

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0181 vom 3. Juli 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

G&B Gamma CE1

Kraftkontrolliert spreizender Dübel zur Verankerung im Beton

G&B FISSAGGI Corso Savona, 22 10029 Villatellone (TO) ITALIEN

Italy - PLANT 5

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-11/0181

Seite 2 von 15 | 3. Juli 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z47841.15 8.06.01-156/15

Europäische Technische Bewertung ETA-11/0181

Seite 3 von 15 | 3. Juli 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der G&B Gamma CE1 in den Größen M6, M8, M10, M12 und M16 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesteckt und kraft kontrolliert verspreizt wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Produktleistung für statische und quasi-statische Einwirkungen und für die seismischen Leistungskategorien C1 und C2	Siehe Anhang C 1
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 4

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung	
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1	
Leistung für Widerstand unter Brandbeanspruchung	Siehe Anhang C 2 und C 3	

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Für die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

Z47841.15 8.06.01-156/15

Europäische Technische Bewertung ETA-11/0181

Seite 4 von 15 | 3. Juli 2015

3.8 Allgemeine Aspekte

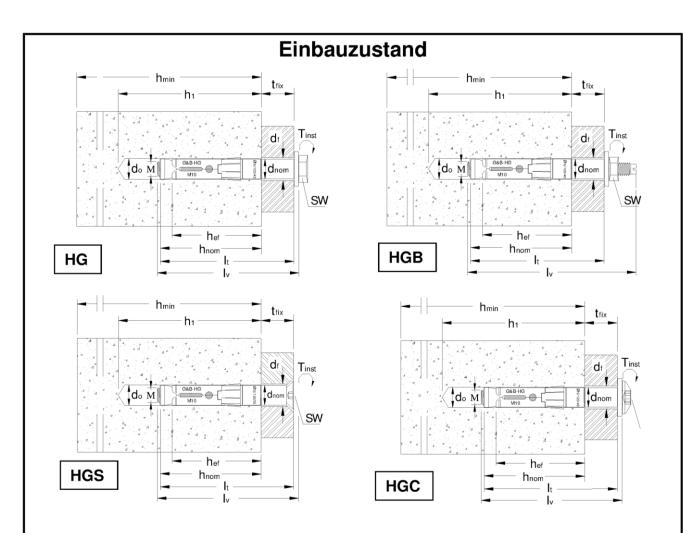
Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

		Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung strukturaler Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

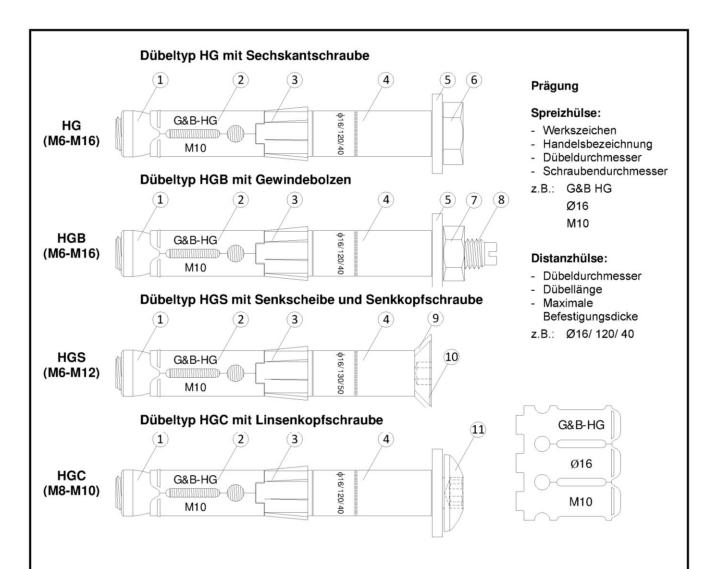
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 3. Juli 2015 vom Deutschen Institut für Bautechnik

Uwe Bender	Beglaubigt:
Abteilungsleiter	

Z47841.15 8.06.01-156/15



Bezeichnung

d _{nom}	Außendurchmesser des Dübels		
T _{inst}	Erforderliches Montagedrehmoment		
t _{fix}	Dicke des Anbauteils		
d_0	Bohrlochdurchmesser		
d _f	Durchmesser des Durchgangslochs im Anbauteil		
h _{min}	Minimale Dicke des Betonbauteils		
h _{nom}	Länge des Dübels im Beton		
h _{ef}	Effektive Verankerungstiefe		
I _t	Dübellänge		
l _v	Bolzenlänge		
Т	Größe des Maschinenantriebs		
SW	Schlüsselweite		
Н	Größe des Sechskantantriebs		

