

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0352 of 23 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

POWERS PURE 150-PRO injection resin with anchor rod for concrete

Bonded anchor for diamond coring for use in uncracked concrete

Powers Fasteners Europe Stanley Black&Decker Deutschland GmbH Black-&-Decker Str. 40 65510 Idstein DEUTSCHLAND

Powers Fasteners Europe BV Factory 2, Germany

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0352

Page 2 of 27 | 23 April 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0352

Page 3 of 27 | 23 April 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "POWERS PURE150-PRO Injection resin with anchor rod for concrete" is a bonded anchor consisting of a cartridge with injection mortar POWERS PURE150-PRO and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm or threaded sleeves with internal thread of sizes M8 to M16.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for design according to TR 029	See Annex C 1 to C 6		
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 7 to C 12		
Displacements under tension and shear loads	See Annex C 13 to C 15		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

European Technical Assessment ETA-11/0352

Page 4 of 27 | 23 April 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

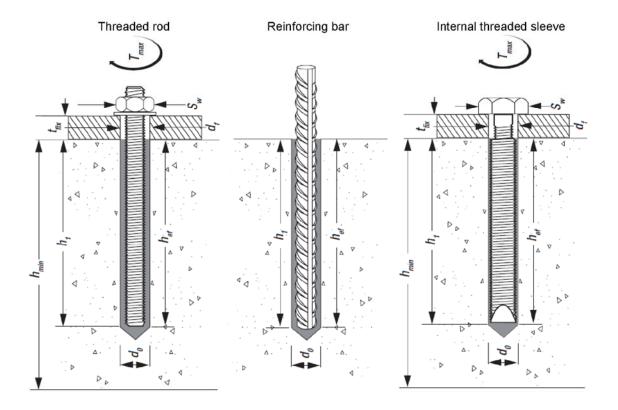
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 April 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

*beglaubigt:*Baderschneider



Reinforcing bar \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16 and \varnothing 20, \varnothing 24, \varnothing 25

Internal threaded sleeve M8, M10, M12 and M16

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex A1

Product description

Product (Steel) and Installation

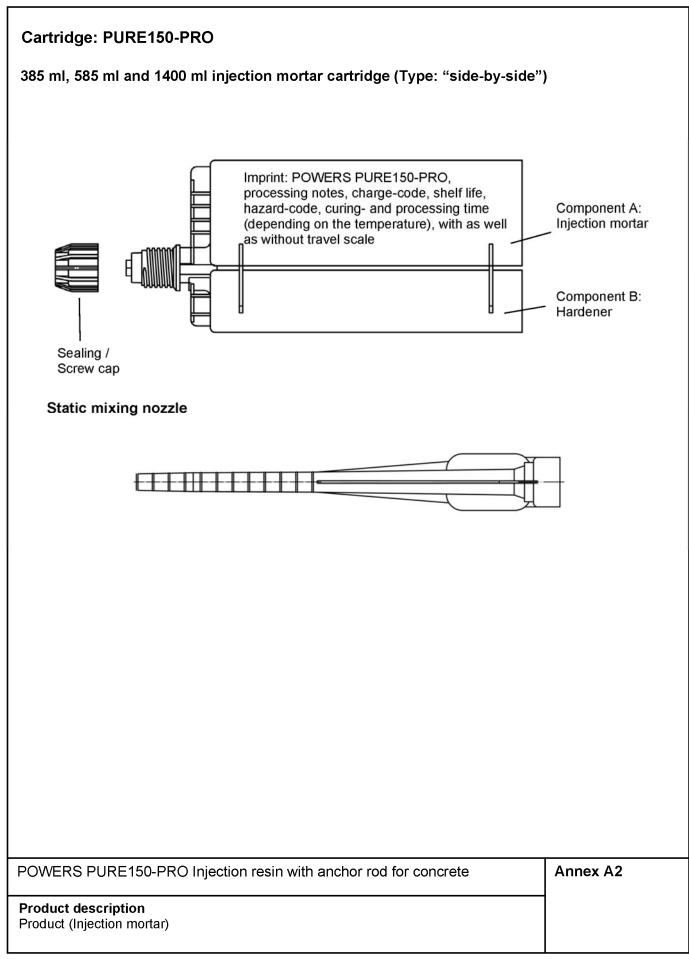


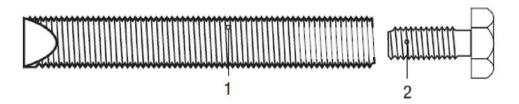
Table A1: Materials (Threaded rod)

