

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0167 of 9 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Walsywa Injection system WQI 44 PLUS for concrete
Product family to which the construction product belongs	Bonded Anchor for use in concrete
Manufacturer	Walsywa Ind. e Com. De Prod. Met. Ltda Rua Humberto Pela, 198 - Bairro Leitão LOUVEIRA - SÃO PAULO BRASILIEN
Manufacturing plant	Walsywa ind. e Com. De Prod. Met. Ltda, Plant 2 Germany
This European Technical Assessment contains	27 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-12/0167 English translation prepared by DIBt

Page 2 of 27 | 9 April 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 27 | 9 April 2015

European Technical Assessment ETA-12/0167 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Walsywa Injection system WQI 44 PLUS for concrete" is a bonded anchor consisting of a cartridge with injection mortar WQI 44 PLUS and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance for tension loads in non-cracked concrete	See Annex C 1 / C 4 / C 7 / C 10				
Characteristic resistance for tension loads in cracked concrete	See Annex C 2 / C 5 / C 8 / C 11				
Characteristic resistance for shear loads in cracked and non-cracked concrete	See Annex C 3 / C 6 / C 9 / C 12				
Displacements under tension and shear loads	See Annex C 13 / C 14				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 **Protection against noise (BWR 5)**

Not applicable.

Page 4 of 27 | 9 April 2015

European Technical Assessment

ETA-12/0167

English translation prepared by DIBt

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

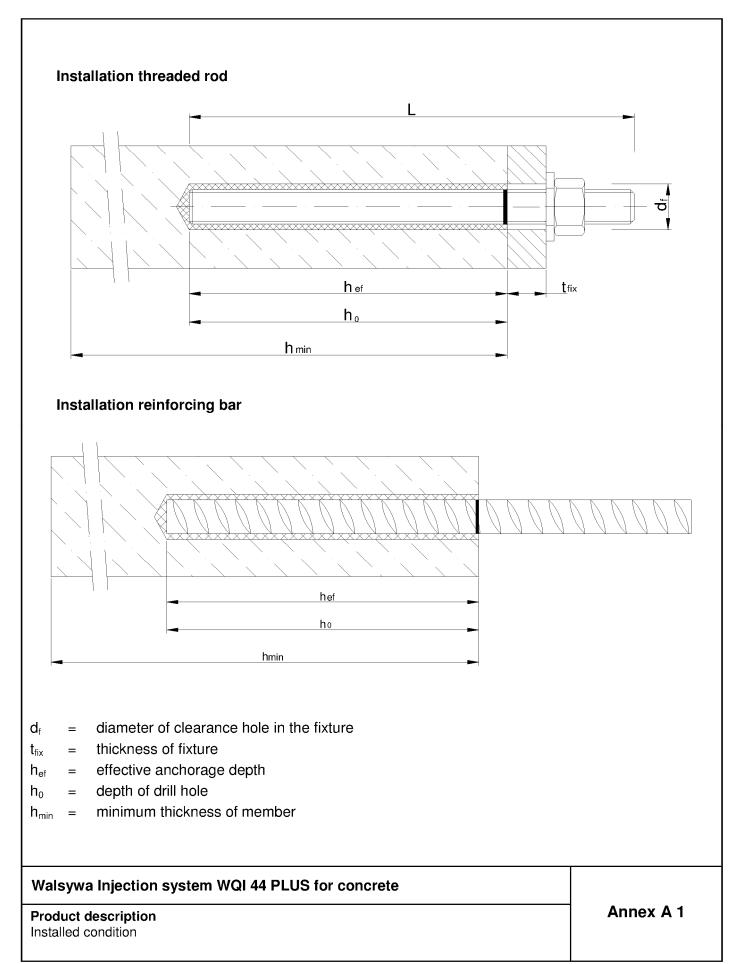
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

