



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-12/0258 of 23 March 2015

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Superbond

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



#### European Technical Assessment ETA-12/0258 English translation prepared by DIBt

Page 2 of 32 | 23 March 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.



#### Specific Part

#### 1 Technical description of the product

The fischer injection system FIS SB is a bonded anchor consisting of a cartridge with injection mortar fischer FIS SB, FIS SB Low Speed or FIS SB High Speed or a mortar capsule fischer RSB and a steel element. The steel element consist of

- a threaded rod with washer and hexagon nut of sizes M8 to M30 or
- internal threaded anchor RG MI of sizes M8 to M20 or
- a deformed reinforcing bar of sizes  $\phi = 8$  to 32 mm or
- a fischer rebar anchor FRA of sizes M12 to M24

The steel element is placed into a drilled hole filled with injection mortar or a mortar capsule RSB and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                                                          | Performance            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements    | See Annex C 1 to C 10  |  |  |
| Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements | See Annex C 11 to C 13 |  |  |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | No performance determined (NPD)                 |



#### **European Technical Assessment**

ETA-12/0258

#### Page 4 of 32 | 23 March 2015

English translation prepared by DIBt

#### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

## 3.5 Protection against noise (BWR 5)

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

#### 3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                                   | Intended use                                                                                                              | Level or class | System |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in<br>concrete (heavy-duty<br>type) | For fixing and/or supporting<br>concrete structural elements or<br>heavy units such as cladding and<br>suspended ceilings | _              | 1      |

## 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 March 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Lange

#### Page 5 of European Technical Assessment ETA-12/0258 of 23 March 2015





#### Page 6 of European Technical Assessment ETA-12/0258 of 23 March 2015



| Injection system FIS SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Resin capsule sy                                      | vstem RSB   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|
| Imprint: FIS SB, FIS SB High Speed,<br>Processing notes, shelf-life, piston travel scale,<br>curing and processing times (depending on<br>temperature), hazard code, size.<br>Literature of the state o | Resin capsule I                                       | RSB         |
| Injection-adapter Extension tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |             |
| fischer threaded rod FIS A or RGM<br>Size: M8, M10, M12, M16, M20, M24, M27, M30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fischer threaded rod RGM<br>Size: M8, M10, M12, M16,  |             |
| Washer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | Washer      |
| Hexagon nut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <                                                     | Hexagon nut |
| fischer internal threaded anchor RG MI<br>Size: M8, M10, M12, M16, M20 Screw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fischer internal threaded<br>Size: M8, M10, M12, M16, |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |             |
| <b>Reinforcing bar</b><br>Size: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |             |
| fischer rebar anchor FRA<br>Size: M12, M16, M20, M24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |             |
| Washer Hexagon<br>nut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             |
| Marking setting depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             |
| fischer Superbond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |
| Product description<br>Mortar system and capsule system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | Annex A 2   |



| Part | Designation                                                            |                                                                                                                                                                                                                                                                                                                     | Material                                                                                                                                |                                                                                                            |  |  |  |  |  |
|------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | Mortar cartridge                                                       | Mortar, hardener, filler                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                            |  |  |  |  |  |
|      |                                                                        | Steel, zinc plated                                                                                                                                                                                                                                                                                                  | Stainless steel A4                                                                                                                      | High corrosion-<br>resistant steel C                                                                       |  |  |  |  |  |
|      | Threaded rod                                                           | Property class 5.8 or 8.8;<br>EN ISO 898-1: 2013<br>zinc plated ≥ 5µm,                                                                                                                                                                                                                                              | Property class 50, 70<br>or 80<br>EN ISO 3506:2009                                                                                      | Property class 50 or 80<br>EN ISO 3506:2009<br>or property class 70                                        |  |  |  |  |  |
|      |                                                                        | EN ISO 4042:1999 A2K<br>or hot-dip galvanised                                                                                                                                                                                                                                                                       | 1.4401; 1.4404;<br>1.4578; 1.4571;                                                                                                      | with f <sub>yk</sub> = 560 N/mm <sup>2</sup><br>1.4565; 1.4529                                             |  |  |  |  |  |
| 2    |                                                                        | EN ISO 10684:2004<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12% fracture<br>elongation                                                                                                                                                                                                        | 1.4439; 1.4362;<br>1.4062<br>EN 10088-1:2014<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12% fracture<br>elongation | EN 10088-1:2014<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>A <sub>5</sub> > 12% fracture<br>elongation |  |  |  |  |  |
| 3    | Washer<br>ISO 7089:2000                                                | zinc plated ≥ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004                                                                                                                                                                                                                            | 1.4401; 1.4404;<br>1.4578;1.4571;<br>1.4439; 1.4362                                                                                     | 1.4565;1.4529<br>EN 10088-1:2014                                                                           |  |  |  |  |  |
|      | Hexagon nut                                                            | Property class 5 or 8;<br>EN ISO 898-2:2013                                                                                                                                                                                                                                                                         | EN 10088-1:2014<br>Property class 50, 70<br>or 80                                                                                       | Property class 50, 70 o<br>80                                                                              |  |  |  |  |  |
| 4    |                                                                        | zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004                                                                                                                                                                                                                               | EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4571; 1.4439;<br>1.4362                                                     | EN ISO 3506:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                      |  |  |  |  |  |
|      | fischer internal threaded<br>anchor RG MI                              | Property class 5.8 or 8.8;<br>ISO 898-1:2013<br>zinc plated ≥ 5µm,                                                                                                                                                                                                                                                  | EN 10088-1:2014<br>Property class 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;                                                             | Property class 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529                                                  |  |  |  |  |  |
| 5    |                                                                        | ISO 4042:1999 A2K                                                                                                                                                                                                                                                                                                   | 1.4578; 1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                                    | EN 10088-1:2014                                                                                            |  |  |  |  |  |
| 6    | Screw or threaded rod for<br>fischer internal threaded<br>anchor RG MI | Property class 5.8 or 8.8;<br>EN ISO 898-1:2013<br>zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K                                                                                                                                                                                                                          | Property class 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                        | Property class 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                               |  |  |  |  |  |
| 7    | Reinforcing bar<br>EN 1992-1-1:2004 and<br>AC:2010, Annex C            | Bars and de-coiled rods cla<br>$f_{yk}$ and k according to NDP of<br>$f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex                                                                                                                                                                                                | ss B or C with<br>or NCL of EN 1992-1-1/                                                                                                | NA:2013                                                                                                    |  |  |  |  |  |
| 8    | fischer rebar anchor FRA                                               | Tuk = K <sup>1</sup> yk (K see Annex B 4)Rebar part: Bars and de-coiled rods<br>class B or C with $f_{yk}$ and k according to<br>NDP or NCL of EN 1992-1-1/NA:2013<br>$f_{uk} = f_{tk} = k \cdot f_{yk}$ (k see Annex B 4)Threaded part:<br>Property class 70<br>ISO 3506:2009<br>1.4565; 1.4529<br>EN 10088-1:2014 |                                                                                                                                         |                                                                                                            |  |  |  |  |  |