G&B Gamma CE1	
Produktbeschreibung Einbauzustand	Anhang A1

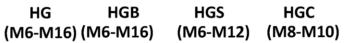


Tabelle A1:Werkstoffe

Teil	Bezeichnung	Oberflächen- behandlung
1	Konusmutter	***
2	Spreizhülse (Kennzeichnung: T-HVE / bolt Größe , e.g. M10)	
3	Nylon 6.6 Zylinder mit helix, ziegelrot	
4	Distanzhülse (marking: d _{nom} /l _t /t _{fix} , e.g. Ø16/120/40)	
5	Scheibe	galvanisch verzinkt≥ 5 [μm]
6	Sechskantschraube, Festigkeitsklasse 8.8 gemäß ISO 898-1:2012	gemäß
7	Sechskantmutter, Festigkeitsklasse 8 gemäß ISO 898-2:2012	ISO 4042:1999
8	Gewindebolzen, Festigkeitsklasse 8.8 gemäß ISO 898-1:2012	130 4042. 1999
9	Senkscheibe, gemäß EN 10083-1:2006	
10	Senkkopfschraube, Festigkeitsklasse 8.8 gemäß ISO 898-1:2012	
11	Halbrundkopfschraube, Festigkeitsklasse 8.8 gemäß ISO 898-1:2012	

G&B Gamma CE1		
Produktbeschreibung Dübeltypen und -Werkstoffe	Anhang A2	

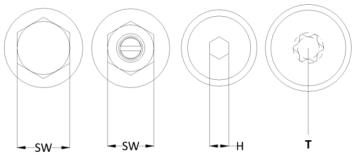


Tabelle A2: HG Abmessungen

Dübel	Außendurchmesser des Dübels [mm]	Durchmesser des metrischen Gewindes [mm]	Dübel Länge [mm]	Bereich Mindestanbauteildicke [mm]
HG-M6	10	6	70 - 120	5 - 15
HG-M8	12	8	80 - 140	10 - 70
HG-M10	16	10	100 - 160	20 - 80
HG-M12	18	12	120 – 200	20 - 100
HG-M16	24	16	140 – 220	20 - 100

Tabelle A3: HGB Abmessungen

Dübel	Außendurchmesser des Dübels [mm]	Durchmesser des metrischen Gewindes [mm]	Dübel Länge [mm]	Bereich Mindestanbauteildicke [mm]
HGB -M6	10	6	70 - 120	5 - 15
HGB -M8	12	8	80 - 140	10 - 70
HGB-M10	16	10	100 - 160	20 - 80
HGB-M12	18	12	120 – 200	20 - 100
HGB-M16	24	16	140 – 220	20 - 100

Tabelle A4: HGS Abmessungen

Dübel	Außendurchmesser des Dübels [mm]	Durchmesser des metrischen Gewindes [mm]	Dübel Länge [mm]	Bereich Mindestanbauteildicke [mm]
HGS-M6	10	6	85 - 125	20 - 60
HGS-M8	12	8	85 - 125	15 - 55
HGS-M10	16	10	110 - 130	30 - 50
HGS-M12	18	12	120 - 140	20 - 40

Tabelle A5: HGC Abmessungen

Dübel	Außendurchmesser des Dübels [mm]	Durchmesser des metrischen Gewindes [mm]	Dübel Länge [mm]	Bereich Mindestanbauteildicke [mm]
HGC-M8	12	8	80 - 120	10 - 50
HGC-M10	16	10	100 - 120	20 - 40

G&B Gamma CE1	
Produktbeschreibung	Anhang A3
Dübelabmessungen	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und guasi-statische Lasten: alle Größen
- · Seismische Einwirkung für die Anforderungsstufe C1: alle Größen
- Brandbeanspruchung: alle Größen

Verankerungsgrund:

- Bewehrter oder unbewehrter gemäß EN 206-1:2000.
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000.
- Gerissener oder ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Lage des Dübels ist auf Zeichnungen anzugeben (z.B. Anordnung des Dübels zur Bewehrung oder zu Auflagern usw.)
- · Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4: 2009, Bemessungsmethode A
- · Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) nach:
 - EOTA Technischer Report TR 045, Ausgabe Februar 2013
 - Die Verankerungen sind ausserhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf einer M\u00f6rtelschicht ist f\u00fcr seismische Einwirkungen nicht erlaubt.
- Bemessung der Verankerungen unter Brandbeanspruchung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 und EOTA Technischer Report TR 020, Ausgabe Mai 2004
 - CEN/TS 1992-4: 2009, Anhang D
 - Es muss sichergestellt werden, dass keine lokalen Abplatzungen der Betonoberfläche auftreten

Einbau:

- Bohrlochherstellung durch Hammerbohren
- · Einbau nur durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen ist ein neues Bohrloch mindestens im Abstand, der doppelten Tiefe der Fehlbohrung entspricht. Geringere Abstände sind nur zulässig, wenn die Fehlbohrung mit einem hochfesten Mörtel verfüllt wird und die Beanspruchung unter Querlast nicht zur Fehlbohrung gerichtet ist.

G&B Gamma CE1	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montageparameter						
Dübelgröße		Gamma CE1 M6	Gamma CE1 M8	Gamma CE1 M10	Gamma CE1 M12	Gamma CE1 M16
Bohrernenndurchmesse	$d_o = [mm]$	10	12	16	18	24
Maximaler Bohrerschneidendurchmesser	d _{cut} ≤ [mm]	10,45	12,50	16,50	18,50	24,55
Effektive Verankerungstiefe	$h_{ef} = [mm]$	55	60	70	90	105
Bohrlochtiefe	h₁ = [mm]	80	90	100	120	140
Durchmesser des Lochs im Anbauteil	$d_f = [mm]$	12	14	18	20	26
Dübellänge im Beton	$h_{nom} = [mm]$	65	70	80	100	120
Erforderliches Montagedrehmoment	$T_{inst} = [Nm]$	15	30	50	100	160
Außendurchmesser des Dübels	$d_{nom} = [mm]$	10	12	16	18	24
Minimale Bauteildicke	h _{min} = [mm]	110	120	140	180	210
Minimaler Randabstand	c _{min} = [mm]	70	100	90	175	180
Zugehöriger Achsabstand	s≥ [mm]	110	160	175	255	290
Minimaler Achsabstand	s _{min} = [mm]	55	110	80	135	130
Zugehöriger Randabstand	c≥ [mm]	110	145	120	220	240

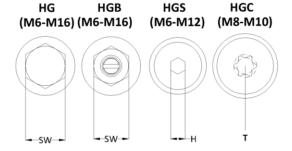


Tabelle B2: Schlüsselweiten und Anbauteildicken

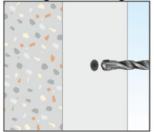
Größen		М6	M8	M10	M12	M16
Gamma CE 1 HG – Schlüsselweite	SW=[mm]	10	13	17	19	24
Gamma CE 1 HG – Anbauteildicke	t _{fix,max} = [mm]	55	70	80	100	100
Gamma CE T FIG – Andautelidicke	t _{fix,min} = [mm]	5	10	20	20	20
Gamma CE 1 HGB – Schlüsselweite	SW=[mm]	10	13	17	19	24
Gamma CE 1 HGB – Anbauteildicke	t _{fix,max} = [mm]	55	70	80	100	100
Garrina CE i HGB – Andautendicke	t _{fix,min} = [mm]	5	10	20	20	20
Gamma CE 1 HGS – Größe des Sechskanttriebs	H = [mm]	4	5	6	8	-
Gamma CE 1 HGS – Anbauteildicke	t _{fix,max} = [mm]	60	55	50	100	-
Garrina CE i AGS – Andautelidicke	t _{fix,min} = [mm]	20	15	30	20	-
Gamma CE 1 HGC – Größe des Maschinentriebs	T = [-]	-	40	40	-	-
Gamma CE 1 HGC – Anbauteildicke	t _{fix,max} = [mm]	-	50	40	-	-
Garrina CE i FIGO – Andautelidicke	t _{fix,min} = [mm]	-	10	20	-	-

