

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0217 of 2 September 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product **BTV** Injection system KM Product family Bonded anchor for use in concrete to which the construction product belongs **BTV Bautechnik Vertriebs-GmbH** Manufacturer Gartenstraße 43 /1 72764 Reutlingen DEUTSCHLAND Manufacturing plant BTV manufacturing plant 1 This European Technical Assessment 20 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal issued in accordance with Regulation (EU) anchors for use in concrete", ETAG 001 Part 5: "Bonded No 305/2011, on the basis of anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0217

Page 2 of 20 | 2 September 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 2 September 2015

European Technical Assessment ETA-11/0217 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The BTV Injection system KM is a bonded anchor consisting of a cartridge with injection mortar KM and a steel element. The steel element consist of

- an threaded rod or of sizes M6 to M30 or
- an internal threaded anchor of sizes M8 to M20 or

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C 1 to C 3
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 4 to C 6
Displacements under tension and shear loads	See Annex C 7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment

ETA-11/0217

Page 4 of 20 | 2 September 2015

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

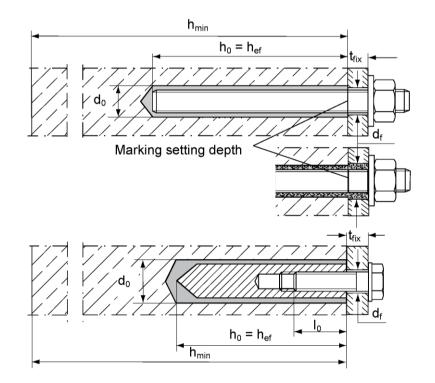
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

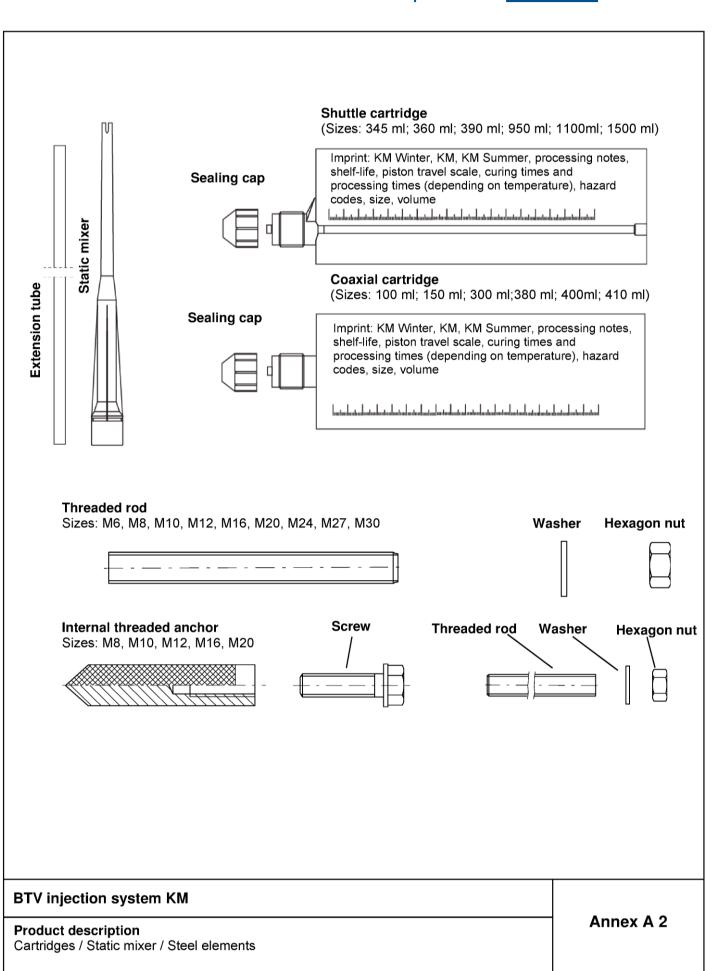
Issued in Berlin on 2 September 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Installation condition

Threaded rod prepositioned anchorage

Threaded rod push through anchorage (annular gap filled with mortar)


Internal threaded anchor only pre-positioned anchorage

BTV injection system KM

Product description Installation condition Annex A 1

Page 6 of European Technical Assessment ETA-11/0217 of 2 September 2015

English translation prepared by DIBt

Deutsches

Institut für Bautechnik

Part	Designation	Material									
1	Mortar cartridge	Mortar, hardener; filler									
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C							
	Threaded rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm,	Property class 50, 70 or 80 EN ISO 3506:2009	Property class 50 or 80 EN ISO 3506:2009 or property class 70							
2		EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ²	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062	with f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²							
		A ₅ > 8% fracture elongation	EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$ elongation	A ₅ > 8% fracture elongation							
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014							
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014							
5	Internal threaded anchor	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014							
6	Screw or threaded rod for internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014							