Part	Designation	Material					
	l, zinc plated ≥ 5 μm acc. EN ISO 404 SO 1461:2009	2:1999 or Steel, hot-dip galvanised ≥ 40 μm acc.					
1	Threaded rod	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8 acc. EN 1993-1-8:2005+AC:2009 A ₅ > 8% fracture elongation, f _{uk} = f _{ub} f _{yk} = f _{yb}					
2	Hexagon Nut EN ISO 4032:2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) Property class 5 (for class 5.8 rod) Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated					
Stair	nless steel						
1	Threaded rod	Material 1.4401 / 1.4571, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation, $f_{uk} = R_{m.min}$ $f_{yk} = R_{p0,2,min}$					
2	Hexagon Nut EN ISO 4032:2012	Material 1.4401 / 1.4571 EN 10088-1:2005, Property class 70 EN ISO 3506-2:2009					
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401 or 1.4571, EN 10088-1:2005					
High	corrosion resistance steel						
1	Threaded rod	Material 1.4529 / 1.4565, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation, $f_{uk} = R_{m.min}$ $f_{yk} = R_{p0,2,min}$					
2	Hexagon Nut EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, Property class 70 EN ISO 3506-2:2009					
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565 acc. EN 10088-1:2005					

Commercial standard rod with:

- Materials, dimensions and mechanical properties (Table A1)
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex A3
Product description Material (Threaded rod)	


Table A2: Material (Reinforcing bar)

- Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2009+AC:2010 Rip hight of the bar shall be in the range 0,05d≤h≤0,07d
- (d: Nominal diameter oft he rebar, h: Rip hight of the bar)

Rei	nforcing bar	
-	Rebar according EN 1992-1-1:2009+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Table A3: Material (Internal threaded sleeve)

Part	Designation	Material					
Steel	Steel, zinc plated ≥ 5 µm acc. EN ISO 4042:1999						
1	Internal threaded sleeve	Steel, EN 10087:2001 or EN 10263:2001 Property class 5.8, EN 1993-1-8:2005+AC:2009					
2	Corresponding steel screw	Steel screws property class 5.8 or 8.8, EN ISO 898-1:2013 Zinc plated ≥ 5 µm acc. EN ISO 4042:1999					
Stain	less steel A4						
1	1 Internal threaded sleeve Material 1.4401 / 1.4404 / 1.4571, EN 10088-1: 2005, Property class 70, EN ISO 3506-1:2009						
2	Corresponding steel screw	Steel screws property class 50 or 70 EN ISO 3506-1:2009 Stainless steel 1.4401, 1.4404, 1.4571 EN 10088-1:2005					
High	corrosion resistance steel HCR						
1	Internal threaded sleeve	Material 1.4529 / 1.4565, EN 10088-1:2005, Property class 70, EN ISO 3506-1:2009					
2	Corresponding steel screw	Steel screws property class 50 or 70 EN ISO 3506-1:2009 High corrosion resistance steel 1.4529, 1.4565 EN 10088-1:2005					

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex A4
Product description Material (Reinforcing bar) Werkstoffe (Internal threaded sleeve)	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

 Static and quasi-static loads: Threaded rod M10 to M24, Rebar Ø10 to Ø25, Internal threaded rod M8 to M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete

Temperature Range:

- I: 40 °C to +40 °C (max. long term temperature +24 °C und max. short term temperature +40 °C)
- II: 40 °C to +60 °C (max. long term temperature +43 °C und max. short term temperature +60 °C)
- III: 40 °C to +72 °C (max. long term temperature +43 °C und max. short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

electronic copy of the eta by dibt: eta-11/0352

- Dry or wet concrete
- Flooded holes (not sea water)
- Hole drilling by diamond drilling
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex B1
Intended Use Specifications	

Table B1: Installation parameters for threaded rod

Anchor size		M 10	M 12	M 16	M 20	M 24
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96
hole depth	h _{ef,max} [mm] =	200	240	320	400	480
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14	18	22	26
Diameter of steel brush	d _b [mm] ≥	14	16	20	26	30
Torque moment	T _{inst} [Nm]	20	40	80	120	160
Thickness of fixture	t _{fix,min} [mm] >	0				
Thickness of fixture	t _{fix,max} [mm] <			1500		
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	50	60	80	100	120
Minimum edge distance	c _{min} [mm]	50	60	80	100	120

Table B2: Installation parameters for reinforcing bar

Rebar size		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	28	32
Embedment depth and bore hole depth	h _{ef,min} [mm] =	60	70	75	80	90	96	100
	h _{ef,max} [mm] =	200	240	280	320	400	480	500
Diameter of steel brush	d _b [mm] ≥	16	18	20	22	26	30	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	50	60	70	80	100	120	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	120	125

