

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0192 of 29 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

EJOT H1 eco and EJOT H4 eco

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

EJOT Herstellwerk 1, 2, 3, 4

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-11/0192 issued on 8 January 2014

European Technical Assessment ETA-11/0192

Page 2 of 16 | 29 January 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z7168.15 8.06.04-316/14

European Technical Assessment ETA-11/0192 English translation prepared by DIBt

Page 3 of 16 | 29 January 2015

Specific part

1 Technical description of the product

The nailed-in anchors EJOT H1 eco and EJOT H4 eco consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of polyethylene, a mounting plug made of polyamide and accompanying specific nail of galvanised steel. For the anchor length of 95mm (only H1 eco) the accompanying specific nail of galvanised steel has an overmoulding of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90.

An illustration and the description of the product are given in Annex A

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Not applicable.

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C
Edge distances and spacing	See Annex B
Point thermal transmittance	See Annex C
Plate stiffness	See Annex C
Displacements	See Annex C

Z7168.15 8.06.04-316/14

European Technical Assessment ETA-11/0192

Page 4 of 16 | 29 January 2015

English translation prepared by DIBt

- 3.5 Protection against noise (BWR 5)
 Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

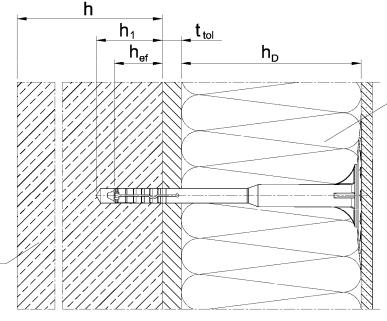
4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 29 January 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow beglaubigt:
p. p. Head of Department Ziegler

Z7168.15 8.06.04-316/14

EJOT H1 eco

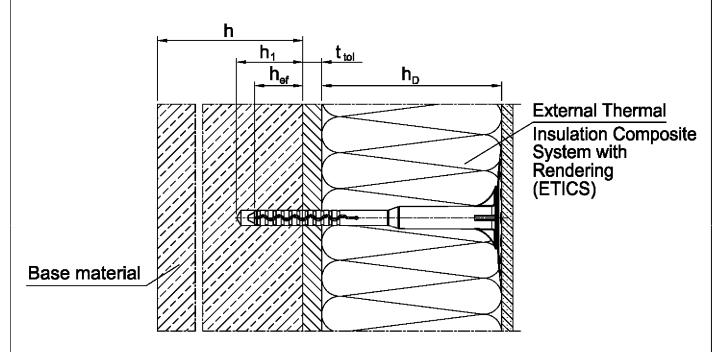
External Thermal
Insulation Composite
System with
Rendering
(ETICS)

Base material

Legend: h_D = thickness of insulation material

h_{ef} = effective anchorage depthh = thickness of member (wall)

h₁ = depth of drill hole to deepest point


ttol = thickness of equalizing layer or non-load-bearing coating

Product description
Installed condition EJOT H1 eco

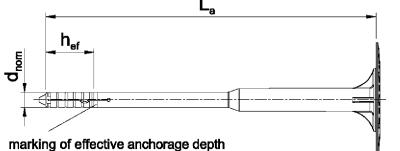
Annex A 1

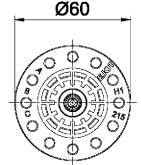
EJOT H4 eco

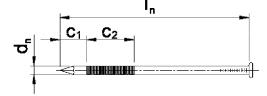
Legend: h_D = thickness of insulation material

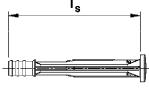
h_{ef} = effective anchorage depth h = thickness of member (wall)

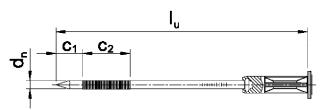
h₁ = depth of drill hole to deepest point


t_{tol} = thickness of equalizing layer or non-load-bearing coating


Product description
Installed condition EJOT H4 eco


Annex A 2





Marking: Identifying mark (EJOT) Anchor type (H1 eco) Length of anchor (e.g. 175)

accompanying specific nail mounting plug

Length of anchor 95mm: accompanying specific nail with overmolding

Table A1: Dimens	sions								
		Anchor Sleeve		Mounting Plug			Specif nail	ic	
Anchor type	d _{nom}	h _{ef}	min L _a max L _a	min I _s max I _s	d _n	C ₁	C ₂	min I _n	l _u
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
EJOT H1 eco	8	25	95	32	4,5	14	25	60	90
			295	110				180	