BTV injection system KM

Product description Materials

Annex A 3

Specifications of intended use

Table B1: Overview use categories and performance categories

Anchorage	s subject to			I	KM with					
		Thre	eaded rod	Internal threaded anchor						
		-								
Hammer dı	rilling				all sizes					
Static and quasi static	un- cracked concrete	M6 to M30	Tables: C1, C3 ,C5,	M8 to M20	Tables: C2, C4, C6, C8, C11, C12					
load, in	cracked concrete		C7, C9, C10							
Use category	Dry or wet concrete	1 1/18	6 to M30		M8 to M20					
Installation	temperature			-1(0°C to +40°C					
In-service	Temperature range l	-4	0°C to +80°C		ng term temperature +50°C and max. short nperature +80°C)					
temper- ature	Temperature range II	-4(0°C to +120°C	(max. long term temperature +72°C and max. short term temperature +120°C)						

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions exist (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist
 - (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used)

Design:

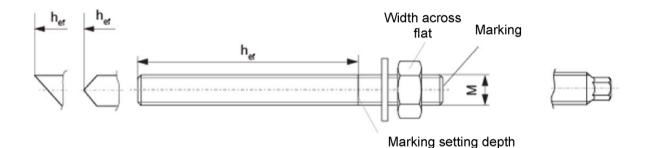
- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with TR 029 "Design of bonded anchors", Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Overhead installation allowed.

BTV injection system KM

Intended Use Specifications



Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Width across f	lat	SW	[mm]	10	13	17	19	24	30	36	41	46
Nominal drill b	it diameter	do	[mm]	8	10	12	14	18	24	28	30	35
Drill hole dept	h	ho	[mm]					$h_0 = h_{ef}$				
Effective anch	orage depth	h _{ef,min}	[mm]	50	60	60	70	80	90	96	108	120
Ellective anch	orage depth	h _{ef,max}		72	160	200	240	320	400	480	540	600
Maximum torq	Maximum torque moment T _{ins}		[Nm]	5	10	20	40	60	120	150	200	300
Minimum space	Minimum spacing		[mm]	40	40	45	55	65	85	105	125	140
Minimum edge	e distance	C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance	Pre- positioned anchorage	d _f	[mm]	7	9	12	14	18	22	26	30	33
fixture ¹⁾ fixture ¹⁾ fixture ¹⁾		d _f	[mm]	9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member h _{min} [mr		[mm]	h _{ef} + 30 (≥ 100)				h _{ef} + 2d ₀					

Table B2: Installation parameters threaded rods

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Threaded rods

Marking:

Property class 8.8 or high corrosion-resistant steel C, property class 80: • Stainless steel A4, property class 50 or high corrosion-resistant steel C, property class 50:••

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

BTV injection system KM

Intended Use Installation parameters threaded rods

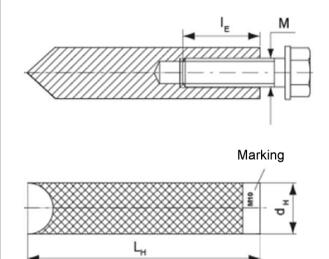


Table B3: Installation parameters internal threaded anchors

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	do	[mm]	14	18	20	24	32
Drill hole depth	ho	[mm]			$h_0 = h_{ef}$		
Effective anchorage depth ($h_{ef} = L_{H}$)	h _{ef}	[mm]	90	90	125	160	200
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80	120
Minimum spacing	S _{min}	[mm]	55	65	75	95	125
Minimum edge distance	C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h_{min}	[mm]	120	125	165	210	265
Maximum screw-in depth	I _{E,max}	[mm]	18	23	26	35	45
Minimum screw-in depth	I _{E,min}	[mm]	8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Internal threaded anchor

Marking: anchor size e.g.: M10 Stainless steel in addition A4 e.g.: M10 A4 High corrosion-resistant steel in addition C e.g.: M10 C

Fastening screw or threaded rods including washer and nuts must comply with the appropriate material and strength class of table A1