Table B3: Installation parameters for internal threaded sleeves

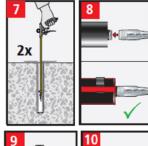
Internal thread size		M 8	M 10	M 12	M 16
External diameter size	[mm]	12	16	20	24
Nominal drill hole diameter	d₀ [mm]	14	18	24	28
Embedment depth and bore hole depth	h _{ef} [mm]	80	90	110	150
Diameter of clearance hole in the fixture	d _f [mm]	9	12	14	18
Diameter of steel brush	d₀ [mm]	16	20	26	30
Torque moment	T _{inst} [Nm]	10	20	40	80
Minimum thickness of member	h _{min} [mm]	110	130	160	210
Minimum spacing	s _{min} [mm]	60	80	100	120
Minimum edge distance	c _{min} [mm]	60	80	100	120

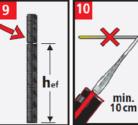
POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex B2

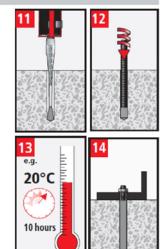
Intended Use

Installation parameters


Installation Instructions



- Drill a hole to the size and embedment required.
- 2 Rinse the drill hole until dear water comes out of the drill
- Brush the hole with an appropriate sized wirebrush a minimum of two times. Start at the rear of the drill hole. If the rear of the drill hole cannot be reached by brush an extension must be used.
- 4 Please repeat step 2.


Minimum curing time

- 5 Starting from the rear of the hole, blow the hole clean with compressed air a minimum of two times. If the rear of the drill hole cannot be reached an extension must be used.
- 6 Brush the hole again with an appropriate sized wirebrush a minimum of two times. If the rear of the drill hole cannot be reached by brush an extension must be used.

- Please repeat step 5.
- Attach a supplied static mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended gel time (as seen on table setting time) as well as for new cartridges, a new static mixer must be used.
- Prior to inserting the threaded rod into the filled hole, the position of the embedment depth must be marked on the anchor rods or rebar. Insert marked rebar/rod into unfilled hole to check if embedment is reached.
- Prior to dispensing into the anchor hole, squeeze out a minimum of 10cm until the mortar shows a consistent colour.

- Fill the cleaned hole approximately two-thirds with adhesive starting from the rear of the hole. For all diameters use a piston plug and extension nozzle. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedments larger than 190 mm an extension nozzle must be used. Observe gelworking times.
- Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The rod or rebar should be free of dirt, grease, oil or other foreign material.
- Allow the adhesive to cure to the specified time prior to applying any load or torque.

 Do not move or load the anchor until it is fully cured.
- After full curing, the fixture can be installed.

 Make sure the max. torque is not exceeded.

 Ensure that the anchor is fully seated at the bottom of the hole (in case the threaded rod is not marked) and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.

Table B4: Minimum curing time

Concrete Temperatur	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ + 5 °C	120 min	50 h	100 h
≥ +10 °C	90 min	30 h	60 h
≥ +20 °C	30 min	10 h	20 h
≥ +30 °C	20 min	6 h	12 h
≥ +40 °C	12 min	4 h	8 h

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex B3
Intended Use Installation instructions	

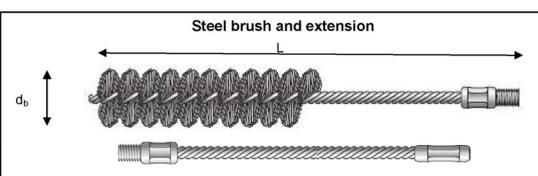


Table B5: Parameter cleaning and setting tools

Threaded rod [mm]	Internal threaded sleeve [mm]	Rebar	Drill bit ∅ d₀ [mm]	Brush d nominal d _b [mm]	iameters minimum d _{b,min} [mm]	Piston plug denom. (∅) [mm]
M10		8	12	14	12,5	-
M12	M8	10	14	16	14,5	-
-		12	16	18	16,5	-
M16	M10	14	18	20	18,5	-
-		16	20	22	20,5	-
M20	M12	20	24	26	24,5	#24 (22)
M24	M16	-	28	30	28,5	#28 (27)
		25	32	34	32,5	#28 (29)

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 12 mm to 20 mm

Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 32 mm

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex B4
Intended Use Cleaning and setting tools	