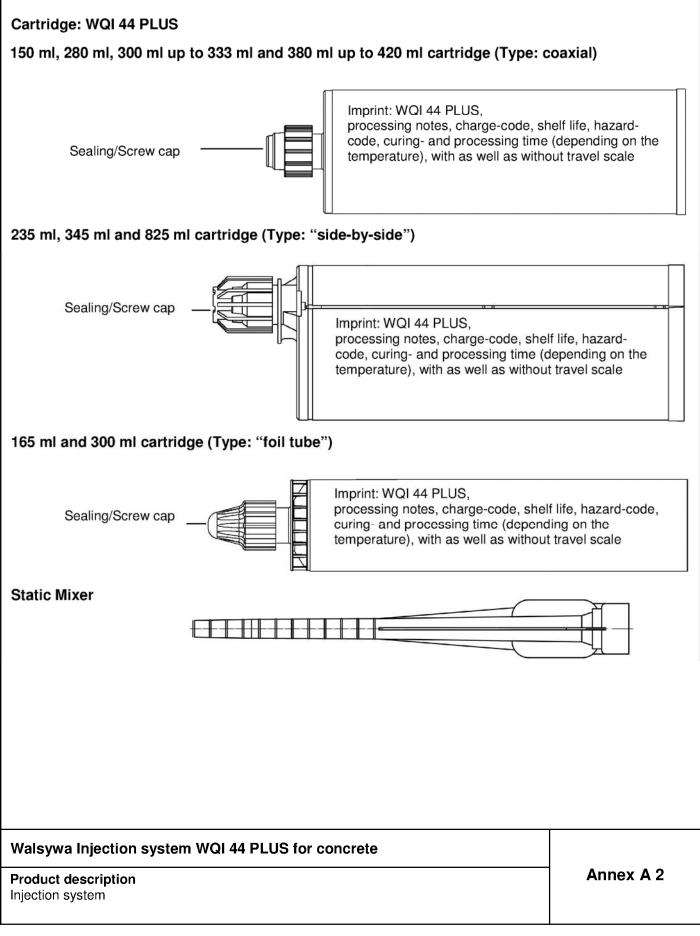
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 9 April 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-12/0167 of 9 April 2015