fischer Superbond

Product description Materials Annex A 3



| Specifications of intended use (part 1) |                                                   |                             |                                          |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
|-----------------------------------------|---------------------------------------------------|-----------------------------|------------------------------------------|-----------------|-------------------------------------------|------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Table B                                 | 1: Overvie                                        | w use                       | categories                               | and pe          | erformance cate                           | gories           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Anchorages                              | subject to                                        |                             | Mortar system FIS SB with                |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
|                                         |                                                   | Thr                         | eaded rod                                |                 | r internal threaded<br>nchor RG MI        | Reinforcing bar  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her rebar<br>chor FRA           |  |  |  |  |
| Hammer drill                            | lina                                              |                             |                                          |                 | all sizes                                 | 2                |                                | Lucilline and Lu |                                 |  |  |  |  |
| Diamond dril                            | -                                                 |                             |                                          |                 | Not permit                                |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Static and<br>quasi-static<br>load, in  | un-<br>cracked<br>concrete<br>cracked<br>concrete | all<br>sizes                | Tables:<br>C1; C3; C5;<br>C11; C12       | all<br>sizes    | Tables:<br>C3; C6; C13; C14               | all sizes        | Tables:<br>C7; C9;<br>C15; C16 | all<br>sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tables:<br>C8; C10;<br>C17; C18 |  |  |  |  |
| Seismic<br>performance<br>category      | C1                                                | M8<br>-<br>M30              | Table<br>C19                             |                 |                                           | Ø 8<br>-<br>Ø 32 | Table C20                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| (only<br>hammer<br>drilling)            | C2                                                | M12,<br>M16,<br>M20,<br>M24 | Table<br>C21                             |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Use<br>category —                       | Dry or wet<br>concrete                            | all sizes                   |                                          |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| F                                       | looded hole                                       | Not permitted               |                                          |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Anchorages                              | subject to                                        |                             |                                          |                 | Capsule syste                             | m RSB v          | with                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
|                                         |                                                   |                             | Threaded rod<br>RGM only                 |                 | fischer internal threaded<br>anchor RG MI |                  | Reinforcing bar                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her rebar<br>chor FRA           |  |  |  |  |
| Hammer drill                            | ling                                              | e                           | III sizes                                | Perm            | nitted ≥ Ø 18 mm                          | Not p            | ermitted                       | Not permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |  |  |  |  |
| Diamond dril                            | ling                                              | RGM                         | M16 to M30                               | Perm            | nitted ≥ Ø 18 mm                          | Not p            | ermitted                       | Not permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |  |  |  |  |
| Static and<br>quasi-static<br>load, in  | un-<br>cracked<br>concrete<br>cracked<br>concrete | all<br>sizes                | Tables:<br>C1;C2; C3;<br>C5; C11;<br>C12 | M10<br>-<br>M20 | - C3; C4; C6; C13;                        |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Seismic<br>performance<br>category      | C1                                                | M8<br>_<br>M30              | Table<br>C19                             |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| (only<br>hammer<br>drilling)            | C2                                                |                             |                                          |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| Use                                     | Dry or wet<br>concrete                            | RGI                         | M all sizes                              |                 | All sizes                                 |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| category —<br>F                         | looded hole                                       | RG                          | M all sizes                              |                 | All sizes                                 |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |
| fischer Su                              | uperbond                                          |                             |                                          |                 |                                           |                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |  |  |  |

Intended Use Specifications (part 1) Annex B 1



| Specifications of intended use (part 2) |                       |                 |                                                                              |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------------|-----------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Installation ter                        | nperature             |                 | +5°C to +40°C                                                                |  |  |  |  |  |  |  |
|                                         | Temperature range I   | -40°C to +40°C  | (max. long term temperature +24°C and max.<br>short term temperature +40°C)  |  |  |  |  |  |  |  |
| In-service                              | Temperature range II  | -40°C to +80°C  | (max. long term temperature +50°C and max.<br>short term temperature +80°C)  |  |  |  |  |  |  |  |
| temperature                             | Temperature range III | -40°C to +120°C | (max. long term temperature +72°C and max.<br>short term temperature +120°C) |  |  |  |  |  |  |  |
|                                         | Temperature range IV  | -40°C to +150°C | (max. long term temperature +90°C and max.<br>short term temperature +150°C) |  |  |  |  |  |  |  |

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist
- (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition or in other particular aggressive conditions (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

#### Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with: TR 029
- Anchorages under seismic actions have to be designed in accordance with: TR 045

#### Installation:

- Anchor installation carried out by appropriately gualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth

#### Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

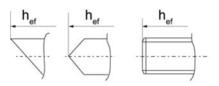
- Materials, dimensions and mechanical properties according to Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

#### fischer Superbond

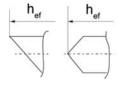
## Intended Use

## Annex B 2

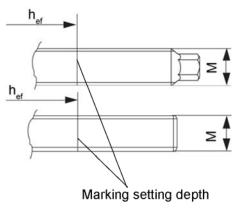
Specifications (part 2)