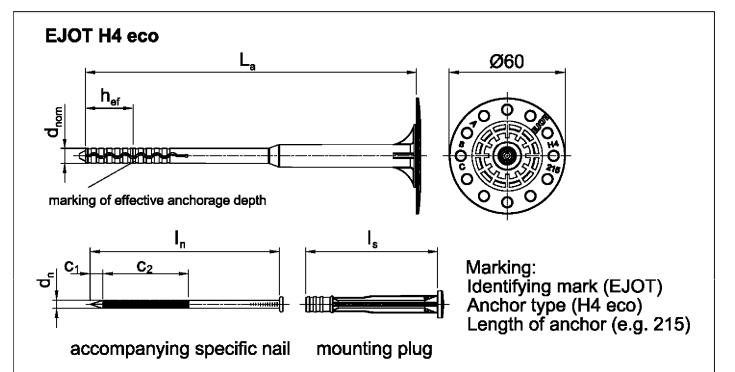
 $(L_a = e.g. 95; t_{tol} = 10)$

Determination of maximum thickness of insulation h_D [mm] for EJOT H1 eco:

$$h_D = L_a - t_{tol} - h_{ef}$$

e.G. $h_D = 95 - 10 - 25$

 $h_{Dmax} = 95 - 10 - 20$


LIOT H1	900	and	FJOT	Η4	000

Product description

Marking and dimension of the anchor sleeve, expansion element for EJOT H1 eco

Annex A 3

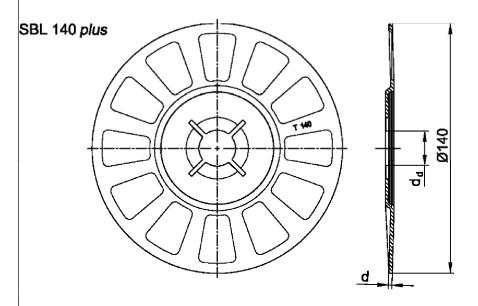
Table A2: Dimens	ions							
		Anchor Sleeve		Mounting Plug		-	pecific nail	
Anchor type	d _{nom}	h _{ef}	min L _a max L _a	min l _s max l _s	d _n	C ₁	C ₂	min I _n max I _n
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
EJOT H4 eco	8	25	155	72	4,3	7	45	80
			295	110				180

 $(L_a = e.g. 155; t_{tol} = 10)$

Determination of maximum thickness of insulation h_D [mm] for EJOT H4 eco:

$$h_D = L_a - t_{tol} - h_{ef}$$

e.G. $h_D = 155 - 10 - 25$


$$n_D = 155 - 10 - 25$$

= 120 h_{Dmax}

EJOT H1 eco and EJOT H4 eco	
Product description Marking and dimension of the anchor sleeve, expansion element for EJOT H4 eco	Annex A 4

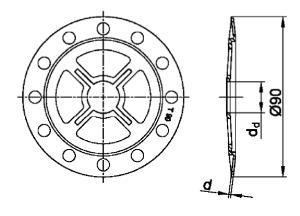


Table A3: Materials	
Name	Materials
Anchor sleeve	Polyethylene, PE-HD nature, yellow, orange, red, blue, grey
Mounting plug	Polyamide, PA GF 50
Specific nail	Steel, electro galvanized \geq 5 µm according to EN ISO 4042:2001-01, blue passivated f _{yk} \geq 670 N/mm ²

SBL 140 plus				
colour	nature			
d _d [mm]	20,0			
d [mm]	2,0			
Material	1) 2)			

VT 90

VT 90				
colour	nature			
d _d [mm]	17,5			
d [mm]	1,2			
Material	1) 2)			

¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50

EJOT H1 eco and EJOT H4 eco	
Product description Materials,	Annex A 5
Slip on plates with EJOT H1 eco and EJOT H4 eco	

Specifications of intended use

Anchorages subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1.
- Solid masonry (use category B), according to Annex C 1.
- · Hollow or perforated masonry (use category C), according to Annex C 1.
- For other base materials of the use categories A, B, or C the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