English translation prepared by DIBt

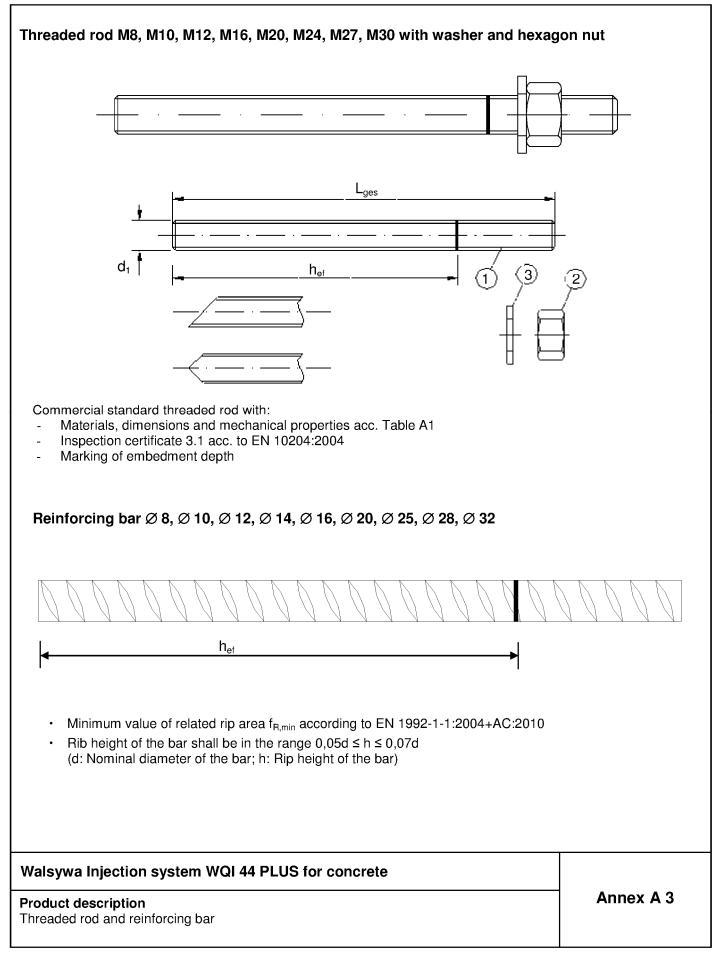


Table A1: Materials

Dort	Designation	Material				
	Designation					
	, zinc plated \geq 5 µm acc. to EN ISO 4042:19		2.2000			
Sleel,	, not-dip gaivarnised \geq 40 µm acc. to EN 15					
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009				
		$A_5 > 8\%$ fracture elongation	5.2003+710.2000			
		Steel acc. to EN 10087:1998 or EN 102	63:2001			
		Property class 4 (for class 4.6 rod) EN IS				
2	Hexagon nut, EN ISO 4032:2012	Property class 5 (for class 5.8 rod) EN IS				
		Property class 8 (for class 8.8 rod) EN IS				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised				
Stain						
		Material 1.4401 / 1.4404 / 1.4571, EN 10				
1	Anchor rod	> M24: Property class 50 EN ISO 3506-				
		\leq M24: Property class 70 EN ISO 3506-	1:2009			
		$A_5 > 8\%$ fracture elongation	000.0005			
0		Material 1.4401 / 1.4404 / 1.4571 EN 10				
2	Hexagon hul, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rd				
	Washar ENISO 887:2006	≤ M24: Property class 70 (for class 70 rc	DU) EN 150 3506-2.2009			
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005			
High	corrosion resistance steel					
		Material 1.4529 / 1.4565, EN 10088-1:20	005			
		> M24: Property class 50 EN ISO 3506-1:2009				
1	Anchor rod	\leq M24: Property class 50 EN ISO 3506-12009				
		$A_5 > 8\%$ fracture elongation				
		Material 1.4529 / 1.4565 EN 10088-1:20	05.			
2	Hexagon nut. EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009				
-		\leq M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009				
	Washer, EN ISO 887:2006,					
3	EN ISO 7089:2000, EN ISO 7093:2000 or	Material 1.4529 / 1.4565, EN 10088-1:20	005			
	EN ISO 7094:2000					
Reinf	orcing bars					
	Bebar	Bars and de-coiled rods class B or C				
1Anchor rodProper $A_5 > 8^\circ$ 2Hexagon nut, EN ISO 4032:2012Steel a Proper Proper Proper3EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000Steel,3EN ISO 7094:2000Steel,4Anchor rodMateri > M24 \leq M241Anchor rodMateri > M242Hexagon nut, EN ISO 4032:2012Materi > M24 \leq M243EN ISO 7093:2000, EN ISO 7093:2000 or EN ISO 7094:2000, EN ISO 7093:2000 or EN ISO 7094:2000Materi 	f _{yk} and k according to NDP or NCL of EN	I 1992-1-1/NA:2013				
		$f_{uk} = f_{tk} = k \cdot f_{yk}$				
Wals	sywa Injection system WQI 44 PLUS fe	or concrete				
D #c.cl	ust description		Annex A 4			
iviate	nais					

L

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30. Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Walsywa Injection system WQI 44 PLUS for concrete

Intended Use Specifications Annex B 1

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	m]≤ 9 12 14 18 22 26				30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	$h_{ef} + 2d_0$						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Walsywa Injection system WQI 44 PLUS for concrete

Intended Use Installation parameters Annex B 2

Electronic copy of the ETA by DIBt: ETA-12/0167

Steel brush Table B3: Parameter cleaning and setting tools d_{b,min} Threaded Piston d₀ d_{b} Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm) (mm) (mm)(mm) (mm)(No.) M8 10 12 10.5 M10 8 12 14 12,5 No M12 10 14 16 14,5 piston plug 12 16 18 16,5 required M16 14 18 20 18,5 16 20 22 20,5 24 26 M20 20 24,5 # 24

30

34

37

41,5

28

32

35

40

25

28

32

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Recommended compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

28,5

32,5

35,5

40,5

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Walsywa Injection system WQI 44 PLUS for concrete