#### Deutsches Institut für Bautechnik

| Table B             | 2: Installatior                                               | ר parameter                            | s for thr             | readed | l rods            |                             |     |                  |                   |     |     |     |
|---------------------|---------------------------------------------------------------|----------------------------------------|-----------------------|--------|-------------------|-----------------------------|-----|------------------|-------------------|-----|-----|-----|
| Size                |                                                               |                                        |                       |        | M8                | M10                         | M12 | M16              | M20               | M24 | M27 | M30 |
| Width acr           | oss flat                                                      |                                        | SW                    | [mm]   | 13                | 17                          | 19  | 24               | 30                | 36  | 41  | 46  |
|                     | Nominal drill b                                               | it diameter                            | d <sub>0</sub>        | [mm]   | 10                | 12                          | 14  | 18               | 24                | 28  | 30  | 35  |
|                     | Depth of drill h                                              | iole                                   | ho                    | [mm]   |                   | -                           |     | h <sub>o</sub> : | = h <sub>ef</sub> |     |     |     |
|                     | Effective anch                                                | orage _                                | h <sub>ef,min</sub>   | [mm]   | 60                | 60                          | 70  | 80               | 90                | 96  | 108 | 120 |
| Injection           | depth                                                         |                                        | h <sub>ef,max</sub>   | [mm]   | 160               | 200                         | 240 | 320              | 400               | 480 | 540 | 600 |
| mortar<br>FIS SB    | Diameter of clearance                                         | pre-<br>positioned<br>anchorage        | ≤ d <sub>f</sub>      | [mm]   | 9                 | 12                          | 14  | 18               | 22                | 26  | 30  | 33  |
|                     | hole in the<br>fixture <sup>1)</sup>                          | push<br>through<br>anchorage           | ≤ d <sub>f</sub>      | [mm]   | 11                | 14                          | 16  | 20               | 26                | 30  | 33  | 40  |
|                     | Nominal drill b                                               |                                        | do                    | [mm]   | 10                | 12                          | 14  | 18               | 25                | 28  |     | 35  |
|                     | Depth of drill h                                              | iole                                   | h <sub>0</sub>        | [mm]   |                   | $h_0 = h_{ef}$              |     |                  |                   |     |     |     |
| Resin               | Effective                                                     | _                                      | h <sub>ef,1</sub>     | [mm]   |                   | 75                          | 75  | 95               |                   |     |     |     |
| capsule             | anchorage                                                     | _                                      | h <sub>ef,2</sub>     | [mm]   | 80                | 90                          | 110 | 125              | 170               | 210 |     | 280 |
| RSB                 | depth                                                         |                                        | h <sub>ef,3</sub>     | [mm]   |                   | 150                         | 150 | 190              | 210               |     |     |     |
|                     | Diameter of<br>clearance hole<br>in the fixture <sup>1)</sup> | Only pre-<br>e positioned<br>anchorage |                       | [mm]   | 9                 | 12                          | 14  | 18               | 22                | 26  |     | 33  |
| minimum<br>distance | <b>.</b>                                                      | s <sub>min</sub> = c <sub>min</sub>    | n                     | [mm]   | 40                | 45                          | 55  | 65               | 85                | 105 | 120 | 140 |
| Minimum<br>concrete | thickness of<br>member                                        |                                        | h <sub>min</sub>      | [mm]   | h <sub>ef</sub> - | h <sub>ef</sub> + 30 (≥100) |     |                  |                   |     | 0   |     |
| Maximum             | n torque momen <sup>.</sup>                                   | t m                                    | nax T <sub>inst</sub> | [Nm]   | 10                | 20                          | 40  | 60               | 120               | 150 | 200 | 300 |


<sup>1)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1

## fischer threaded rod:


Alternative point geometry threaded rod FIS A



Alternative point geometry threaded rod RGM



Alternative head geometry threaded rod FIS A and  $\ensuremath{\mathsf{RGM}}$ 

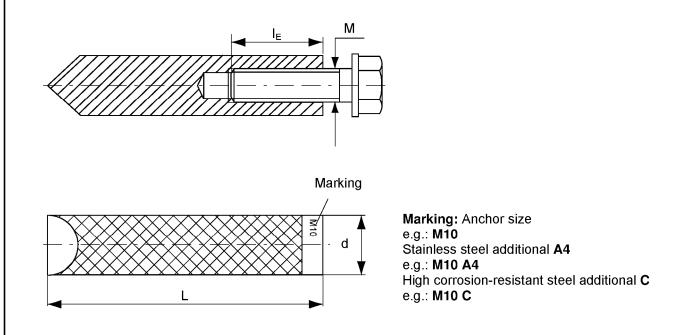


## Marking (on random place):

Property class 8.8 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: ••

## fischer Superbond

## Intended Use


Installation parameters threaded rods

#### Deutsches Institut für Bautechnik

| Size                                                    |                            |      | M8  | M10 | M12            | M16 | M20 |
|---------------------------------------------------------|----------------------------|------|-----|-----|----------------|-----|-----|
| Diameter of anchor                                      | d <sub>H</sub>             | [mm] | 12  | 16  | 18             | 22  | 28  |
| Nominal drill bit diameter                              | do                         | [mm] | 14  | 18  | 20             | 24  | 32  |
| Drill hole depth                                        | ho                         | [mm] |     | _   | $h_0 = h_{ef}$ |     |     |
| Effective anchorage depth $(h_{ef} = L_H)$              | $\mathbf{h}_{\mathrm{ef}}$ | [mm] | 90  | 90  | 125            | 160 | 200 |
| Maximum torque<br>moment                                | max T <sub>inst</sub>      | [Nm] | 10  | 20  | 40             | 80  | 120 |
| Minimum spacing                                         | S <sub>min</sub>           | [mm] | 55  | 65  | 75             | 95  | 125 |
| Minimum edge<br>distance                                | C <sub>min</sub>           | [mm] | 55  | 65  | 75             | 95  | 125 |
| Diameter of clearance hole in the fixture <sup>1)</sup> | $d_{f}$                    | [mm] | 9   | 12  | 14             | 18  | 22  |
| Minimum thickness of<br>concrete member                 | h <sub>min</sub>           | [mm] | 120 | 125 | 165            | 205 | 260 |
| Maximum screw-in depth                                  | I <sub>E,max</sub>         | [mm] | 18  | 23  | 26             | 35  | 45  |
| Minimum screw-in<br>depth                               | $I_{E,min}$                | [mm] | 8   | 10  | 12             | 16  | 20  |