Table C1: Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	
Steel failure									
Characteristic tension resistance N _{Rk,s}				See TR029, Chapter 5.2.2.2., Eq. (5.1) N _{Rk,s} = A _s ·f _{uk}					
Stressed cross section		As	[mm²]	58,0	84,3	156,7	244,8	352,5	
Combined pullout and concr	ete cone failure								
Characteristic bond resistance	in uncracked concre	te C20	0/25						
Temperature range I: 40°C/24°C	Dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	11,0	10,0	10,0	9,5	9,0	
Temperature range i: 40 C/24 C	Flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	13,0	12,0	11,0	11,0	10,0	
Temperature range II: 60°C/43°C	Dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,0	6,5	6,0	6,0	5,5	
Temperature range ii. 60 C/43 C	Flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,0	7,5	7,0	7,0	6,5	
Temperature range III: 72°C/43°C	Dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
remperature range iii: 72°C/43°C	Flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,0	7,0	6,5	6,0	6,0	
		C30/3	7	1,04					
Increasing factor ψ_c for characteristic bond resistance τ	Rk ucr	C40/50		1,08					
	,	C50/6	0	1,10					
Splitting failure									
Characteristic adve distance a fi	1	h≥2h _{ef}		1,0h _{ef}					
Characteristic edge distance c _{cr,sp} [mm]			>h>1,3h _{ef} 1,3h _{ef}	5h _{ef} – 2h 2,4h _{ef}					
Characteristic spacing			[mm]			2°C _{cr,sp}			
Installation safety factor (dry and wet concrete)				1,0		1	,2		
Installation safety factor (flooded be	ore hole)	γ_2				1,4			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C1
Performances Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)	

Table C2: Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)

Anchor size threaded rod				M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance	V _{Rk,s}	[kN]	See T		hapter 5 _{Rk,s} =0,5⋅ <i>A</i>		Eq. (5.5),
Stressed cross section	As	[mm²]	[] 58,0 84,3 156,7 244,8			352,5	
Steel failure with lever arm							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	SE	ee TR02 Eq. (5.6 k	29, Chap o), M ⁰ _{Rk,s}	oter 5.2.3 =1,2·W _e	3.2., _I ·f _{uk}
Elastic section modulus	W _{el}	[mm³]	62,3	109,1	276,6	540,3	933,4
Concrete pryout failure							
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	t		2,0				
Installation safety factor γ_2			1,0				
Concrete edge failure							
See chapter 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors							
Installation safety factor	γ_2		1,0				

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C2
Performances Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)	

English translation prepared by DIBt

Table C3: Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)

Anchor size reinforcing bar	Anchor size reinforcing bar				Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure										
Characteristic tension resistant	ce	N _{Rk,s}	[kN]	See TR029, Chapter 5.2.2.2. Eq. (5.1), N _{Rk,s} = A _s ·f _{uk}						
Stressed cross section		As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Combined pullout and concr	ete cone failure									
Characteristic bond resistance	in uncracked concre	te C20)/25							
Tomorovaturo rongo li 40°C/04°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11,0	10,0	10,0	10,0	9,5	9,0	9,0
Temperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13,0	12,0	12,0	11,0	11,0	10,0	10,0
Temperature range II: 60°C/43°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5	5,5
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	7,5	7,5	7,0	7,0	6,5	6,5
T	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,5	5,0	5,0	5,0
Temperature range III: 72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Increasing factor ψc for charact	teristic		C30/37 1,04							
bond resistance $\tau_{Rk,ucr}$		C40/5 C50/6		 			1,08			
Splitting failure				•			•			
		h	≥2h _{ef}	1,0h _{ef}						
Characteristic edge distance co	_{r,sp} [mm]		>h>1,3h _{ef} 1,3h _{ef}	5h _{ef} — 2h 2,4h _{ef}						
Characteristic spacing		S _{cr,sp}	[mm]	2°C _{cr,sp}						
Installation safety factor (dry and wet concrete)				1,0 1,2						
Installation safety factor (floode	ed bore hole)	γ ₂					1,4			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C3
Performances Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)	

Table C4: Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)

Anchor size reinforcing bar	Anchor size reinforcing bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure without lever arm									
Characteristic shear resistance	V _{Rk,s}	[kN]	Siehe TR029, Abs. 5.2.3.2., Gleichung (5.5 V _{Rk,s} =0,5·A _s ·f _{uk}				(5.5),		
Stressed cross section	As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Steel failure with lever arm									
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	Siehe TR029, Abs. 5.2.3.2., Gleichung (5.6 b), $M^0_{Rk,s}$ =1,2·W _{el} ·f _{uk}				6 b),		
Elastic section modulus	W _{el}	[mm³]	98,2	169,6	269,4	402,1	785,4	1357	1534
Concrete pry out failure									
Factor k in Equation (5.7) of Technical RoTR 029 for the design of Bonded Anchor			2,0						
Installation safety factor γ ₂				1,0					
Concrete edge failure									
See chapter 5.2.3.4 of Technical Report TR 029 for the design of bonded anchors									
Installation safety factor	γ ₂					1,0			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C4
Performances Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)	