Intended Use

M24

M27

M30

Cleaning and setting tools

Annex B 3

28

32

35

38

Installation inst	ructions	
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed	before cleaning.
4x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini the bore hole ground is not reached an extension shall be used.	mum of four times. If
or	The hand-pump can be used for anchor sizes up to bore hole di	ameter 20 mm.
Ax	For bore holes larger than 20 mm or deeper 240 mm, compress must be used.	ed air (min. 6 bar)
	2b. Check brush diameter (Table B3) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size	
<u>*******</u> ***	> d _{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B3).	tension
	2c. Finally blow the hole clean again with compressed air (min. 6 ba (Annex B 3) a minimum of four times. If the bore hole ground is extension shall be used.	
4x or	The hand-pump can be used for anchor sizes up to bore hole di For bore holes larger than 20 mm or deeper 240 mm, compress <u>must</u> be used.	
4x)	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again.	hole. If necessary, the mortar.
	3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended we (Table B4) as well as for new cartridges, a new static-mixer sha	orking time
	4. Prior to inserting the anchor rod into the filled bore hole, the poset embedment depth shall be marked on the anchor rods.	ition of the
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive componer shows a consistent grey colour. For foil tube cartridges is must b minimum of six full strokes.	nts until the mortar
Walsywa Injection	system WQI 44 PLUS for concrete	
Intended Use		Annex B 4

Installation instructions

Installation inst	ructions (continuation)
	6 Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4.
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
Tinst.	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
\geq -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
2° 0 ≤	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ +10 °C	15 min	80 min
≥ +20 °C	6 min	45 min
≥ + 30 °C	4 min	25 min
≥ + 35 °C	2 min	20 min
≥ +40 °C	1,5 min	15 min

¹⁾ Cartridge temperature <u>must</u> be at min. +15°C ²⁾ In wet concrete the curing time <u>must</u> be doubled

Walsywa Injection system WQI 44 PLUS for concrete

Intended Use

Installation instructions (continuation) Curing time

Annex B 5

	d			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure							•				
Characteristic tension resi Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resi	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resi	stance,	N _{Bk.s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resi Stainless steel A4 and HC property class 50 (>M24) a	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c											
Characteristic bond resista	ance in non-cracked con	crete C20/	25								
Comporatura rango li	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	11	10	9
Femperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5		not adr	nissible	
 II.	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
Femperature range II: 80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible	
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
Femperature range III: I20°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
Increasing factors for concrete		C30/37		1,04							
		C40/50 1,08					08				
ψ _c		C50/60 1,1				10					
Splitting failure											
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right)$) ≤ 2,4 · I	า _{ef}		
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,s}			cr,sp	я,sp			
nstallation safety factor (d	Iry and wet concrete)	γ2	I	1,0				1,2			
nstallation safety factor (fl	looded bore hole)	γ2		1,4				not admissible			

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete

(Design according to TR 029)

Anchor size threaded r	od			M 12	M 16	M 20	M24	M 27	M 30
Steel failure					1	1	I	1	
Characteristic tension resistance, Steel, property class 4.6		N _{Rk,s} =N _{Rk,s,seis}	[kN]	34	63	98	141	184	224
Characteristic tension re Steel, property class 5.8	sistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension re Steel, property class 8.8	,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	67	125	196	282	368	449
Characteristic tension re Stainless steel A4 and H property class 50 (>M24	CR,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and	concrete cone failure								
Characteristic bond resis	stance in cracked concret	e C20/25							
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	3,7	3,7	3,7	3,8	4,5	4,5
	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	5,5	5,5	not admissible			
		$ au_{\text{Rk,seis}}$	[N/mm ²]	3,7	3,7	not admissible			
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:		τ _{Rk,seis}	[N/mm ²]	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	not admissible			
		τ _{Rk,seis}	[N/mm ²]	2,7	2,7	not admissible			
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:		$ au_{\text{Rk,seis}}$	[N/mm ²]	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,or}}$	[N/mm ²]	3,0	3,0		not adr	nissible	
		$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,0	2,0		not adr	nissible	
Increasing factors for co	ncrete	C30/37		1,04					
only static or quasi-stati	c actions)	C40/50				1,	08		
Ψc		C50/60	C50/60		1,10				
Installation safety factor	(dry and wet concrete)	γ2				1	,2		
Installation safety factor	(flooded bore hole)	γ2		1	,4		not adr	nissible	

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to TR 029 and TR 045)

Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045) Anchor size threaded rod M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Steel failure without lever arm $V_{Rk,s}$ [kN] 7 12 17 31 49 71 92 112 Characteristic shear resistance, Steel, property class 4.6 $V_{\text{Rk},\text{s},\text{seis}}$ [kN] 12 22 34 50 65 78 --V_{Rk.s} [kN] 9 15 21 39 61 88 115 140 Characteristic shear resistance, Steel, property class 5.8 [kN] 15 27 43 62 81 98 --V_{Rk,s,seis} $V_{\mathsf{Rk},\mathsf{s}}$ [kN] 15 23 98 141 184 224 34 63 Characteristic shear resistance, Steel, property class 8.8 [kN] --24 44 69 99 129 157 $V_{Hk,s,seis}$ Characteristic shear resistance, V_{Rk,s} [kN] 13 20 30 55 86 124 115 140 Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24) [kN] 21 39 60 87 81 98 $V_{Rk,s,seis}$ Steel failure with lever arm $M^0_{Rk,s}$ 900 [Nm] 15 30 52 133 260 449 666 Characteristic bending moment, Steel, property class 4.6 $M^0{}_{\mathsf{Rk},s,seis}$ [Nm] No Performance Determined (NPD) 1123 [Nm] 19 37 65 166 324 560 833 M⁰_{Rk.s} Characteristic bending moment, Steel, property class 5.8 M⁰_{Rk,s,seis} [Nm] No Performance Determined (NPD) $M^0{}_{\mathsf{Rk},s}$ 1333 1797 [Nm] 30 60 105 266 519 896 Characteristic bending moment, Steel, property class 8.8 $M^0_{Rk,s,seis}$ [Nm] No Performance Determined (NPD) [Nm] 26 52 92 232 454 784 832 1125 Characteristic bending moment, $M^0_{\rm Rk,s}$ Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24) No Performance Determined (NPD) M⁰_{Rk.s.seis} [Nm] Concrete pry-out failure Factor k in equation (5.7) of Technical Report k [-] 2,0 TR 029 for the design of Bonded Anchors Installation safety factor 1.0 γ₂ Concrete edge failure Installation safety factor 1,0 γ₂

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to TR 029 and TR 045)

	haracteristic val on-cracked conc							nsion	load	ls in		
Anchor size reinforcin	g bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure						•			•			
Characteristic tension re	esistance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out and	d concrete cone failure											
Characteristic bond resi	stance in non-cracked cor	ncrete C20/	25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
	·	C30/37				•		1,04				
Increasing factors for cc ψ_c	oncrete	C40/50						1,08				
TU		C50/60						1,10				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]		1	,0 ∙ h _{ef}	≤2 · h _e	(2,5 -	$\left(\frac{h}{h_{ef}}\right) \leq$	2,4 · h _e	f	
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation safety factor	(dry and wet concrete)	γ2		1,0				1	,2			
Installation safety factor	(flooded bore hole)	γ2				1,4				not adr	nissible	

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)

	Characteristic valuer action valuer action of the concrete structure term of							ads in		
Anchor size reinforc	ing bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure				•	•					
Characteristic tension	resistance	N _{Rk,s} =N _{Rk,s,seis}	[kN]				$A_{s}\boldsymbol{\cdot}f_{uk}$			
Combined pull-out a	nd concrete cone failure	·								
Characteristic bond re	sistance in cracked concret	e C20/25								
	dry and wet concrete	$ au_{\mathrm{Rk,cr}}$	[N/mm²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	$ au_{\mathrm{Rk,cr}}$	[N/mm²]	5,5	5,5	5,5		not adr	nissible	
		$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7		not adr	nissible	
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet concrete	$ au_{\mathrm{Rk,seis}}$	[N/mm²]	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	4,0	4,0		not adr	nissible	
	flooded bore hole	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	2,7		not adr	nissible	
		τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	a	$ au_{\mathrm{Rk,cr}}$	[N/mm²]	3,0	3,0	3,0		not adr	nissible	
	flooded bore hole	$\tau_{\rm Rk,seis}$	[N/mm²]	2,0	2,0	2,0		not adr	nissible	
		C30/37				1	1,04			
Increasing factors for (only static or quasi-st		C40/50					1,08			
Ψc		C50/60					1,10			
Installation safety fact	or (dry and wet concrete)	γ ₂					1,2			
Installation safety fact	or (flooded bore hole)	γ2			1,4			not adr	nissible	