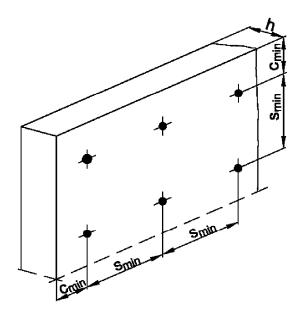
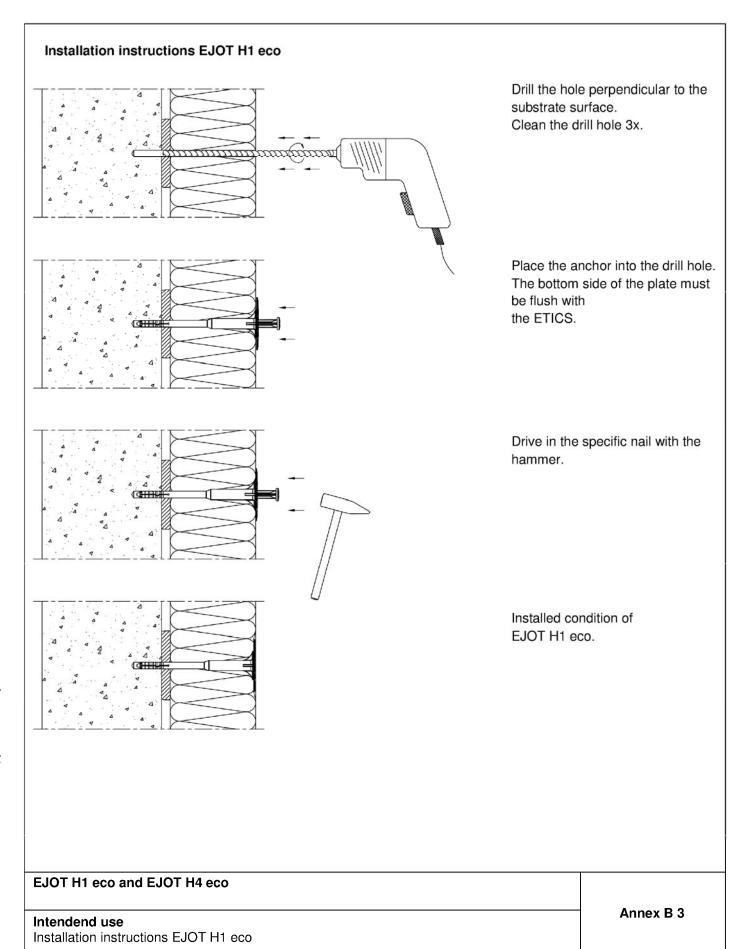
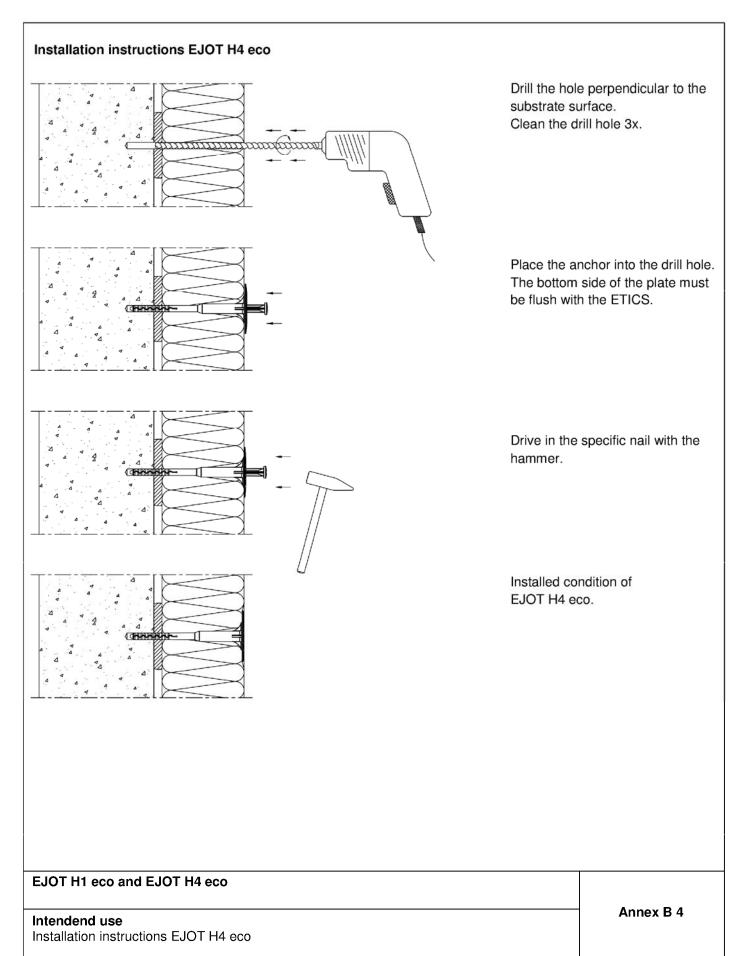