<sup>1)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1

## fischer internal threaded anchor RG MI



Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Table A1

| fischer Superbond                                                               |           |
|---------------------------------------------------------------------------------|-----------|
| Intended Use<br>Installation parameters fischer internal threaded anchors RG MI | Annex B 4 |



| Nominal bar size                                                                                                                  |                     | Ø        | <b>8</b> <sup>1)</sup> | <b>10</b> <sup>1)</sup> | 12 <sup>1</sup> | )  | 14          | 16  | 20                   | 25           | 28    | 32  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------------|-------------------------|-----------------|----|-------------|-----|----------------------|--------------|-------|-----|
| Nominal drill bit diameter                                                                                                        | do                  | [mm]     | (10)12                 | (12)14                  | (14)            | 16 | 18          | 20  | 25                   | 30           | 35    | 40  |
| Drill hole depth                                                                                                                  | h <sub>0</sub>      | [mm]     |                        |                         |                 |    | $h_0 = h_e$ | f   |                      |              | •     |     |
| Effective                                                                                                                         | h <sub>ef,min</sub> | [mm]     | 60                     | 60                      | 70              | )  | 75          | 80  | 90                   | 100          | 112   | 128 |
| anchorage depth                                                                                                                   | h <sub>ef,max</sub> | [mm]     | 160                    | 200                     | 240             | C  | 280         | 320 | 400                  | 500          | 560   | 640 |
| Vinimum spacing                                                                                                                   | S <sub>min</sub>    | [mm]     | 40                     | 45                      | 55              |    | 60          | 65  | 85                   | 110          | 130   | 160 |
| Ainimum edge distance                                                                                                             | C <sub>min</sub>    | [mm]     | 40                     | 45                      | 55              |    | 60          | 65  | 85                   | 110          | 130   | 160 |
| Minimum thickness of concrete member                                                                                              | h <sub>min</sub>    | [mm]     | h <sub>ef</sub>        | + 30 ≥ 10               | 0               |    |             | ł   | n <sub>ef</sub> + 20 | do           |       |     |
| Reinforcing bar                                                                                                                   |                     |          |                        |                         |                 |    |             | Ø   |                      |              |       |     |
| h <sub>er</sub> Marking setting depth                                                                                             |                     |          |                        |                         |                 |    |             |     |                      |              |       |     |
| Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N Product form Non-zinc-plated bars and de-coiled rod |                     |          |                        |                         |                 |    |             |     |                      |              |       |     |
| •                                                                                                                                 | ient: refe          | er to EN | 1992-1-1               | Annex C                 | -               |    |             |     |                      |              | 1 400 | 1   |
| Properties of reinforcem<br>Product form<br>Class                                                                                 | ient: refe          | er to EN | 1992-1-1               | Annex C                 | -               |    | lated       |     | ind de               | -coileo<br>C | d rod |     |

| Class                                                  | В                                   | С                   |                    |       |  |  |
|--------------------------------------------------------|-------------------------------------|---------------------|--------------------|-------|--|--|
| Characteristic yield strength                          | 400 to 600                          |                     |                    |       |  |  |
| Minimum value of $k = (f_t / f_y)_k$                   | ≥ 1,08 ≥ 1,15 < 1,35                |                     |                    |       |  |  |
| Characteristic strain at maximum for                   | orce                                | ε <sub>uk</sub> [%] | ≥ 5,0              | ≥ 7,5 |  |  |
| Bentability                                            |                                     | _                   | Bend / Rebend test |       |  |  |
| Maximum deviation from nominal mass (individual        | Nominal bar                         | ≤ 8                 | ± 6,0              |       |  |  |
| bar) [%]                                               | size [mm] > 8                       |                     | ± 4,5              |       |  |  |
| Bond:<br>Minimum relative rib area, f <sub>R.min</sub> | Nominal bar<br>size [mm]8 to 12> 12 |                     | 0,040              |       |  |  |
| (determination acc. to EN 15630)                       |                                     |                     | 0,056              |       |  |  |

## Rib height h:

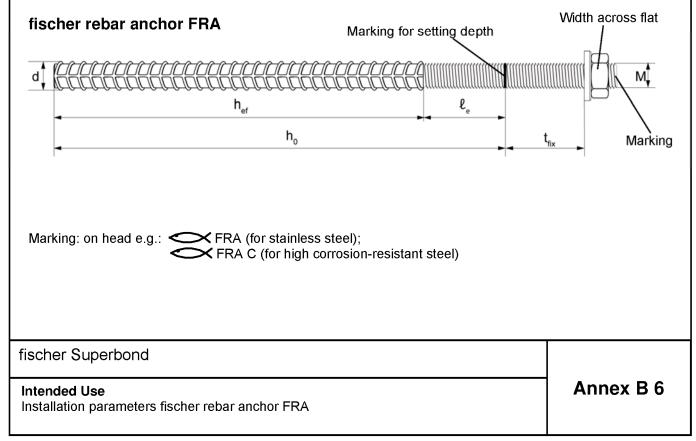
| The rib height h must be | $0,05*\emptyset \leq h \leq 0,07*\emptyset$ |
|--------------------------|---------------------------------------------|
| ø = nominal bar size     |                                             |