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to TR 029 and TR 045)

Table C6:Characteristand non-crace											d
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			1		1	1		1	1	1	
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis}	[kN]				0,	35 • A₅ •	f _{uk}			
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.	2 ∙ W _{el} ∙	f _{uk}			
	M ⁰ _{Rk,s,seis}	[Nm]			No F	Performa	nce Dete	rmined (1	NPD)		
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]					2,0				
Installation safety factor	γ2						1,0				
Concrete edge failure											
Installation safety factor	γ2						1,0				

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to TR 029 and TR 045)

Annex C 6

Electronic copy of the ETA by DIBt: ETA-12/0167

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure					1	I	1	1	1		
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	tance,				46	67	125	196	282		449
Steel, property class 8.8 Characteristic tension resis	tance	N _{Rk,s}	[kN]	29	40	67	125	196	282	368	449
Stainless steel A4 and HCF	Α,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
property class 50 (>M24) a Combined pull-out and co											
		000/05									
Characteristic bond resista	nce in non-cracked concrete	e C20/25			1		1			1	
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	11	10	9
40 0/24 0	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5			nissible I	
Temperature range II: 80°C/50°C	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80-0/50-0	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5			nissible I	
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
Increasing factors for conc	rato	C30/37					1,	04			
ψ_c	ele	C40/50						08			
F		C50/60					1,	10			
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				10),1			
Concrete cone failure											
Factor according to CEN/TS 1992-4-5 Section +	6231	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure		I									
						0	0 4 0	5_ <u>h</u>)	<04 h		
Edge distance		C _{cr,sp}	[mm]			,0 · n _{ef} ≤	2 · h _{ef} 2	$\left(\frac{b-h_{ef}}{h_{ef}}\right)$	≤ 2,4 · h _e	əf	
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor (dr	y and wet concrete)	γinst		1,0				1,2			
Installation asfaty faster (fle	oded bore hole)	γinst			1	,4			not adr	nissible	

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C8:Characteristic values of resistance for threaded rods under tension loads in
cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded roo	ł			M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk.s} =N _{Rk.s.seis}	[kN]	34	63	98	141	184	224
Characteristic tension resis	stance,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	stance.								
Steel, property class 8.8		N _{Rk,s} =N _{Rk,s,seis}	[kN]	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HC property class 50 (>M24) a	R,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	59	110	171	247	230	28 ⁻
Combined pull-out and c									
Characteristic bond resista	nce in cracked concrete C2	0/25							
		$ au_{\text{Rk,cr}}$	[N/mm ²]	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,seis}}$	[N/mm ²]	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	5,5	5,5		not adr	nissible	
	liooded bore hole	τ _{Rk,seis}	[N/mm ²]	3,7	3,7		not adr	nissible	
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	4,0	4,0	4,5	4,
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,7	2,7	2,7	2,8	3,1	З,
80°C/50°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0		not adr	nissible	
		$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,7	2,7		not adr	nissible	
	dry and wet concrete	$ au_{\text{Rk,cr}}$	[N/mm ²]	3,0	3,0	3,0	3,0	3,5	3,
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,0	2,0	2,0	2,1	2,4	2,
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	3,0	3,0		not adr	nissible	
		$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,0	2,0		not adr	nissible	
Increasing factors for conc	rata	C30/37				1,	04		
(only static or quasi-static a		C40/50				1,	08		
$\Psi_{\rm c}$		C50/60				1,	10		
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]			1,5	h _{et}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Installation safety factor (d	ry and wet concrete)	γinst				1	,2		
Installation safety factor (fl	ooded bore hole)	γinst		1	,4		not adr	nissible	

