

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0257 vom 4. März 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

SIKLA Schlaganker AN / AN ES

Wegkontrolliert spreizender Dübel aus galvanisch verzinktem oder nichtrostendem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

Sikla Holding Ges.m.b.H. Kornstraße 14 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 1

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 4: "Wegkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-10/0257

Seite 2 von 16 | 4. März 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-10/0257

Seite 3 von 16 | 4. März 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Sikla Schlaganker AN / AN ES ist ein Dübel aus galvanisch verzinktem Stahl, aus nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte des Widerstandes gegen Zug- und Querbeanspruchung sowie Biegung in Beton	Siehe Anhang C 1 bis C 4
Rand- und Achsabstände	Siehe Anhang C 1 bis C 2
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung festgestellt (KLF)

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

Europäische Technische Bewertung ETA-10/0257

Seite 4 von 16 | 4. März 2015

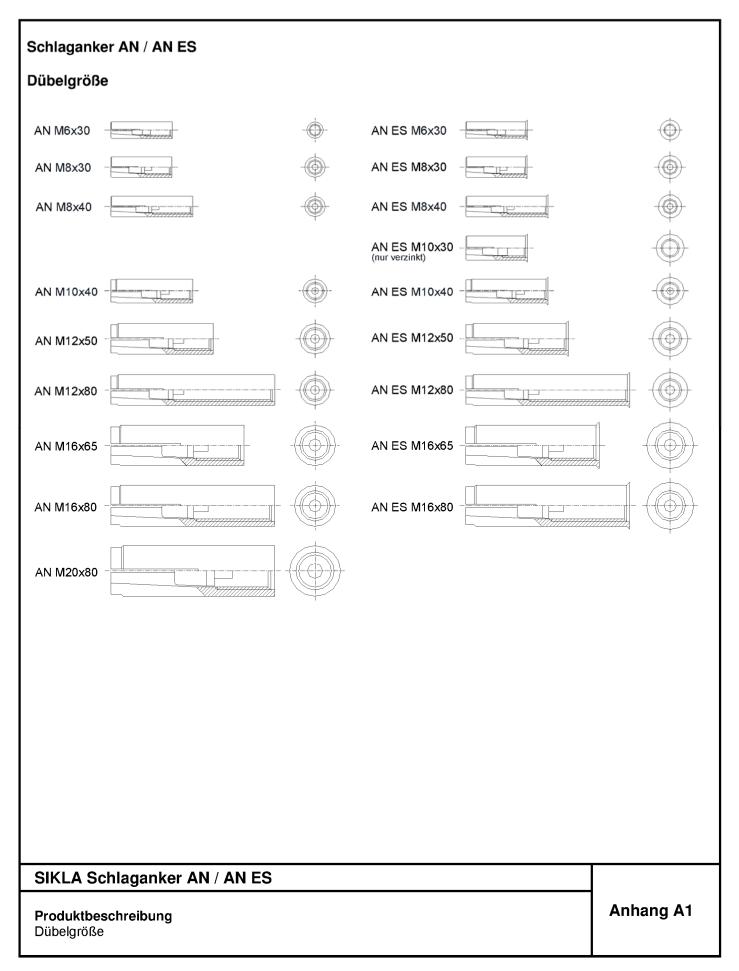
3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung strukturaler Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	-	1


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 04. März 2015 vom Deutschen Institut für Bautechnik

Uwe Bender Beglaubigt: Abteilungsleiter

Einbausituation

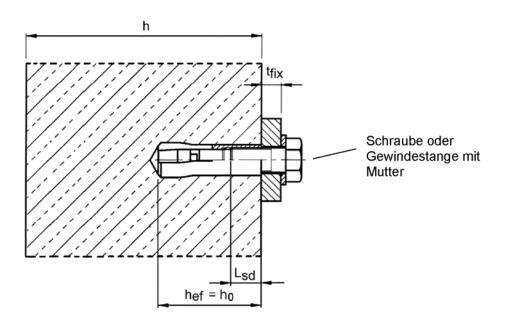
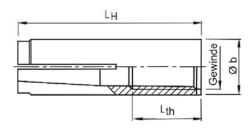


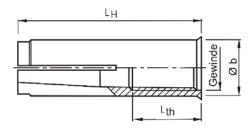
Tabelle A1: Benennung und Werkstoffe

Teil	Benennung	Stahl, galvanisch verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR
1	Dübelhülse	Kaltstauch- bzw. Automatenstahl, galvanisch verzinkt, EN ISO 4042:1999	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010	Nichtrostender Stahl, 1.4529, 1.4565, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010
2	Konus	Kaltstauchstahl nach EN 10263-2:2001	Nichtrostender Stahl, 1.4401, 1.4 10088:2005	404, 1.4571, 1.4362, EN