Table C5: Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)

Anchor size internal t	hreaded sleeve			M 8	M 10	M 12	M 16			
External diameter		d	[mm]	12	16	20	24			
Embedment depth		h _{ef}	[mm]	80	90	110	150			
Steel failure (internal	threaded sleeve)									
Characteristic tension rezinc plated	•	N _{Rk,s}	[kN]	19,5	42,8	71,1	83,7			
Characteristic tension restainless steel A4	esistance,	$N_{Rk,s}$	[kN]	24,2	53,1	88,1	103,8			
Steel failure (threaded	l rod)									
Characteristic tension re	esistance	N _{Rk,s}	[kN]		R029, Ch q. (5.1), N					
Stressed cross section		As	[mm²]	36,6	58,0	84,3	156,7			
Combined pullout and	l concrete cone failure		•							
Characteristic bond res	istace in uncracked cond	rete C20	/25							
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10,0	10,0	9,5	9,0			
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	12,0	11,0	11,0	10,0			
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	5,5			
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	7,0	7,0	6,5			
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	6,0	5,5	5,0	5,0			
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0			
Increasing factor ψ _c for	characteristic bond	C30/37		1,04						
resistance $\tau_{Rk,ucr}$		C40/50 C50/60	C40/50		1,08 1,10					
Splitting failure		1030/00			1,1	<u> </u>				
		Т	h≥2h _{ef}	1,0h _{ef}						
Characteristic edge dist	ance c _{cr,sp} [mm]		2,0h _{ef} >h>1,3h _{ef}		5h _{ef} -					
Characteristic spacing		S _{cr,sp}	h≤1,3h _{ef} [mm]	2,4h _{ef} 2∘c _{cr,sp}						
· · ·	(dry and wet concrete)	γ ₂	[min]		1,2					
Installation safety factor		γ ₂		,						
motanation salety lactor	(moded bole lible)	12		1,4						

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C5
Performances Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)	

Table C6: Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)

Anchor size internal threaded sleeve	M 8	M 10	M 12	M 16				
External diameter	d	[mm]	12	16	20	24		
Embedment depth	h _{ef}	[mm]	80	90	110	150		
Steel failure without lever arm (inter	nal threade	d sleeve))					
Characteristic shear resistance, zinc plated	$V_{Rk,s}$	[kN]	9,7	21,4	35,5	41,9		
Characteristic shear resistance, A4 steel	$V_{Rk,s}$	[kN]	12,1	26,5	44,1	51,9		
Steel failure without lever arm (three	aded rod)							
Characteristic shear resistance	$V_{Rk,s}$	[kN]	See ⁻	V _{Rk,s} =	oter 5.2.3.2., E =0,5·A _s ·f _{uk}			
Stressed cross section	As	[mm²]	36,6	58,0	84,3	156,7		
Steel failure with lever arm (internal	threaded sle	eeve)						
Characteristic bending moment, zinc plated	M ⁰ _{Rk,s}	[Nm]	46,5	131,8	267,2	405,7		
Characteristic bending moment, A4 steel	M ⁰ _{Rk,s}	[Nm]	57,7	163,4	331,3	503,0		
Steel failure with lever arm (threaded	l rod)							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	See TR029, Chapter 5.2.3.2., Eq. (5.6 b), $M^0_{Rk,s}$ =1,2·W _{el} ·f _{uk}					
Elastic section modulus	W _{el}	[mm³]	31,2	62,3	109,1	276,6		
Concrete pryout failure								
Factor k in Equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors				2,0				
Installation safety factor	γ_2		1,0					
Concrete edge failure								
See chapter 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors								
Installation safety factor	γ2				1,0			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C6
Performances Characteristic values for shear loads in uncracked concrete (Design method according to TR 029)	