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 3
Steel failure without lever arm		L.		1		1	1		1	
Characteristic shear resistance,	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Steel, property class 4.6	$V_{\rm Rk,s,seis}$	[kN]	-	-	12	22	34	50	65	78
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Steel, property class 5.8	$V_{Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel, property class 8.8	$V_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	15
Characteristic shear resistance, Stainless steel A4 and HCR,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	14(
property class 50 (>M24) and 70 (\leq M24)	$V_{\text{Rk},\text{s},\text{seis}}$	[kN]	-	-	21	39	60	87	81	98
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂				1	0,8	1			•
Steel failure with lever arm										
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	90
Steel, property class 4.6	M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
Steel, property class 5.8	M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
Steel, property class 8.8	M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Concrete pry-out failure		I								
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,0				
Installation safety factor	γinst					1,0				
Concrete edge failure ³⁾										
Effective length of anchor	l _t	[mm]			I _t =	min(h _{et} ; 8	3 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γ _{inst}					1,0				

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)

Annex C 9

Electronic copy of the ETA by DIBt: ETA-12/0167

Table C10: Cha non·	racteristic value cracked concre									ls in		
Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure		_										
Characteristic tension resist	ance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out and co	ncrete failure											
Characteristic bond resistan	ce in non-cracked concre	te C20/25	5									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5
40°Ċ/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adn	nissible	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adn	nissible	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adn	nissible	
		C30/37						1,04				
Increasing factors for concre ψ_c	ele	C40/50						1,08				
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{et}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{et}				
Installation safety factor (dry	and wet concrete)	Yinst		1.0				1,	,2			
Installation safety factor (floo	oded bore hole)	γinst				1,4				not adn	nissible	

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Annex C 10

Electronic copy of the ETA by DIBt: ETA-12/0167

Table C11: Char conc	acteristic value crete (Design ac							ds in o	cracke	∍d
Anchor size reinforcing t	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure				<u> </u>	<u> </u>	1	1	L	<u> </u>	
Characteristic tension resis	stance	N _{Rk,s} =N _{Rk,s,seis}	[kN]				$A_{s} \cdot f_{uk}$			
Combined pull-out and c	oncrete failure									
Characteristic bond resista	ance in cracked concrete	e C20/25								
	1	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperatura rango li	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5
Temperature range I: 40°C/24°C		τ _{Rk,cr}	[N/mm ²]	5,5	5,5	5,5		not adr	nissible	L
	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	3,7	3,7	3,7		not adn		
	+	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5
	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	2,7	2,7	2,7	2,7	2.8	3,1	3,1
Temperature range II: 80°C/50°C		τ _{Rk,cr}	[N/mm ²]	4,0	4.0	4,0		not adn	,	0, :
	flooded bore hole		[N/mm ²]	2,7	2,7	2,7		not adn		
	+	τ _{Rk,seis}	[N/mm ²]	3,0	3,0	3,0	3.0	3,0	3,5	3,5
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4
Temperature range III: 120°C/72°C		τ _{Rk,seis}					2,0	not adn	· ·	2,4
	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	3,0	3,0	3,0				
		τ _{Rk,seis} C30/37	[N/mm ²]	2,0	2,0	2,0	1,04	not aun	nissible	
Increasing factors for conc (only static or quasi-static a		C30/37 C40/50					1,04			
ψ_c		C50/60					1,00			
Factor according to CEN/TS 1992-4-5 Section	6000	k ₈	[-]	<u> </u>			7,2			
Centres 1992-4-5 Section	0.2.2.3			<u> </u>						
Factor according to		1	T	T						
CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{et}			
Axial distance		S _{cr,N}	[mm]	<u> </u>			3,0 h _{ef}			
Installation safety factor (d		γinst		ļ			1,2			
Installation safety factor (flo	ooded bore hole)	γinst			1,4			not adn	nissible	

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Table C12: Characteristic value and non-cracked co											5)
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
	V ⁰ _{Rk,s,seis}	[kN]				0,	35 • A _s •	f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	$M^0_{\ Rk,s}$	[Nm]				1.:	2 ∙ W _{el} ∙	f _{uk}			
Characteristic bending moment	$M^0_{\ Rk,s,seis}$	[Nm]			No P€	erformar	nce Dete	rmined (NPD)		
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]				l _t = m	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γinst						1,0				