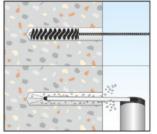
G&B Gamma CE1	
Verwendungszweck Montageparameter Schlüsselweiten und Anbauteildicken	Anhang B2

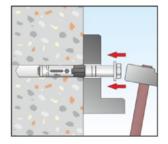
Montagewerkzeuge

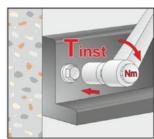
Bohrer

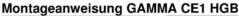
Bohrer GEBFOR TURBO4	Dübelgröße	Bohrerbezeichnung
	M6 / Ø10	PST1016
	M8 / Ø12	PST1216
	M10 / Ø16	PST1621
	M12 / Ø18	PST1825
	M16 / Ø24	PST2425

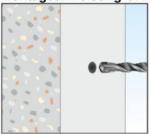

Handpumpe

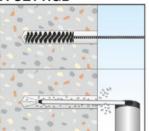


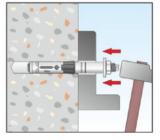

G&B Gamma CE1 Verwendungszweck Anhang B3

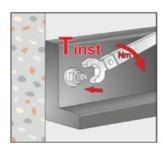


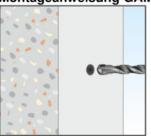


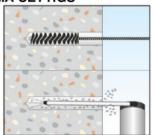


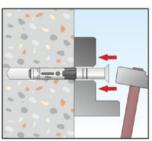


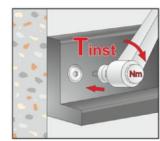




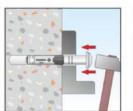


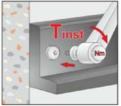


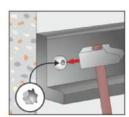




Montageanweisung GAMMA CE1 HGS






Montageanweisung GAMMA CE1 HGC

l	Schritt 1	Bohre ein Loch senkrecht zur Betonoberfläche im Hammerbohrverfahren
l	Schritt 2	Entferne Bohrstaub mittels Handpumpe
l	Schritt 3	Positioniere das Anbauteil und schlage den Dübel bis zum Anschlag in das Bohrloch
١	Schritt 4	Bringe das erforderliche Drehmoment auf

G&B Gamma CE1 Verwendungszweck Montageanweisungen Anhang B4

Dübeltyp / Größe			Gamma CE1 M6	Gamma CE1 M8	Gamma CE1 M10	Gamma CE1 M12	Gamma CE1 M16	
Stahlversagen								
Charakteristischer Widerstand	$N_{Rk,s} = N_{Rk,s,seis,C1}$	[kN]	16	29	46	67	125	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-] 1,5						
Herausziehen								
Effektive Verankerungstiefe	h _{ef}	[mm]	55	60	70	90	105	
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	16	16	20	35	45	
Charakteristischer Widerstand im gerissenen Beton C20/25	IN _{Rk,p}	[KIV]	5	6	16	25	35	
Charakteristischer Widerstand für seismische Anforderungsstufe C1	$N_{Rk,p,seis,C1}$	[kN]	5	4,2	14,4	25	35	
Erhöhungsfaktoren für N _{Rk,p} für		C30/37	7 1,22					
gerissenen und ungerissenen	Ψ_{c}	C40/50			1,41			
Beton		C50/60	1,55					
Montagesicherheitsfaktor	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,0			
Betonausbruch und Spalten								
Effektive Verankerungstiefe	h _{ef}	[mm]	55	60	70	90	105	
Achsabstand	S _{cr,N}	[mm]	165	180	210	270	315	
Randabstand	C _{cr,N}	[mm]	85	90	105	135	160	
Achsabstand (Spalten)	S _{cr,sp}	[mm]	220	320	240	370	390	
Randabstand (Spalten)	C _{cr,sp}	[mm]	110	160	120	185	195	
Faktor für ungerissenen Beton, gemäß CEN/TS 1992-4	k _{ucr}	[-]			10,1			
Faktor für gerissenen Beton, gemäß CEN/TS 1992-4	k _{cr}	[-]	7,2					
Montagesicherheitsfaktor	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,0			

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle C2: Produktleistung für das Bemessungsverfahren A (Querlast)