BTV injection system KM

Intended Use Installation parameters internal threaded anchors

Page 11 of European Technical Assessment ETA-11/0217 of 2 September 2015

English translation prepared by DIBt

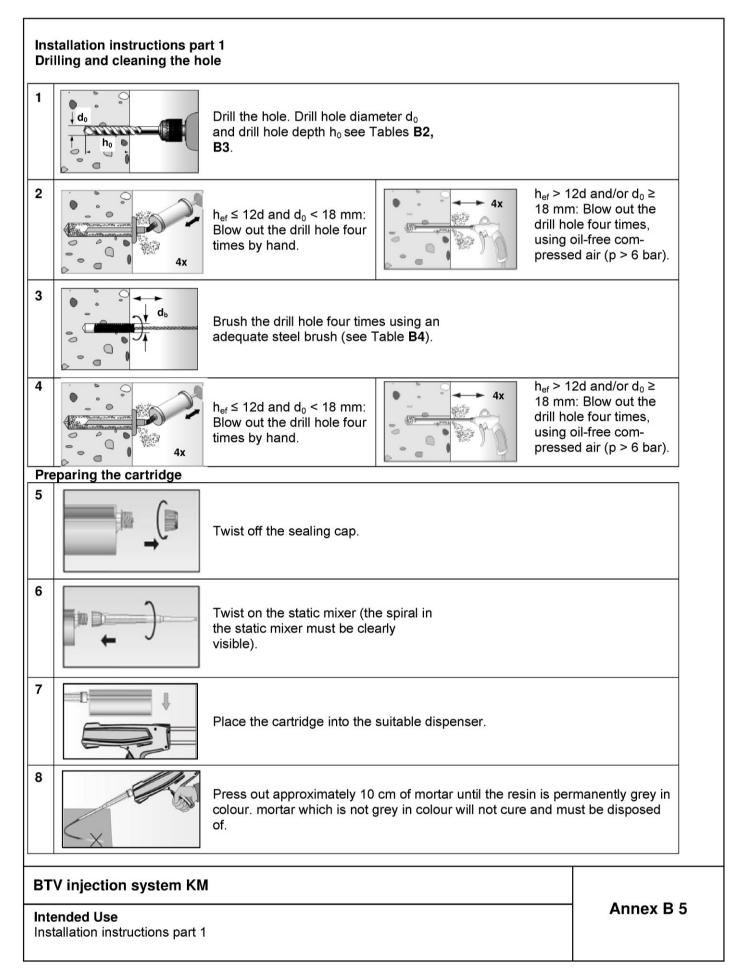
Drill bit diameter	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter d _b	[mm]	9	11	14	16	20	20	25	26	27	30	40	40

 Table B5: Maximum processing time of the mortar and minimum curing time

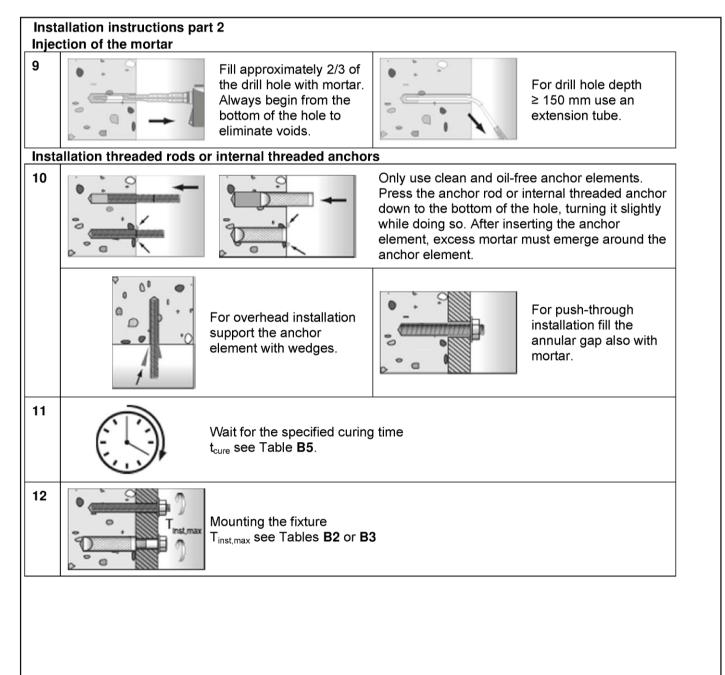
 (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature).