Table C7: Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Anchor size threaded rod	M 10	M 12	M 16	M 20	M24				
Steel failure									
Characteristic tension resistance		N _{Rk,s}	[kN]	See CE		992-4-5 _{Rk,s} = A _s ·		r 6.2.2,	
Stressed cross section		As	[mm²]	58,0	84,3	156,7	244,8	352,5	
Combined pullout and concr	ete cone failure								
Characteristic bond resistance in u	uncracked concrete C	20/25							
Temperature range I: 40°C/24°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	11,0	10,0	10,0	9,5	9,0	
Temperature range i. 40 6/24 6	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13,0	12,0	11,0	11,0	10,0	
Tomposatura rango III 60°C/40°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5	
Temperature range II: 60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	7,5	7,0	7,0	6,5	
	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
Temperature range III: 72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	6,5	6,0	6,0	
Increasing factor ψ _c for		C30/37		1,04					
characteristic bond resistance $\tau_{Rk,uc}$	or .	C40/50 C50/60		1,08 1,10					
Factor acc. CEN/TS 1992-4-5, cha	pter 6.2.2.3	030/0	k ₈	10,1					
Concrete cone failure			-						
Characteristic edge distance		C _{cr.N}	[mm]	Г	1,5∘h _{ef}				
Characteristic spacing		S _{cr,N}	[mm]	2∘C _{cr,sp}					
Factor acc. CEN/TS 1992-4-5, cha	pter 6.2.3.1		k _{uer}	10.1					
Splitting failure									
Characteristic edge distance c _{cr,sp} [mm]		h≥2h _{ef}		1,0h _{ef}					
		2,0h _{ef} >h>1,3h _{ef} h≤1,3h _{ef}		5h _{ef} – 2h 2,4h _{ef}					
Characteristic spacing			S _{cr.sp}						
Installation safety factor (dry and w	et concrete)	$\gamma_{\rm inst}$ 1,0		1	,2				
Installation safety factor (flooded be	ore hole)	$\gamma_{\rm inst}$				1,4			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C7
Performances Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C8: Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Anchor size threaded rod				M 12	M 16	M 20	M24		
Steel failure without lever arm									
Characteristic shear resistance	V _{Rk,s}	[kN]	See CEN/TS 1992-4-5, Chapter 6.3.2.1, V _{Rk,s} =0,5·A _s ·f _{uk}						
Stressed cross section	As	[mm²]	58,0	84,3	156,7	244,8	352,5		
Steel failure with lever arm									
Characteristic bending resistance M ⁰ _{Rk,s} [Nm]			See CEN/TS 1992-4-5, Chapter 6.3.2.2, M ⁰ _{Rk,s} =1,2·W _{el} ·f _{uk}						
Elastic section modulus	W _{el}	[mm³]	62,3	109,1	276,6	540,3	933,4		
Ductility factor		k ₂	0,80						
Concrete pryout failure									
Factor acc. Eq. (27) CEN/TS 1992-4-5, chapter 6.3.3		k ₃	2,0						
Installation safety factor	Installation safety factor γ _{inst}			1,0					
Concrete edge failure									
Effective length of anchor	l _f [mm]			n] I _f = min(h _{ef} ; 8d _{nom)}					
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24		
Installation safety factor γ_{inst}					1,0				

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C8
Performances Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C9: Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure										
Characteristic tension resistance		N _{Rk,s}	[kN]		See CE		992-4-5 _{Rk,s} = A _s		er 6.2.2,	
Stressed cross section		As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Combined pullout and concre	ete cone failure									
Characteristic bond resistance	in uncracked conc	rete C2	20/25							
Temperature range I: 40°C/24°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	11,0	10,0	10,0	10,0	9,5	9,0	9,0
Temperature range i: 40 C/24 C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13,0	12,0	12,0	11,0	11,0	10,0	10,0
Toronorotura rongo III 60°C/42°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5	5,5
Temperature range II: 60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	7,5	7,5	7,0	7,0	6,5	6,5
T	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,5	5,0	5,0	5,0
Temperature range III: 72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Increasing factor ψ _c for		C30/37 1,04								
characteristic bond resistance τ	CRk ucr	C40/5 C50/6	_	1,08						
Factor acc. CEN/TS 1992-4-5 chap		C50/6	k ₈	1,10 10.1						
Concrete cone failure										
Characteristic edge distance		C _{cr,N}	[mm]	1,5∙h _{ef}						
Characteristic spacing		S _{cr.N}	[mm]	2·c _{cr,N}						
Factor acc. CEN/TS 1992-4-5 chap	ter 6.2.3.1	_	K _{ucr}	10,1						
Splitting failure										
Characteristic edge distance c _{cr.sp} [mm]		h≥2h _{ef}		1,0h _{ef}						
			>h>1,3h _{ef} 1,3h _{ef}	$5h_{ef} - 2h$ $2,4h_{ef}$						
Characteristic spacing		S _{cr,sp}	[mm]				2°C _{cr,sp}			
Installation safety factor (dry an	id wet concrete)	γ _{inst}		1,0 1,2						
Installation safety factor (floode	· ·	TILIST					1,4			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C9
Performances Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C10: Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Anchor size reinforcing bar				Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure without lever arm									
Characteristic shear resistance	V _{Rk,s}	[kN]	See CEN/TS 1992-4-5, Chapter 6.3.2.1 V _{Rk,s} =0,5·A _s ·f _{uk}					Ι,	
Stressed cross section	As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Steel failure with lever arm									
Characteristic bending resistance M ⁰ _{Rk,s} [Nm]			Siehe CEN/TS 1992-4-5, Abs. 6.3.2.2, M ⁰ _{Rk,s} =1,2·W _{el} ·f _{uk}						2,
Elastic section modulus	Wel	[mm³]	98,2	169,6	269,4	402,1	785,4	1357	1534
Ductility factor		k ₂				0,80			
Concrete pry out failure									
Factor acc. Eq. (27) CEN/TS 1992-4-5 chapter 6.3.3		k ₃	2,0						
Installation safety factor	γ_{inst}		1,0						
Concrete edge failure									
Effective length of anchor	l _f [mm]			I _f = min(h _{ef} ; 8d _{nom)}					
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	16	20	24	25
Installation safety factor γ_{inst}			1,0						

