]	4 x h _{ef}						
Adribabbiana		S _{min}	[mm]	s _{min} nach Anlage B 2						
		C _{cr,N}	[mm]	2 x h _{ef}						
Randabstand		C _{min}	[mm]	c _{min} = 2 x h _{ef} bei Brandbeanspruchung von mehr als einer Seite						
				muss der Randabstand des Dübels mehr als 300 mm betragen.						

SORMAT MULTI-MONTI MMS Leistungsmerkmale Charakteristische Zugtragfähigkeit unter Brandbeanspruchung Anhang C 3

Z91526.14 8.06.01-319/14

Tabelle C6: Charakteristische Quertragfähigkeit unter Brandbeanspruchung im gerissenen und ungerissenen Beton C20/25 bis C50/60

Dübelgröße				MMS-7,5	MMS-10	MMS-12	MMS-14	MMS-16
Stahlversagen ohne Hebelarm								
	R30			1,7	3,4	5,9	8,3	10,8
Charakteristische	R60	- V _{Rk,s,fi}	[kN]	1,2	2,5	4,4	6,3	8,1
Quertragfähigkeit	R90			0,8	1,7	3,0	4,2	5,4
	R120			0,6	1,2	2,2	3,1	4,1
Stahlversagen mit Hebelarm								
	R30	- - M ⁰ _{Rk,S,fi} -	[Nm]	1,5	4,0	8,8	15,0	22,0
Charakteristisches	R60			1,1	3,0	6,6	11,0	17,0
Biegemoment	R90			0,7	2,0	4,4	7,4	11,0
	R120			0,5	1,5	3,3	5,6	8,3

Betonausbruch auf der lastabgewandten Seite

Nach ETAG 001, Anhang C, Abschnitt 5.2.3.3, Gleichung (5.6) muss der k-Wert 2,0 (1,0 für MMS-7,5) und der maßgebenden Wert $N^0_{Rk,c,fi}$ aus Tabelle C5 berücksichtigt werden.

Betonkantenbruch

Der Ausgangswert $V^0_{Rk,c,fi}$ für die charakteristische Tragfähigkeit in Beton C20/25 bis C50/60 unter Brandbeanspruchung lässt sich wie folgt berechnen:

$$V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0} (R30, R60, R90)$$

$$V_{Rk,c,fi}^0 = 0.20 \times V_{Rk,c}^0 (R120)$$

Mit $V_{Rk,c}^0$ charakteristische Tragfähigkeit im gerissenen Beton C20/25 bei normaler Temperatur.

SORMAT MULTI-MONTI MMS

Leistungsmerkmale

Charakteristische Quertragfähigkeit unter Brandbeanspruchung

Anhang C 4