	4		Minimu	um curing tim [minutes]	e ¹⁾ t _{cure}	System	Maximum	processing [minutes]	g time t _{work}
	oeratu oring [°C]		KM Winter	КМ	KM Summer	temperature (mortar) [°C]	KM Winter	KM	KM Summer
-10	to	-5	12 hours						
>-5	to	±0	3 hours	24 hours		±0	5		
>±0	to	+5	3 hours	3 hours	6 hours	+5	5	13	
>+5	to	+10	50	90	3 hours	+10	3	9	20
>+10	to	+20	30	60	2 hours	+20	1	5	10
>+20	to	+30		45	60	+30		4	6
>+30	to	+40		35	30	+40		2	4

¹⁾ For wet concrete the curing time must be doubled.


BTV injection system KM

Intended Use Cleaning tools / Processing - and curing times


Page 12 of European Technical Assessment ETA-11/0217 of 2 September 2015

English translation prepared by DIBt

BTV injection system KM

Intended Use Installation instructions part 2

Page 14 of European Technical Assessment ETA-11/0217 of 2 September 2015

English translation prepared by DIBt

Table C1: Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
-	and wet oncrete γ_2	[-]		·		·	1,2	·		·	
Combined pullout ar	d concrete co	ne failure									
Diameter of calculation	n d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bond	Characteristic bond resistance in un-cracked concrete C20/25. Dry and wet concrete										
Temperature range I ¹⁾	$\tau_{Rk,ucr}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range II ¹) T _{Rk,ucr}	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bond	resistance in (cracked co	oncrete	C20/25	. Dry ar	nd wet o	concret	е			
Temperature range I ¹⁾	$\tau_{Rk,cr}$	[N/mm ²]			6,0	6,0	6,0	5,5			
Temperature range II ¹) τ _{Rk,cr}	[N/mm ²]			5,0	5,0	5,0	5,0			
	C25/30	[-]					1,05				
	C30/37	[-]					1,10				
Increasing factor Ψ_{c}	C35/45	[-]					1,15				
	C40/50	[-]					1,19				
	C45/55	[-]					1,22				
	C50/60	[-]					1,26				
Splitting failure											
	h/h _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance c _{cr,sp}	2,0>h/h _{ef} >1,3	[mm]				4,6	5 h _{ef} – 1,	8 h			
	h/h _{ef} ≤1,3	[mm]					2,26 h _{et}				
Spacing	S cr,sp	[mm]					2 c _{cr,sp}				

¹⁾ See Annex B1

BTV injection system KM

Performances

Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to TR 029)

Table C2: Characteristic values of resistance for internal threaded anchors under tension loads in uncracked concrete (Design according to TR 029)

Size				M8	M10	M12	M16	M20
Installation safety factor	Dry and wet concrete	γ2	[-]			1,2		-
Steel failure								
	Property	5.8	[kN]	19	29	43	79	123
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179
with screw N _{Rk,s}	Property	A4	[kN]	26	41	59	110	172
	class 70	С	[kN]	26	41	59	110	172
Combined pullout and co	oncrete cone fa	ilure						
Diameter of calculation		d _H	[mm]	12	16	18	22	28
Characteristic bond resis	tance in un-cr		ncrete C2	20/25. D	ry and w	et conc	rete	
Temperature range I ¹⁾		$N^0_{Rk,p}$	[kN]	30	40	50	75	115
Temperature range II ¹⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95
		C25/30	[-]			1,05		
		C30/37	[-]			1,10		
Increasing factor Ψ_{c}		C35/45	[-]			1,15		
		C40/50	[-]			1,19		
		C45/55	[-]			1,22		
		C50/60	[-]			1,26		
Splitting failure								
	ł	n/h _{ef} ≥2,0	[mm]			1,0 h _{ef}		
Edge distance c _{cr,sp}	2,0>h	n/h _{ef} >1,3	[mm]		4,6	6 h _{ef} – 1,8	3 h	
	ł	n/h _{ef} ≤1,3	[mm]			2,26 h_{ef}		
Spacing		S cr,sp	[mm]			2 c _{cr,sp}		

¹⁾ See Annex B1

Table C3: Characteristic values of resistance for threaded rods under shear loads (Design according to TR 029)

Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
Concrete pryout failure											
Factor k in equation (5.7) of TR 029 for the design of bonded anchors	k	[-]					2,0				

BTV injection system KM	
Performances	Annex C 2
Characteristic values of resistance for internal threaded rods under tension loads in un- cracked concrete and for threaded rods under shear loads (Design according to TR 029)	