fischer Superbond

#### Intended Use

Installation parameters reinforcing bars

Annex B 5




## Table B5: Installation parameters fischer rebar anchor FRA

| Thread diameter                          |                             |                     |      | M12                          | 1) | M16               | M20                             | M24 |
|------------------------------------------|-----------------------------|---------------------|------|------------------------------|----|-------------------|---------------------------------|-----|
| Nominal bar size                         |                             | Ø                   | [mm] | 12                           |    | 16                | 20                              | 25  |
| Width across flat                        |                             | SW                  | [mm] | 19                           |    | 24                | 30                              | 36  |
| Nominal drill bit diameter               |                             | do                  | [mm] | (14)                         | 16 | 20                | 25                              | 30  |
| Depth of drill hole ( $h_0 = I_{ges}$ )  |                             | h <sub>0</sub>      | [mm] |                              |    | h <sub>ef</sub> + | l <sub>e</sub>                  |     |
| Distance concrete surface to welded join |                             | Ł                   | [mm] |                              |    | 100               |                                 |     |
| Effective enchanges donth                |                             | h <sub>ef,min</sub> | [mm] | 70                           |    | 80                | 90                              | 96  |
| Effective anchorage depth                |                             | ו <sub>ef,max</sub> | [mm] | 14(                          | )  | 220               | 300                             | 380 |
| Maximum torque moment                    |                             | x T <sub>inst</sub> | [Nm] | 40                           |    | 60                | 120                             | 150 |
| Minimum spacing                          |                             | S <sub>min</sub>    | [mm] | 55                           |    | 65                | 85                              | 105 |
| Minimum edge distance                    |                             | C <sub>min</sub>    | [mm] | 55                           |    | 65                | 85                              | 105 |
| Diameter of clearance hole in            | Pre-positioned<br>anchorage | ≤ d <sub>f</sub>    | [mm] | 14                           |    | 18                | 22                              | 26  |
| the fixture <sup>2)</sup>                | Push through anchorage      | ≤ d <sub>f</sub>    | [mm] | 18                           |    | 22                | 26                              | 32  |
| Minimum thickness of<br>concrete member  |                             | h <sub>min</sub>    | [mm] | h <sub>ef</sub> +30<br>≥ 100 |    | h,                | <sub>ef</sub> + 2d <sub>0</sub> | -   |

<sup>1)</sup> Both drill bit diameters can be used

<sup>2)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1





| Table B6: D | Dimer          | nsions | of res   | in caps           | sule R    | SB                |           |                   |           |             |           |                    |           |
|-------------|----------------|--------|----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------|-----------|--------------------|-----------|
| Capsule     |                | [-]    | RSB<br>8 | RSB<br>10<br>mini | RSB<br>10 | RSB<br>12<br>mini | RSB<br>12 | RSB<br>16<br>mini | RSB<br>16 | RSB<br>16 E | RSB<br>20 | RSB<br>20 E<br>/24 | RSB<br>30 |
| Diameter    | Dp             | [mm]   | 9,0      | 10                | ,5        | 12                | 2,5       |                   | 16,5      |             | 23        | 6,0                | 27,5      |
| Length      | L <sub>P</sub> | [mm]   | 85       | 72                | 90        | 72                | 97        | 72                | 95        | 123         | 160       | 190                | 260       |

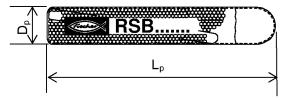
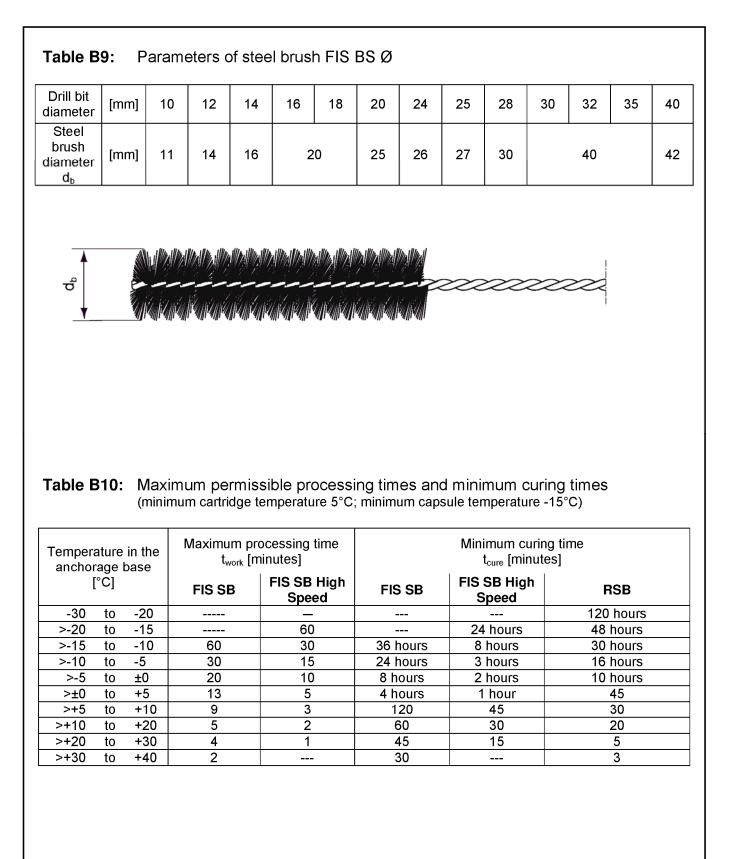



Table B7: Allocation Resin capsule RSB to fischer threaded rods RGM

| Size                            |                   |      | M8 | M10      | M12      | M16      | M20     | M24     | M30 |
|---------------------------------|-------------------|------|----|----------|----------|----------|---------|---------|-----|
| Nominal drill bit<br>diameter   | d <sub>o</sub>    | [mm] | 10 | 12       | 14       | 18       | 25      | 28      | 35  |
| Minimum setting depth           | h <sub>ef,1</sub> | [mm] |    | 75       | 75       | 95       |         |         |     |
| Associated resin<br>capsule RSB |                   | [-]  |    | 10mini   | 12mini   | 16mini   |         |         |     |
| Medium setting depth            | $h_{\text{ef},2}$ | [mm] | 80 | 90       | 110      | 125      | 170     | 210     | 280 |
| Associated resin capsule RSB    |                   | [-]  | 8  | 10       | 12       | 16       | 20      | 20 E/24 | 30  |
| Maximum setting depth           | h <sub>ef,3</sub> | [mm] |    | 150      | 150      | 190      | 210     |         |     |
| Associated resin<br>capsule RSB |                   | [-]  |    | 2x10mini | 2x12mini | 2x16mini | 20 E/24 |         |     |