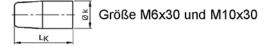
SIKLA Schlaganker AN / AN ES


ProduktbeschreibungEinbausituation und Werkstoffe

Anhang A2



Dübelhülse


Dübelversion ohne Kragen (E)

Dübelversion mit Kragen (ES)

Konus

Prägung: siehe Tabelle A2

M8 Gewindegröße 40 Verankerungstiefe

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Tabelle A2: Dübelabmessungen

	Dü	ibelhi	ilse		Koı	านร	Prägung						
Dübel- größe	Gewinde	Øb	L _H	L _{th}	Øk	L _K	Version E	Version ES	alternativ				
M6x30	М6	8	30	13	5,0	13		⇔ ES M6x30					
M8x30	M8	10	30	13	6,5	12		⇔ ES M8x30					
M8x40	M8	10	40	20	0,5	12		⇔ ES M8x40					
M10x30	M10	12	30	12	8,2	12	-	⇔ ES M10x30					
M10x40	M10	12	40	15	8,2	16		⇔ ES M10x40					
M12x50	M12	15	50	18	10,3	20		⇔ ES M12x50					
M12x80	M12	15	80	45	10,3	20		⇔ ES M12x80					
M16x65	M16	19,7	65	23	13,8	29		⇔ ES M16x65					
M16x80	M16	19,7	80	38	13,0	29		⇔ ES M16x80					
M20x80	M20	24,7	80	34	16,5	30		•					

Maße in mm

SIKLA Schlaganker AN / AN ES

Produktbeschreibung

Dübelabmessungen und Markierung

Anhang A3

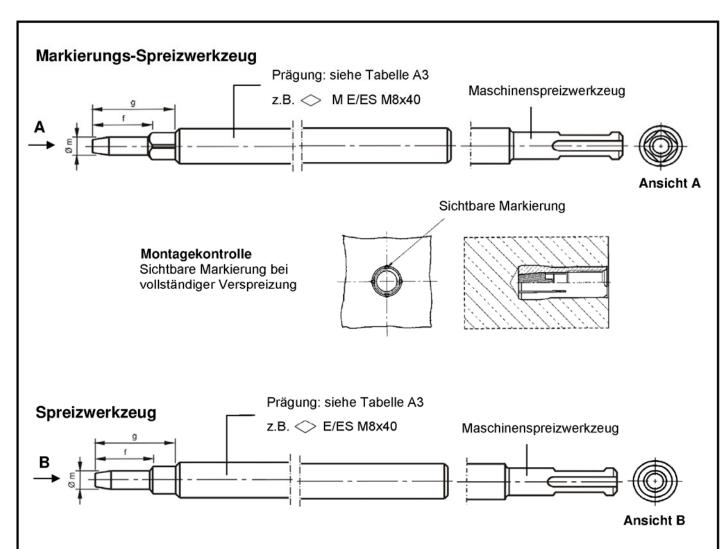


Tabelle A3: Abmessungen und Prägung der Spreizwerkzeuge

Dübel-	~		_	Markierungs-Spr	eizwerkzeug	Spreizwe	rkzeug
größe	Øm	ī	g		alternativ		alternativ
M6x30	4,9	17	27			⇔ E/ES M6x30	⇒ E M6
M8x30	6,4	18	28			⇒ E/ES M8x30	⇒ E M8
M8x40	6,4	28	38			⇒ E/ES M8x40	⇒ E M8x40
M10x30	8,0	18	28			⇒ ES M10x30	⇒ E M10x30
M10x40	8,0	24	34				⇒ E M10
M12x50	10,0	30	40				⇒ E M12
M12x80	10,0	60	70				⇒ E M12x80
M16x65	13,5	36	46				⇒ E M16
M16x80	13,5	51	61				⇒ E M16x80
M20x80	16,5	50	60			⇒ E M20x80	⇒ E M20

Maße in mm

SIKLA Schlaganker AN / AN ES Produktbeschreibung Setzwerkzeug, Abmessungen und Prägung Anhang A4

Spezifizierung des Verwendungszwecks

Verankerungen unter:

· Statische oder quasi-statische Einwirkung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die L\u00e4nge der Befestigungsschraube oder der Gewindestange m\u00fcssen vom Planer festgelegt werden.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen,
- Bohrlocherstellung nur durch Hammerbohren,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