Size				M8	M10	M12	M16	M20		
Installation safety factor		γ_2	[-]	1,2						
Steel failure without leve	r arm									
Characteristic resistance V _{Rk,s}	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0		
	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0		
	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0		
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0		
Steel failure with lever ar	m									
	Property	5.8	[Nm]	20	39	68	173	337		
Characteristic	class	8.8	[Nm]	30	60	105	266	519		
resistance M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454		
	class 70	С	[Nm]	26	52	92	232	454		
Concrete pryout failure										
Factor k in equation (5.7) of TR 029 for the design of bonded anchors		k	[-]		2,0					

BTV injection system KM

Performances

Characteristic values of resistance for internal threaded anchors under shear loads (Design according to TR 029)

Page 17 of European Technical Assessment ETA-11/0217 of 2 September 2015

English translation prepared by DIBt

Table C5: Charact				resistanc n accord					nsion l	oads ir	ı un-cra	icked a	nd
Size			Desig		M6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor γ_{inst}			nd wet ncrete	[-]					1,2				
Steel failure													
Characteristic resis			$N_{Rk,s}$	[kN]					$A_s x f_{uk}$				
Combined pullout		conci	rete co										
Diameter of calcula			d	[mm]	6	8	10	12	16	20	24	27	30
Characteristic bo		sistan			d conc	rete C2	20/25. D	ry and	wet cor	icrete			
Temperature range	e l ¹⁾		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
Temperature range	e II ¹⁾		$\tau_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Characteristic bo	nd re	sistan	ice in c	racked c	oncret	e C20/2	5. Dry a	and wet	concre	ete			
Temperature range	ə I ¹⁾		τ _{Rk,cr}	[N/mm ²]			6,0	6,0	6,0	5,5			
Temperature range	e II ¹⁾		τ _{Rk,cr}	[N/mm ²]			5,0	5,0	5,0	5,0			
		C	25/30					•	1,05				
	C30/37 [-]			1,10									
la cue e cia a fe cte a II		C	35/45	[-]					1,15				
Increasing factor Ψ	c	C	240/50	[-]					1,19				
		C	245/55	[-]					1,22				
		C	250/60	[-]					1,26				
Factor acc. CEN/TS 1992-	k ₈	со	racked oncrete	[-]					7,2				
4:2009 Section 6.2.2.3	k ₈		racked oncrete	[-]					10,1				
Concrete cone fai	lure												
Factor acc. CEN/TS 1992-	k _{cr}	co	racked oncrete	[-]					7,2				
4:2009 Section 6.2.3.1	k _{ucr}		racked oncrete	[-]					10,1				
		h/ł	n _{ef} ≥2,0	[mm]					1,0 h _{ef}				
Edge distance $c_{cr,sp}$, 2	2,0>h/ł	า _{ef} >1,3	[mm]				4,6	6 h _{ef} – 1,	8 h			
		h/ł	า _{ef} ≤1,3	[mm]					2,26 h _{ef}				
Spacing			S _{cr,sp}	[mm]					2 c _{cr,sp}				

¹⁾ See Annex B1

BTV injection system KM

Performances

Characteristic values of resistance for threaded rods under tension loads in un-cracked and cracked concrete (Design according to CEN/TS-1992-4)

Table C6: Characteristic values of resistance for internal threaded anchors under tension loads in uncracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20			
Installation safety factor γ_{inst}	Dry and	wet concrete	[-]			1,2					
Steel failure											
	Property	5.8	[kN]	19	29	43	79	123			
Characteristic resistance	class	8.8	[kN]	29	47	68	108	179			
with screw N _{Rk,s}	Property		[kN]	26	41	59	110	172			
	class 70	C	[kN]	26	6 41 59 110			172			
	Property	5.8	[-]			1,50					
Partial cl		8.8 [-] 1,50									
safety factor γ _{Ms,N} ²⁾	Property	, A4	1,87								
class		C	[-]	1,87							
Combined pullout and co	oncrete col	ne failure									
Diameter of calculation	d	[mm]	12	16	18	22	28				
Characteristic bond resis Dry and wet concrete	stance in u		ncrete C2	20/25							
Temperature range I ¹⁾		N ⁰ _{Rk,p}	[kN]	30	40	50	75	115			
Temperature range II ¹⁾		N ⁰ _{Rk,p}	[kN]	25	30	40	60	95			
		C25/30	[-]	1,05							
		C30/37	[-]			1,10					
Increasing factor Ψ_{c}		C35/45	[-]			1,15					
		C40/50	[-]			1,19					
		C45/55	[-]			1,22					
		C50/60	[-]			1,26					
Factor acc. CEN/TS 1992- Section 6.2.2.3	4-5:2009	k ₈	[-]			10,1					
Concrete cone failure							10,1				
Concrete cone failure Factor acc. CEN/TS 1992-	4-5:2009	k _{ucr}	[-]			10,1					
Concrete cone failure	4-5:2009										
Concrete cone failure Factor acc. CEN/TS 1992- Section 6.2.3.1		h/h _{ef} ≥2,0	[mm]		4.6	1,0 h _{ef}	3 h				
Concrete cone failure Factor acc. CEN/TS 1992-					4,6						