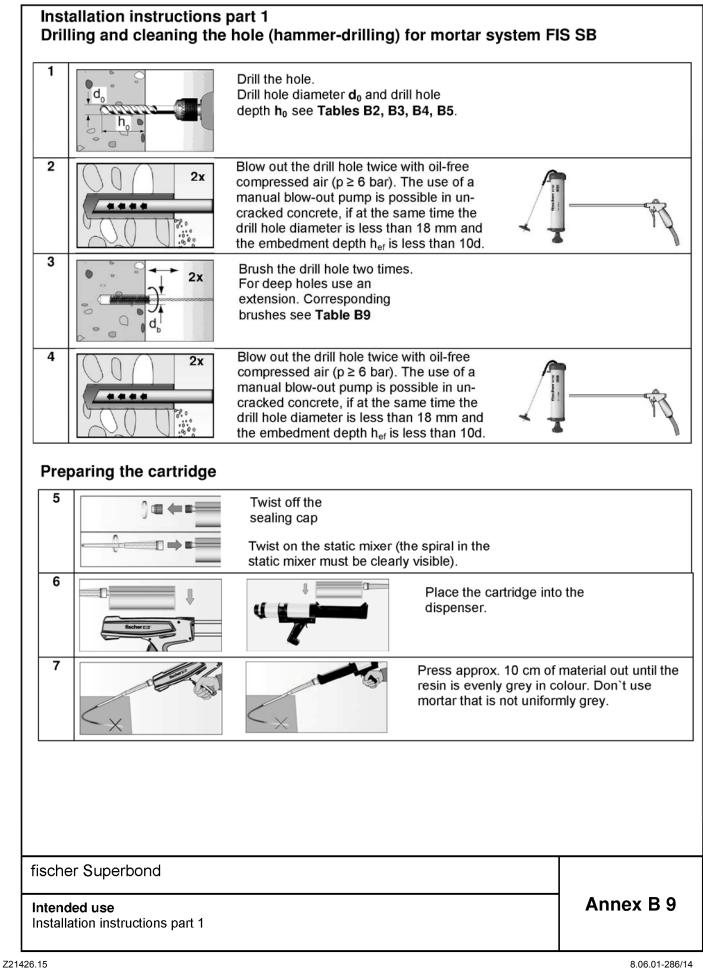

## Table B8: Allocation resin capsule RSB to fischer internal threaded anchor RG MI

| Size                            |                 |      | M8 | M10 | M12 | M16  | M20     |
|---------------------------------|-----------------|------|----|-----|-----|------|---------|
| Nominal drill bit diameter      | do              | [mm] | 14 | 18  | 20  | 24   | 32      |
| Setting depth                   | h <sub>ef</sub> | [mm] | 90 | 90  | 125 | 160  | 200     |
| Associated resin<br>capsule RSB |                 | [-]  | 10 | 12  | 16  | 16 E | 20 E/24 |

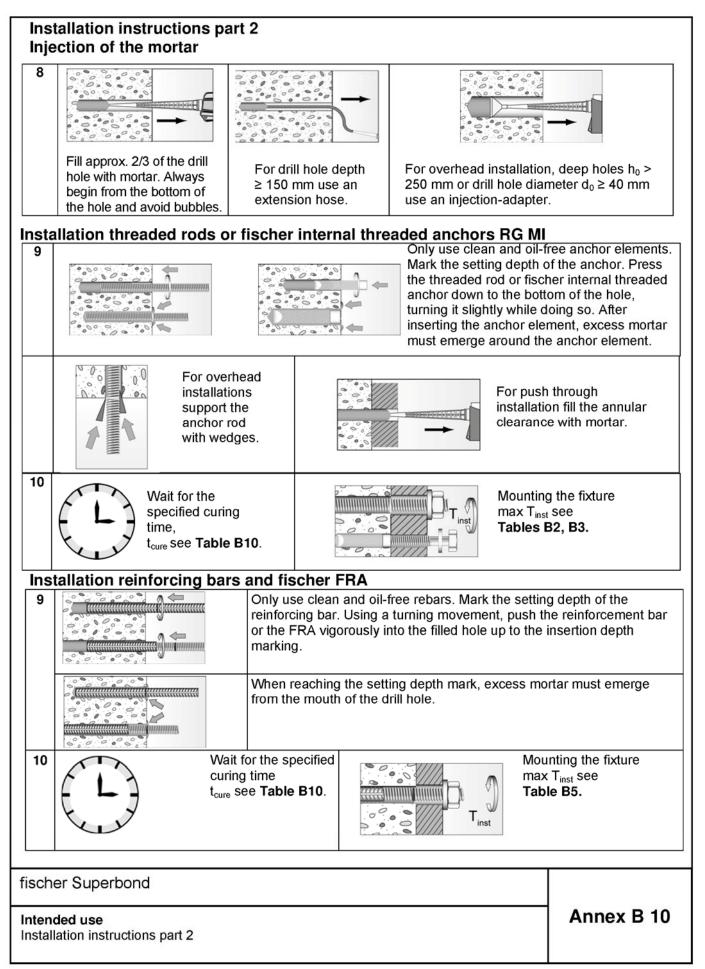
#### fischer Superbond

| Intended Use               |  |
|----------------------------|--|
| Resin capsule RSB          |  |
| Parameters and allocations |  |