Walsywa Injection system WQI 44 PLUS for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25		•							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]					0,0)70		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		-			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]		-			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		-			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{NO}} = \delta_{\text{NO}} \text{-factor} \ \cdot \ \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C14: Displacements under shear load¹⁾ (threaded rod)

	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	I concrete C2	0/25	•	•		•				
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked cor	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]		-	0,17	0,15	0,14	0,13	0,12	0,10
¹⁾ Calculation of $\delta_{V0} = \delta_{V0}$ -facto $\delta_{V\infty} = \delta_{V\infty}$ -fact	or ⊢V;	nt								
$\begin{array}{l} \delta_{V0}=\delta_{V0}\text{-facto}\\ \delta_{V\infty}=\delta_{V\infty}\text{-fact} \end{array}$	or · V; or · V;		or concrete							
$\begin{array}{l} \delta_{V0}=\delta_{V0}\text{-facto}\\ \delta_{V\infty}=\delta_{V\infty}\text{-fact} \end{array}$	or · V; or · V;	WQI 44 PLUS 1	or concrete	9					nex C -	13

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/	25	•								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]						0,070			
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]		-				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	- · ·	-				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	1	-				0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C16: D	·τ; ·τ;		hear lo	oad ¹⁾ (r	ebar)						
$\begin{array}{l} \delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \\ \delta_{\text{N}\infty} = \delta_{\text{N}\infty} \text{-factor} \end{array}$	τ; τ; isplacen	nent under s	hear lo Ø 8	øad ¹⁾ (r Ø 10	ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C16: D Anchor size reinfo	τ; τ; isplacen orcing bar	nent under s	1		-	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C16: D	τ; τ; isplacen orcing bar	nent under s	1		-	Ø 14 0,04	Ø 16 0,04	Ø 20 0,04	Ø 25	Ø 28 0,03	
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C16: D Anchor size reinformation Non-cracked controls All temperature	τ; τ; prcing bar crete C20/2 δ _{V0} -factor	nent under s	Ø 8	Ø 10	Ø 12			 			0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C16: D Anchor size reinfor Non-cracked cond All temperature ranges	τ; τ; isplacen prcing bar crete C20/2 $δ_{Vo}$ -factor $δ_{Vo}$ -factor	nent under s 25 [mm/(kN)]	Ø 8 0,06	Ø 10	Ø 12	0,04	0,04	0,04	0,03	0,03	0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C16: D Anchor size reinfo	τ; τ; isplacen prcing bar crete C20/2 $δ_{Vo}$ -factor $δ_{Vo}$ -factor	nent under s 25 [mm/(kN)]	Ø 8 0,06	Ø 10	Ø 12	0,04	0,04	0,04	0,03	0,03	Ø 32 0,03 0,04
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C16: D Anchor size reinfor Non-cracked conc All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th	τ; τ; isplacen orcing bar orete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor C20/25 δ_{V0} -factor $\delta_{V\infty}$ -factor $\delta_{V\infty}$ -factor actor $\delta_{V\infty}$ -factor $\delta_{V\infty}$ -factor $\delta_{V\infty}$ -factor $\delta_{V\infty}$ -factor	25 [mm/(kN)] [mm/(kN)] [mm/(kN)]	Ø 8 0,06	Ø 10	Ø 12 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,03
$\delta_{N0} = \delta_{N0} - factor$ $\delta_{N\infty} = \delta_{N\infty} - factor$ Table C16: D Anchor size reinfo Non-cracked conc All temperature ranges Cracked concrete All temperature ranges	$τ; τ; isplacen prcing bar crete C20/2 δ_{V0}-factor\delta_{V\infty}-factorC20/25\delta_{V0}-factor\delta_{V\infty}-factoractor\delta_{V\infty}-factor\delta_{V\infty}-factor\delta_{V\infty}-factor\delta_{V\infty}-factor\delta_{V\infty}-factor\delta_{V\infty}-factor\delta_{V\infty}-factor$	25 [mm/(kN)] [mm/(kN)] [mm/(kN)]	Ø 8 0,06	Ø 10	Ø 12 0,05 0,08 0,11	0,04 0,06 0,11	0,04 0,06 0,10	0,04 0,05 0,09	0,03 0,05 0,08	0,03 0,04 0,07	0,03