¹⁾ See Annex B1
 ²⁾ In absence of other national regulations

BTV injection system KM

Performances

Characteristic values of resistance for internal threaded anchors under tension loads in un-cracked concrete (Design according to CEN/TS 1992-4)

Table C7: Characteristic valu to CEN/TS 1992-		esistan	ce for t	hreade	d rods ι	ınder sł	near loa	ds (Des	ign acc	ording	I
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor	γinst	[-]					1,2				
Steel failure without lever an	m										
Characteristic resistance	$V_{Rk,s}$	[kN]	$0,5 A_s \times f_{uk}$								
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]	0,8								
Steel failure with lever arm											
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	$1,2 \times W_{el} \times f_{uk}$								
Concrete pryout failure											
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3	k_3	[-]	2,0								
Concrete edge failure											
Effective length of anchor	ا _f	[mm]				l _f = mi	n (h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20	24	27	30

Table C8: Characteristic values of resistance for internal threaded rods under shear loads in uncracked concrete (Design according to CEN/TS 1992-4)

Size				M8	M10	M12	M16	M20
Installation safety factor		γinst	[-]			1,2		
Steel failure without level	r arm							
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic resistance	class	8.8	[kN]	14,6	23,2	33,7	62,7	90,0
V _{Rk,s}	Property	A4	[kN]	12,8	20,3	29,5	54,8	86,0
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86,0
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1			[-]			0,8		
Steel failure with lever an	m							
	Property	5.8	[Nm]	20	39	68	173	337
Characteristic resistance	class	8.8	[Nm]	30	60	105	266	519
M ⁰ _{Rk,s}	Property	A4	[Nm]	26	52	92	232	454
	class 70	С	[Nm]	26	52	92	232	454
Concrete pryout failure								
Factor in equation of CEN/TS 1992-4-5:2009 Section 6.3.3		k_3	[-]			2,0		
Concrete edge failure								
Outside diameter of anchor	r	d_{nom}	[mm]	12	16	18	22	28

BTV injection system KM

Performances

Characteristic values of resistance for threaded rods and internal threaded anchors under shear loads (Design according to CEN/TS 1992-4)

Table C9: Displace	Table C9: Displacements under tension load ¹⁾ for threaded rods												
Size		M6	M8	M10	M12	M16	M20	M24	M27	M30			
un-cracked concret	te												
δ_{N0} -Factor	[mm/N/mm ²]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12			
$\delta_{N\infty}$ -Factor	[mm/N/mm ²]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14			
Cracked concrete													
δ_{N0} -Factor	[mm/N/mm ²]			0,12	0,12	0,13	0,13						
$\delta_{N\infty}$ -Factor	[mm/N/mm ²]			0,27	0,30	0,30	0,30						

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-}Factor\,\cdot\,\tau$

Table C10: Displacements under shear load ¹⁾ for threaded rods

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
δ_{V0} -Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ _{v∞} -Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-}\text{Factor}\cdot\text{V}$

 $\delta_{V\infty} = \delta_{V\infty} \text{-} Factor \, \cdot \, V$

Table C11: Displacements under tension load ¹⁾ for internal threaded anchors

Size		M8	M10	M12	M16	M20
δ_{N0} -Factor	[mm/N/mm ²]	0,1	0,11	0,12	0,13	0,14
δ _{N∞} -Factor	[mm/N/mm ²]	0,13	0,14	0,15	0,16	0,18

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\text{Factor}\cdot\tau$

 $\delta_{N\infty} = \delta_{N\infty}\text{-}Factor\,\cdot\,\tau$

Table C12: Displacements under shear load ¹⁾ for internal threaded anchors

Size		M8	M10	M12	M16	M20
δ_{V0} -Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
δ _{v∞} -Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-}Factor\,\cdot\,V$

 $\delta_{V\infty} = \delta_{V\infty}\text{-}Factor\,\cdot\,V$

BTV injection system KM

Performances

Displacements threaded rods and internal threaded anchors