Dübeltyp / Größe			Gamma CE1 M6	Gamma CE1 M8	Gamma CE1 M10	Gamma CE1 M12	Gamma CE1 M16
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	16	25	43	58	107
Charakteristischer Widerstand für seismische Anforderungsstufe C1	V _{Rk,s,seis,C1}	[kN]	11,4	17	28	43,5	96,3
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,45		
Stahlversagen mit Hebelarm							
Charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266
Teilsicherheitsbeiwert	γ _{Ms} 1)				1,45		
Betonausbruch auf der lastabgev	vandten Seite	е					
Effektive Verankerungstiefe	h _{ef}	[mm]	55	60	70	90	105
Faktor für Betonausbruch	k = k ₃	[-]	1	2	2	2	2
Montagesicherheitsfaktor	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,0		
Betonkantenbruch							
Effektive Dübellänge	l _{ef}	[mm]	55	60	70	90	105
Effektiver	d _{nom}	[mm]	10	12	16	18	24
Montagesicherheitsfaktor	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,0		

¹⁾ Sofern andere nationale Regelungen fehlen.

G&B Gamma CE1

Leistungen

Charakteristischer Widerstand für statische und quasi-statische Einwirkung und für die seismische Leistungskategorie C1 (Zug)

Anhang C1

Feuerwiderstand = 30 min, Dübe	eltyp Gamn	na CE 1	М6	M8	M10	M12	M16
Stahlversagen							
Charakteristischer Widerstand	N _{Rk,s,fi,30}	[kN]	0,2	0,4	0,9	1,7	3,1
Herausziehen				•	•	•	
Charakteristischer Widerstand in Beton C20/25 bis C50/60	$N_{Rk,p,fi,30}$	[kN]	1,3	1,5	4,0	6,3	8,8
Betonausbruch				•	•	•	
Charakteristischer Widerstand in Beton C20/25 bis C50/60	N ⁰ _{Rk,c,fi,30}	[kN]	4,0	5,0	7,4	13,8	20,3
Feuerwiderstand = 60 min, Dübe	eltyp Gamn	na CE 1	M6	M8	M10	M12	M16
Stahlversagen				•	•	•	
Charakteristischer Widerstand	N _{Rk,s,fi,60}	[kN]	0,2	0,3	0,8	1,3	2,4
Herausziehen	,.,.,.					•	
Charakteristischer Widerstand in Beton C20/25 bis C50/60	$N_{Rk,p,fi,60}$	[kN]	1,3	1,5	4,0	6,3	8,8
Betonausbruch							
Charakteristischer Widerstand in Beton C20/25 bis C50/60	N ⁰ _{Rk,c,fi,60}	[kN]	4,0	5,0	7,4	13,8	20,3
Feuerwiderstand = 90 min, Dübe	eltyp Gamn	na CE 1	M6	М8	M10	M12	M16
Stahlversagen						'	
Charakteristischer Widerstand	$N_{Rk,s,fi,90}$	[kN]	0,1	0,3	0,6	1,1	2,0
Herausziehen				•	•	•	
Charakteristischer Widerstand n Beton C20/25 bis C50/60	$N_{Rk,p,fi,90}$	[kN]	1,3	1,5	4,0	6,3	8,8
Betonausbruch							
Charakteristischer Widerstand n Beton C20/25 bis C50/60	$N_{\text{Rk,c,fi,90}}$	[kN]	4,0	5,0	7,4	13,8	20,8
Feuerwiderstand = 120 min, Dü <mark>l</mark>	oeltyp Gam	ma CE 1	М6	М8	M10	M12	M16
Stahlversagen							
Charakteristischer Widerstand	$N_{Rk,s,fi,120}$	[kN]	0,1	0,2	0,5	0,8	1,6
Herausziehen							
Charakteristischer Widerstand in Beton C20/25 bis C50/60	$N_{Rk,p,fi,120}$	[kN]	1,0	1,2	3,2	5,0	7,0
Betonausbruch							
Charakteristischer Widerstand n Beton C20/25 bis C50/60	N ⁰ _{Rk,c,fi,120}	[kN]	3,2	4,0	5,9	11,1	16,3
N a la a a la ata a a d				4 x h _{ef}			
Achsabstand	S _{cr,N} S _{min}		55	110	80	135	130
	C _{cr,N}	[mm]			2 x h _{ef}		
Randabstand	C _{min}	[mm]			deinwirkung	von mehr al ındabstand ≥	