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C10
Performances Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C11: Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

A makan alaa lutamad tha				14.0	N4.40	14.40	14.40		
Anchor size internal thr	eaded sieeve			M 8	M 10	M 12	M 16		
External diameter		d	[mm]	12	16	20	24		
Embedment depth		h _{ef}	[mm]	80	90	110	150		
Steel failure (internal th									
Characteristic tension res		$N_{Rk,s}$	[kN]	19,5	42,8	71,1	83,7		
Characteristic tension res steel A4		$N_{Rk,s}$	[kN]	24,2	53,1	53,1 88,1 103, 1992-4-5, Chapter 6.2.2 $N_{Rk,s} = A_s \cdot f_{uk}$ 58,0 84,3 156, 10,0 9,5 9,0 11,0 11,0 10,0 6,0 6,0 5,5 7,0 7,0 6,5 5,5 5,0 5,0			
Steel failure (threaded r	od)								
Characteristic tension res	istance	N _{Rk,s}	[kN]	See CEN			er 6.2.2,		
Stressed cross section		As	[mm²]	36,6	58,0	84,3	156,7		
Combined pullout and o	oncrete cone failure								
Characteristic bond resist	ance in uncracked cond	crete C20)/25						
Temperature range I:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	10,0	10,0	9,5	9,0		
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12,0	11,0	11,0	10,0		
Temperature range II:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	5,5		
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	7,0	7,0	6,5		
Temperature range III:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	5,5	5,0	5,0		
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,0	6,5	9,5 11,0 6,0 7,0 5,0 6,0 0,1 5 h _{ef} C _{Cr,N} 0,1	6,0		
Increasing factor ψc for ch	aracteristic bond	C30/37			1,0	4			
resistance τ _{Rk,ucr}	iaracieristic boriu	C40/50			1,0	8			
		C50/60							
Factor acc. CEN/TS 1992-4-	5 chapter 6.2.2.3	k ₈			6,0 6,0 5,5 7,0 7,0 6,5 5,5 5,0 5,0 6,5 6,0 6,0 1,04 1,08 1,10				
Concrete cone failure									
Characteristic edge distar	nce	C _{cr,N}	[mm]		1,5∙	h _{ef}			
Characteristic spacing		S _{cr,N}	[mm]		2·c	cr,N			
Factor acc. CEN/TS 1992-4-	5 chapter 6.2.3.1		k _{ucr}						
Splitting failure									
			h≥2h _{ef}						
Characteristic edge distar	nce c _{cr,sp} [mm]		ef>h>1,3hef		5h _{ef} – 2h				
Characteristic spacing		S _{cr,sp}	≤1,3h _{ef} [mm]			-			
Installation safety factor (dry and wet concrete)	γinst							
Installation safety factor (<u> </u>	Yinst				11,0 11,0 10, 6,0 6,0 5,5 7,0 7,0 6,5 5,5 5,0 5,0 6,5 6,0 6,0 1,04 1,08 1,10 10,1 1,5 · h _{ef} 2 · c _{cr,N} 10,1 1,0h _{ef}			