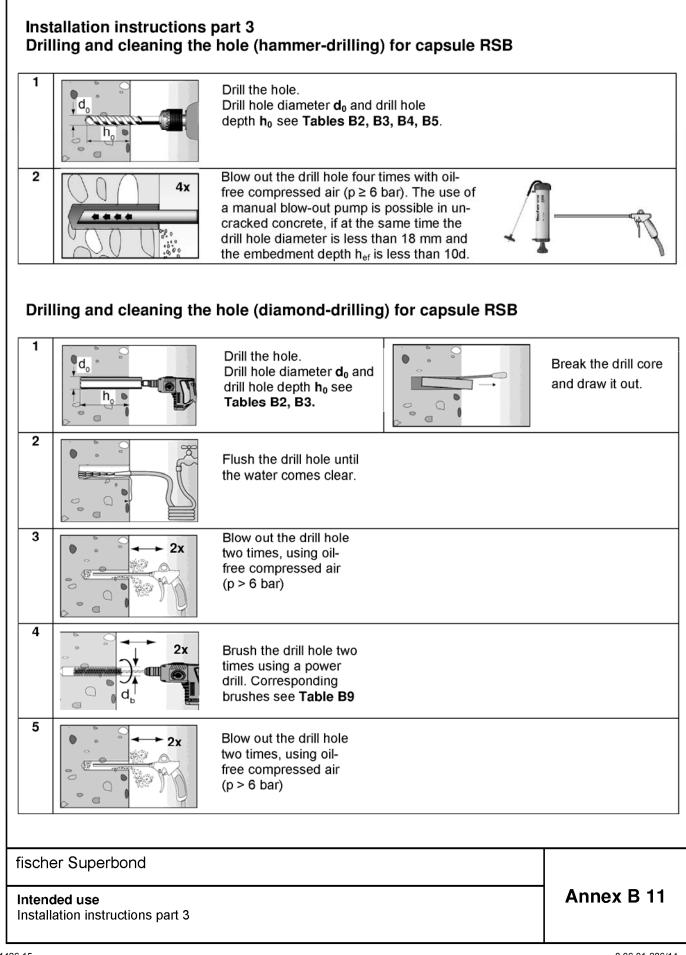





fischer Superbond


| Intended Use                      |
|-----------------------------------|
| Cleaning tools                    |
| Processing times and curing times |

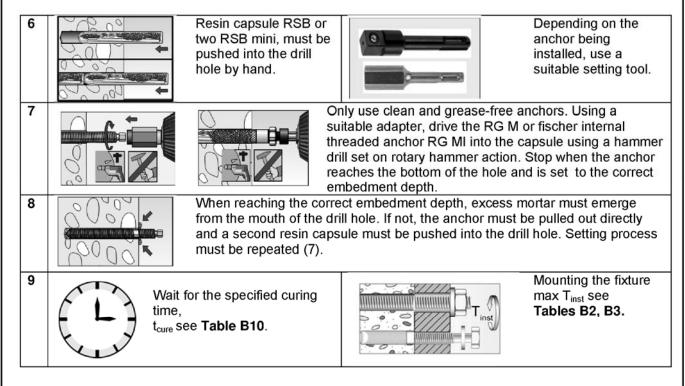
Annex B 8














## Installation instructions part 4

## Installation fischer anchor rods RGM or fischer internal threaded anchors RG MI with capsule RSB



#### fischer Superbond

Intended use Installation instructions part 4 Annex B 12



| Size                                |                            |                                        |                  | M8       | M10      | M12  | M16                 | M20                        | M24 | M27 <sup>3)</sup> | M30 |
|-------------------------------------|----------------------------|----------------------------------------|------------------|----------|----------|------|---------------------|----------------------------|-----|-------------------|-----|
| Installation                        | dry and wet concrete       |                                        | [-]              |          |          |      | 1                   | ,0                         |     |                   |     |
| safety factor fl                    | ooded hole <sup>2)</sup>   | γ <sub>2</sub>                         | [-]              | 1        | ,2       |      |                     | 1                          | ,0  |                   |     |
| Combined pullout a                  | nd concrete co             | one fai                                | ilur             | е        |          |      |                     |                            |     |                   |     |
| Diameter of calculation             | on                         | d [mr                                  | n]               | 8        | 10       | 12   | 16                  | 20                         | 24  | 27                | 30  |
| Characteristic bond                 | resistance in              | un-cra                                 | icke             | ed conc  | rete C2  | 0/25 |                     |                            |     |                   |     |
| Temperature range I <sup>1)</sup>   | $	au_{Rk,ucr}$             | [N/mm                                  | 1 <sup>2</sup> ] | 12       | 13       | 13   | 13                  | 13                         | 12  | 10                | 10  |
| Temperature range II <sup>1)</sup>  | $	au_{Rk,ucr}$             | [N/mm                                  | 1 <sup>2</sup> ] | 12       | 12       | 12   | 13                  | 13                         | 12  | 10                | 10  |
| Temperature range III <sup>1)</sup> | $	au_{Rk,ucr}$             | [N/mm                                  | 1 <sup>2</sup> ] | 10       | 11       | 11   | 11                  | 11                         | 11  | 9                 | 9   |
| Temperature range IV <sup>1)</sup>  | $	au_{Rk,ucr}$             | [N/mm                                  | 1 <sup>2</sup> ] | 10       | 10       | 10   | 11                  | 10                         | 10  | 8                 | 8   |
| Characteristic bond                 | resistance in              | cracke                                 | ed o             | concrete | e C20/25 | 5    |                     |                            |     |                   |     |
| Temperature range I <sup>1)</sup>   | $	au_{Rk,cr}$              | [N/mm                                  | 1 <sup>2</sup> ] | 6,5      | 7,0      | 7,5  | 7,5                 | 7,5                        | 7,5 | 7,5               | 7,5 |
| Temperature range II <sup>1)</sup>  | $	au_{Rk,cr}$              | [N/mm                                  | 1 <sup>2</sup> ] | 6,0      | 6,5      | 7,5  | 7,5                 | 7,5                        | 7,5 | 7,0               | 7,0 |
| Temperature range III <sup>1)</sup> | $	au_{Rk,cr}$              | [N/mm                                  | 1 <sup>2</sup> ] | 5,5      | 6,0      | 6,5  | 6,5                 | 6,5                        | 6,5 | 6,0               | 6,0 |
| Temperature range IV <sup>1)</sup>  | $	au_{Rk,cr}$              | [N/mm                                  | 1 <sup>2</sup> ] | 5,0      | 5,5      | 6,0  | 6,0                 | 6,0                        | 6,0 | 5,5               | 5,5 |
|                                     | C25                        | /30                                    | [-]              |          |          |      | 1,0                 | 02                         |     |                   |     |
|                                     |                            |                                        |                  |          |          |      | ,                   | 04                         |     |                   |     |
| Increasing $\Psi_{c}$               |                            |                                        |                  |          |          |      |                     | 07                         |     |                   |     |
| factor $\tau_{Rk}$                  |                            | C30/37 [-]<br>C35/45 [-]<br>C40/50 [-] |                  |          |          |      | 08                  |                            |     |                   |     |
|                                     | C45                        |                                        | [-]              |          |          |      |                     | 09                         |     |                   |     |
|                                     | C50                        | /60                                    | [-]              |          |          |      | 1,                  | 10                         |     |                   |     |
| Splitting failure                   |                            |                                        |                  |          |          |      |                     |                            |     |                   |     |
| Edge distance                       | h/h <sub>ef</sub> ≥2,0     |                                        | n]               |          |          |      |                     | $\mathbf{h}_{\mathrm{ef}}$ |     |                   |     |
| C <sub>cr,sp</sub> -                | 2,0>h/h <sub>ef</sub> >1,3 | 3 [mr                                  | n]               |          |          |      | 4,6 h <sub>ef</sub> | – 1,8 h                    |     |                   |     |
|                                     | h/h <sub>ef</sub> ≤1,3     | 3 [mr                                  | n]               |          |          |      |                     | 3 h <sub>ef</sub>          |     |                   |     |
| Spacing                             | S <sub>cr,s</sub>          | p [mr                                  | n]               |          |          |      | 2 c                 | cr,sp                      |     |                   |     |