G&B Gamma CE1	
Leistungen Charakteristische Werte bei Zug unter Brandbeanspruchung	Anhang C2

Feuerwiderstand = 30 min, Dübelty	p Gamma Cl	E 1	М6	M8	M10	M12	M16
Querlast ohne Hebelarm							
Charakteristischer Widerstand	V _{Rk,s,fi,30}	[kN]	0,3	0,5	1,2	2,1	3,9
Querlast mit Hebelarm							
Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi,30}	[Nm]	0,2	0,4	1,1	2,6	6,7
Feuerwiderstand = 60 min, Dübelty	E 1	М6	M8	M10	M12	M16	
Querlast ohne Hebelarm							
Charakteristischer Widerstand	V _{Rk,s,fi,60}	[kN]	0,3	0,4	1,0	1,6	2,9
Querlast mit Hebelarm							
Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi,60}	[Nm]	0,1	0,3	1,0	2,0	5,0
Feuerwiderstand = 90 min, Dübelty			М6	M8	M10	M12	M16
Querlast ohne Hebelarm							
Charakteristischer Widerstand	V _{Rk,s,fi,90}	[kN]	0,2	0,3	0,8	1,4	2,5
Querlast mit Hebelarm							
Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi,90}	[Nm]	0,1	0,3	0,8	1,7	4,3
Feuerwiderstand = 120min, Dübelt	yp Gamma C	E 1	М6	M8	M10	M12	M16
Querlast ohne Hebelarm							
Charakteristischer Widerstand	$V_{Rk,s,fi,120}$	[kN]	0,2	0,2	0,6	1,0	1,9
Querlast mit Hebelarm							
Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi,120}	[Nm]	0	0,2	0.6	1,3	3,3

Betonausbruch auf der lastabgewandten Seite

Der charakteristische Widerstand $V_{\text{Rk,cp,fi,Ri}}$ in Beton C20/25 bis C50/60 wird bestimmt:

 $V_{Rk,cp,fi(90)} = k \times N_{Rk,c,fi(90)}$ ($\leq R90$) und $V_{Rk,cp,fi(120)} = k \times N_{Rk,c,fi(120)}$ (bis R120)

Betonkantenbruch

Der charakteristische Widerstand $V_{Rk,c,fi,Ri}$ in Beton C20/25 bis C50/60 wird bestimmt: $V^0_{Rk,c,fi(90)} = 0,25 \text{ x } V^0_{Rk,c}$ (R30, R60, R90) und $V^0_{Rk,c,fi(120)} = 0,20 \text{ x } V^0_{Rk,c}$ (R120) mit $V^0_{Rk,c}$ als Ausgangswert für den charakteristischen Widerstand eines Einzeldübels im gerissenen Beton C20/25

G&B	Gamma	CE1

Leistungen

Charakteristische Werte bei Querlast unter

Brandbeanspruchung

Anhang C3

Tabelle C5: Verschiebungen

Zugkraft im gerissenen und ungerissenen Beton			М6	M8	M10	M12	M16
Gebrauchslast (Zug) im ungerissenen Beton C20/25	N	[kN]	7,6	7,6	9,5	16,7	21,4
Verschiebungen	δ_{N0}	[mm]	1,3	1,5	1,0	1,3	1,8
	δ _{N∞}	[mm]	1,3	1,5	1,0	1,3	1,8
Gebrauchslast (Zug) im gerissenen Beton C20/25	N	[kN]	2,4	2,9	7,6	11,9	16,7
Verschiebungen	δ_{N0}	[mm]	1,0	0,7	1,0	1,2	1,5
	$\delta_{N^{\infty}}$	[mm]	1,6	1,3	1,6	1,7	1,5
Querlasten im gerissenen und ungerissenen Beton		М6	М8	M10	M12	M16	
Gebrauchslast (Querlast) im gerissenen und ungerissenen Beton C20/25	V	[kN]	7,7	12,3	21,0	23,3	52,5
Verschiebungen	δ_{N0}	[mm]	2,4	2,6	2,5	3,0	4,0
	δ _{N∞}	[mm]	3,6	3,9	3,8	4,5	6,0

G&B Gamma CE1	
Leistungen Verschiebungen	Anhang C4