EJOT H1 eco und EJOT H4 eco	
Intended use Specifications	Annex B 1

Table B1: Installation parameters					
Anchor type		EJOT H1 eco / EJOT H4 eco			
Drill hole diameter	d ₀ [mm] =	8			
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45			
Depth of drilles hole to deepest point	h₁ [mm] ≥	35			
Effective anchorage depth	h _{ef} [mm] ≥	25			


Table B2: Anchor distances and dimensions of members				
Anchor type EJOT H1 eco / EJOT H4 eco				
Minimum allowable spacing	s _{min} ≥ [mm]	100		
Minimum allowable edge distance	$c_{min} \geq [mm]$	100		
Minimum thickness of member	h ≥ [mm]	100		

Scheme of distances and spacings



EJOT H1 eco and EJOT H4 eco	
	Annov B O
Intended use	Annex B 2
Installations parameters,	
Edge distances and spacing	

Anchor type					EJOT H1 eco	EJOT H4 eco
Base materials	Bulk density class ρ [kg/dm³]	minimum compressive strength f _b [N/mm²]	General remarks	Drill method	N _{Rk} [kN]	N _{Rk} [kN]
Concrete C12/15 EN 206-1:2000-12			EN 206-1:2000-12	hammer	0,90	0,50
Concrete C20/25 – C50/60 EN 206-1:2000-12			EN 206-1:2000-12	hammer	0,90	0,75
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,90	0,75
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,90	0,75
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 1,2	20	Vertically perforation more than 15 % and less than 50 %.	rotary	0,75 1)	-
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 0,9	12	Vertically perforation more than 15 % and less than 50 %.	rotary	0,60 2)	0,50 ²⁾
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,4	12	Vertically perforation more than 15 %.	rotary	0,9 3)	0,75 3)

The value applies only for outer web thickness ≥ 14 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

EJOT H1 eco and H4 eco	
Performances Characteristic resistance	Annex C 1

The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

English translation prepared by DIBt

EJOT H1 eco

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2007-06				
insulation thickness point thermal transmittance				
anchor type	h _D [mm]	χ [W/K]		
EJOT H1 eco	60 – 260	0,001		

Table C3: Plate stiffness according EOTA Technical Report TR 026:2007-06					
	diameter	load resistance	plate stiffness		
anchor type	of the anchor plate	oft the anchor plate			
	[mm]	[mm]	[kN/mm]		
EJOT H1 eco	60	1,4	0,60		

Table C4: Displacements EJOT H1 eco					
Base materials	Bulk density Class ρ [kg/dm³]	Minimum Compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements δ(N) [kN/mm]	
Concrete C12/15 – C50/60 EN 206-1:2000-12			0,3	0,3	
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 1,8	12	0,3	0,3	
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,8	12	0,3	0,3	
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 1,2	20	0,25	0,4	
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 0,9	12	0,2	0,2	
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,4	12	0,3	0,3	

EJOT H1 eco and EJOT H4 eco	
Performances Point thermal transmittance, plate stiffness and displacements for EJOT H1 eco	Annex C 2

Electronic copy of the ETA by DIBt: ETA-11/0192

English translation prepared by DIBt

EJOT H4 eco

Table C5: Point thermal transmittance according EOTA Technical Report TR 025:2007-06					
insulation thickness point thermal transmittance					
anchor type	h _D [mm]	χ [W/K]			
EJOT H4 eco	60 – 260	0,002			

Table C6: Plate stiffness according EOTA Technical Report TR 026:2007-06					
diameter load resistance plate stiffness					
anchor type	of the anchor plate	oft the anchor plate			
[mm] [mm] [kN/mm]					
EJOT H4 eco	60	1,4	0,60		

Table C7: Displacements EJOT H4 e	Table C7: Displacements EJOT H4 eco					
Base materials	Bulk density Class ρ [kg/dm³]	Minimum Compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements ^δ (N) [kN/mm]		
Concrete C12/15 – C50/60 EN 206-1:2000-12			0,30	0,6		
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 1,8	12	0,25	0,4		
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,8	12	0,25	0,4		
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011-07	≥ 0,9	12	0,15	0,6		
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011-07	≥ 1,4	12	0,25	0,4		

EJOT H1 eco and EJOT H4 eco	
Performances Point thermal transmittance, plate stiffness and displacements for EJOT H4 eco	Annex C 3