SIKLA Schlaganker AN / AN ES Verwendungszweck Spezifikationen Anhang B1

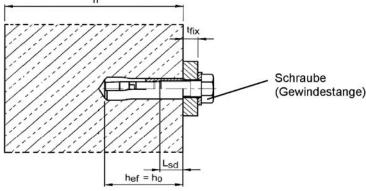

714399 15 8 06 01-15/15

Tabelle B1: Montage- und Dübelkennwerte

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Baseigi one			шохоо	moxee	11107 10	III TOXOO	III TOX TO	III I ZAGO	III I ZAGO	III TOXOO	III TOXOO	EUXUU
Bohrlochtiefe	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Bohrernenndurchmesser	$d_0 =$	[mm]	8	10	10	12	12	15	15	20	20	25
Bohrerschneiden- durchmesser	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
max. Drehmoment beim Verankern ¹⁾	T _{inst} ≤	[Nm]	4	æ	8	15	15	35	35	60	60	120
Durchgangsloch im anzuschließenden Bauteil	$d_f\!\leq\!$	[mm]	7	9	9	12	12	14	14	18	18	22
Gewindelänge	L_{th}	[mm]	13	13	20	12	15	18	45	23	38	34
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Stahl, galvanisch verzinkt												
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimaler Achsabstand	S _{min}	[mm]	55	60	80	100	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Nichtrostender Stahl A4, HCR												
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimaler Achsabstand	S _{min}	[mm]	50	60	80	-	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	80	95	95	-	135	165	165	200	200	260

1) Wenn die Schraube oder Gewindestange anderweitig gegen Herausdrehen gesichert ist, kann auf das Drehmoment verzichtet

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

Festigkeitsklasse 4.6 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

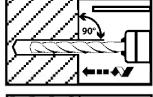
Nichtrostender Stahl A4

- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

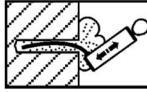
Hochkorrosionsbeständiger Stahl (HCR)

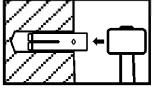
- Werkstoff 1.4529; 1.4565, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

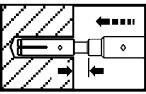
SIKLA Schlaganker AN / AN ES

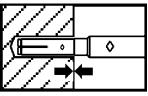

Verwendungszweck

Montage- und Dübelkennwerte


Anhang B2


Montageanweisung


Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen.


Bohrloch vom Grund her ausblasen.

Anker einschlagen.

Konus mit Spreizwerkzeug eintreiben.

Der Anschlag des Spreizwerkzeugs muss auf dem Ankerrand aufsetzen.

 $\label{eq:montagemoment} \mbox{Montagemoment T_{inst} mit Drehmomentschlüssel aufbringen.}$

SIKLA Schlaganker AN / AN ES

Verwendungszweck Montageanweisung Anhang B3

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1,	2			
Stahlversagen										
Charakteristische Zugtragfähigkeit Stahl 4.6	$N_{Rk,s}$	[kN]	8,0	14,	6	23,	2	33,7	62,8	98,0
Teilsicherheitsbeiwert	γMs	[-]				2,	0			
Charakteristische Zugtragfähigkeit Stahl 5.6	$N_{Rk,s}$	[kN]	10,0	18,	3	18,0	20,2	42,1	78,3	122,4
Teilsicherheitsbeiwert	γMs	[-]		2,0		1,	5		2,0	
Charakteristische Zugtragfähigkeit Stahl 5.8	$N_{Rk,s}$	[kN]	10,0	17,6	18,3	18,0	20,2	42,1	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1	,5			1,	6
Charakteristische Zugtragfähigkeit Stahl 8.8	$N_{Rk,s}$	[kN]	15,0	17,6	19,9	18,0	20,2	43,0	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1	,5			1,	6
Herausziehen										
Charakteristische Tragfähigkeit im Beton C20/25	$N_{Rk,p}$	[kN]	2)	2)	9	2)	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$					
Betonausbruch und Spalten		•								
Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	50	65	80
Achsabstand (Randabstand) s _{cr,N}	(= 2 c _{cr,N})	[mm]				3 h _{ef}				
S _{cr,sp}	(= 2 c _{cr,sp})	[mm]	190	190	190	230	270	330	400	520
Faktor gemäß CEN/TS 1992-4	\mathbf{k}_{ucr}	[-]				10,1				

 $[\]stackrel{1)}{\mbox{\tiny .}}$ Nur zur Verwendung in statisch unbestimmten Systemen und in trockenen Innenräumen

SIKLA Schlaganker AN / AN ES

Leistung

Charakteristische Werte bei **Zugbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C1

²⁾ Herausziehen ist nicht maßgebend

Tabelle C2: Charakteristische Werte bei **Zugbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigke (Festigkeitsklasse 70)	it N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Charakteristische Zugtragfähigke (Festigkeitsklasse 80)	it N _{Rk,s}	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Teilsicherheitsbeiwert	γ _{Ms} ³⁾	[-]				1,87			
Herausziehen									
Charakteristische Tragfähigkeit ir Beton C20/25	n N _{Rk,p}	[kN]	2)	2)	9	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Betonausbruch und Spalten									
Verankerungstiefe	h_{ef}	[mm]	30 ³⁾	30	40	40	50	65	80
Achsabstand (Randabstand)	s _{cr,N} (= 2 c _{cr,N})	[mm]				3 h _{ef}			
	S _{cr,sp} (= 2 c _{cr,sp})	[mm]	160	190	190	270	330	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1			

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen und in trockenen Innenräumen

2) Herausziehen ist nicht maßgebend

SIKLA Schlaganker AN / AN ES

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **nichtrostender Stahl A4**, **HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C2

³⁾ Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N⁰_{Rk,c} mit dem Faktor (25/f_{ck,cube})^{0,2} zu multiplizieren.