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C11
Performances Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C12: Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Anchor size internal threaded sl	001/0		M 8	M 10	M 12	M 16
External diameter	d	[mm]	12	16	20	24
		[mm]	80	90		150
Embedment depth	h _{ef}	[mm]	80	90	110	150
Steel failure without lever arm (inte	rnal threaded	l sleeve)				
Characteristic shear resistance, zinc plated	$V_{Rk,s}$	[kN]	9,7	21,4	35,5	41,9
Characteristic shear resistance, A4 steel	$V_{Rk,s}$	[kN]	12,1	26,5	44,1	51,9
Steel failure without lever arm (three	eaded rod)					
Characteristic shear resistance	V _{Rk,s}	[kN]	See C		?-4-5, Chapter (0,5·A _s ·f _{uk}	6.3.2.1,
Stressed cross section	As	[mm²]	36,6	58,0	84,3	156,7
Steel failure with lever arm (internal	threaded sle	eve)				
Characteristic bending moment, Zinc plated	M ⁰ _{Rk,s}	[Nm]	46,5	131,8	267,2	405,7
Characteristic bending moment, A4 steel	M ⁰ _{Rk,s}	[Nm]	57,7	163,4	331,3	503,0
Ductility factor	k ₂			(0,80	
Steel failure with lever arm (threade	d rod)					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	See CE		-4-5, Chaptei 1,2·W _{el} ·f _{uk}	6.3.2.2,
Elastic section modulus	Wel	[mm³]	31,2	62,3	109,1	276,6
Ductility factor	k ₂			(0,80	
Concrete pryout failure						
Factor acc. CEN/TS 1992-4-5, chapter	r 6.2.3	k ₃			2,0	
Installation safety factor	Yinst				1,0	
Concrete edge failure	•					
Effective length of anchor	I _f	[mm]		l _f = min	(h _{ef} ; 8d _{nom)}	
Outside diameter of anchor	d _{nom}	[mm]	12	16	20	24
Installation safety factor	γ_{inst}				1,0	

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C12
Performances Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)	

Table C13: Displacements under tension loads 1) (threaded rod)

Anchor size th	M 10	M 12	M 16	M 20	M24			
Temperature ra	mperature range 40°C/24°C							
Displacement	δ_{N0} - Factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029	
Displacement	$\delta_{N_{\infty}}$ - Factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	
Temperature ra	nge 72°C/43°C	and 60°C/43°C						
Displacement	δ _{N0} - Factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	
Displacement	$\delta_{N_{\infty}}$ - Factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ - Factor τ

 $\delta_{N\infty} = \delta_{N\infty}$ - Factor τ

Table C14: Displacements under shear loads 1) (threaded rod)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Displacement	δ_{V0} - Factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	δ _{V∞} - Factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 δ_{V0} = δ_{V0} - Factor- τ

 $\delta_{V_{\infty}}$ = $\delta_{V_{\infty}}$ - Factor τ

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex C13
Performances	
Displacements	
(threaded rod)	

Table C15: Displacements under tension loads 1) (Reinforcing bar)

Reinforcing I	Reinforcing bar				Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Temperature ra	mperature range 40°C/24°C								
Displacement	δ_{No} - Factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,029	0,030
Displacement	$\delta_{N_{\infty}}$ - Factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,114	0,118
Temperature ra	ure range 72°C/43°C and 60°C/43°C								
Displacement	δ _{N0} - Factor	[mm/(N/mm²)]	0,015	0,018	0,020	0,023	0,028	0,032	0,034
Displacement	$\delta_{N_{\infty}}$ - Factor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,131	0,136

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}$ - Factor- τ

 $\delta_{N\infty} = \delta_{N\infty}$ - Factor τ

Table C16: Displacements under shear loads 1) (Reinforcing bar)

Reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Displacement	δ_{V0} - Factor	[mm/kN]	0,05	0,05	0,04	0,04	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ - Factor	[mm/kN]	0,08	0,07	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - Factor- τ

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ - Factor τ

POWERS PURE150-PRO Verbundmörtel mit Ankerstange in Beton	Annex C14
Performances Displacements (Reinforcing bar)	

Table C17: Displacements under tension loads 1) (internal threaded sleeve)

Anchor size internal threaded sleeve			M 8	M 10	M 12	M 16		
Temperature range 40°C/24°C								
Displacement	δ _{N0} - Factor	[mm/ (N/mm²)]	0,015	0,020	0,024	0,029		
Displacement	$\delta_{N\infty}$ - Factor	[mm/ (N/mm²)]	0,061	0,079	0,096	0,114		
Temperature rang	e 72°C/43°C a	and 60°C/43°C						
Displacement	δ_{N0} - Factor	[mm/ (N/mm²)]	0,018	0,023	0,028	0,033		
Displacement	δ _{N∞} - Factor	[mm/ (N/mm²)]	0,070	0,091	0,111	0,131		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - Factor \cdot \tau$

 $\delta_{N\infty} = \delta_{N\infty}$ - Factor $\cdot \tau$

Table C18: Displacements under tension loads 1) (internal threaded sleeve)

Anchor size in	ternal threac	led sleeve	M 8	M 10	M 12	M 16
Displacement	δ _{vo} - Factor	[mm/ kN]	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$ - Factor	[mm/ kN]	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - Factor τ

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ - Factor τ

POWERS PURE150-PRO Verbundmörtel mit Ankerstange in Beton	Annex C15
Performances Displacements (internal threaded sleeve)	