Tabelle C3: Charakteristische Werte bei **Querbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x8
Stahlversagen ohne Hebelarm										
Charakteristische Tragfähigkeit Stahl 4.6	$V_{Rk,s}$	[kN]	4,0	7,	3	11,6	9,6	16,8	31,3	49,0
Teilsicherheitsbeiwert	γMs	[-]				1	,67			
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	9,	,1	10,1	9,6	21,1	39,2	61,2
Teilsicherheitsbeiwert	γMs	[-]		1,67		1,25		1,	67	
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	21,1	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]			1	,25			1,	33
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	21,5	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]			1	,25			1,	33
Duktilitätsfaktor	k ₂	[-]				1,	0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment Stahl 4.6	M ⁰ _{Rk,s}	[Nm]	6,1	1	5	30	30	52	133	259
Teilsicherheitsbeiwert	γMs	[-]	1,67							
Charakteristisches Biegemoment Stahl 5.6	$M^0_{Rk,s}$	[Nm]	7,6	1	9	37	37	65	166	324
Teilsicherheitsbeiwert	γMs	[-]	1,67							
Charakteristisches Biegemoment Stahl 5.8	$M^0_{Rk,s}$	[Nm]	7,6	19		37	37	65	166	324
Teilsicherheitsbeiwert	γMs	[-]				1,	25			
Charakteristisches Biegemoment Stahl 8.8	M ⁰ _{Rk.s}	[Nm]	12	3	0	59	60	105	266	519
Teilsicherheitsbeiwert	γMs	[-]				1,	25			
Duktilitätsfaktor	k_2	[-]				1,	0			
Betonausbruch auf der lastabgewandt	en Seite									
Faktor k gemäß ETAG 001, Anhang C bzw. k ₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]			1,0			1,5	2,	0
Betonkantenbruch										
Wirksame Dübellänge bei Querlast	l _f	[mm]	30	30	40	30	40	50	65	80
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	10	12	12	15	20	25

SIKLA Schlaganker AN / AN		
---------------------------	--	--

Leistung

Charakteristische Werte bei **Querbeanspruchung, verzinkt** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C3

Tabelle C4: Charakteristische Werte bei **Querbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Dübelgröße			M6x30	M8x30	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Hebelarm									
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	10,	6	13,4	25,1	41,9	66,5
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10,	6	13,4	25,1	41,9	66,5
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Duktilitätsfaktor	k ₂	[-]				1,0			
Stahlversagen ohne Hebelarm									
Charakteristisches Biegemoment (Festigkeitsklasse 70)	$M^0_{Rk,s}$	[Nm]	11	2	6	52	92	233	454
Teilsicherheitsbeiwert	γMs	[-]	1,56						
Charakteristisches Biegemoment (Festigkeitsklasse 80)	M ⁰ _{Rk,s}	[Nm]	12	30		60	105	266	519
Teilsicherheitsbeiwert	γMs	[-]	1,33						
Duktilitätsfaktor	k ₂	[-]	1,0						
Betonausbruch auf der lastabgewandten	Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	1,0 1,7 1,7 2,0				0		
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	l _f	[mm]	30	30	40	40	50	65	80
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	10	12	15	20	25

SIKLA Schlaganker AN / AN ES

Leistung

Charakteristische Werte bei **Querbeanspruchung, nichtrostender Stahl A4, HCR** (Bemessungsmethode A nach ETAG 001, Anhang C oder CEN/TS 1992-4)

Anhang C4

Tabelle C5: Verschiebungen unter Zuglast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δ_{N0}	[mm]	0,24							
	δ_{N_∞}	[mm]	0,36							
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	N	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]	0,12							
	δ_{N_∞}	[mm]	0,24							

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δ _{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	$\delta_{V_{\infty}}$	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR										
Querlast im ungerissenen Beton	V	[kN]	3,5	5,2	5,2	-	6,5	11,5	19,2	30,4
Verschiebung	δνο	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	$\delta_{V_{\infty}}$	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

SIKLA Schlaganker AN / AN ES

Leistung Verschiebung **Anhang C5**