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action in tension



| KODI                             | n diamond                | unn    | eund     | ЛС       |           |     |                          |     |     |     |  |
|----------------------------------|--------------------------|--------|----------|----------|-----------|-----|--------------------------|-----|-----|-----|--|
| Size                             |                          |        |          | M8       | M10       | M12 | M16                      | M20 | M24 | M30 |  |
| Installation                     | Iry and wet<br>concrete  |        | [-]      |          |           |     | 1,0                      |     |     |     |  |
| safety factor fl                 | ooded hole               | γ2     | [-]      | 1        | 1,2 1,0   |     |                          |     |     |     |  |
| Combined pullout a               | nd concrete              | con    | e failu  | ire      |           |     |                          |     |     |     |  |
| Diameter of calculation          | on d                     |        | [mm]     | 8        | 10        | 12  | 16                       | 20  | 24  | 30  |  |
| Characteristic bond              | resistance               | in un  | -crac    | ked cond | rete C20/ | /25 |                          |     |     |     |  |
| Temperature range I <sup>1</sup> | ) $	au_{Rk,ucr}$         | [N/I   | mm²]     | 13       | 13        | 14  | 14                       | 14  | 13  | 11  |  |
| Temperature range II             | 1) $	au_{Rk,ucr}$        | [N/I   | mm²]     | 12       | 13        | 13  | 14                       | 13  | 13  | 10  |  |
| Temperature range II             | $I^{1)}$ $\tau_{Rk,ucr}$ | [N/I   | mm²]     | 11       | 12        | 12  | 12                       | 12  | 11  | 9,5 |  |
| Temperature range IV             | $I^{(1)}$ $	au_{Rk,ucr}$ | [N/I   | mm²]     | 10       | 11        | 11  | 11                       | 11  | 10  | 8,5 |  |
| Characteristic bond              | resistance               | in cra | acked    | concret  | e C20/25  |     |                          |     |     |     |  |
| Temperature range I <sup>1</sup> | )<br>$	au_{Rk,cr}$       | [N/I   | nm²]     |          |           |     | 7,5                      | 7,5 | 7,5 | 7,5 |  |
| Temperature range II             | 1) $	au_{Rk,cr}$         | [N/I   | mm²]     |          |           |     | 7,5                      | 7,5 | 7,5 | 7,0 |  |
| Temperature range II             | $I^{1)}$ $	au_{Rk,cr}$   | [N/I   | mm²]     |          |           |     | 6,5                      | 6,5 | 6,5 | 6,5 |  |
| Temperature range IV             | $I^{(1)}$ $	au_{Rk,cr}$  | [N/I   | mm²]     |          |           |     | 6,0                      | 6,0 | 6,0 | 6,0 |  |
|                                  |                          | 25/30  |          |          |           |     | 1,02                     |     |     |     |  |
|                                  |                          | 30/37  | <u> </u> |          |           |     | 1,04                     |     |     |     |  |
| Increasing $\Psi_{c}$            |                          | 35/45  |          |          |           |     | 1,07                     |     |     |     |  |
| factor $\tau_{Rk}$               |                          | 40/50  | <u> </u> |          |           |     | 1,08                     |     |     |     |  |
|                                  |                          | 45/55  |          |          |           |     | 1,09                     |     |     |     |  |
|                                  | С                        | 50/60  | [-]      |          |           |     | 1,10                     |     |     |     |  |
| Splitting failure                |                          |        |          | 1        |           |     |                          |     |     |     |  |
| Edge distance                    | h/h <sub>ef</sub> ≥2     |        | [mm]     |          |           |     | 1,0 h <sub>ef</sub>      |     |     |     |  |
| C <sub>cr,sp</sub>               | 2,0>h/h <sub>ef</sub> >1 |        | [mm]     |          |           | 4   | ,6 h <sub>ef</sub> – 1,8 |     |     |     |  |
|                                  | h/h <sub>ef</sub> ≤1     |        | [mm]     |          |           |     | 2,26 h <sub>ef</sub>     |     |     |     |  |
| Spacing                          | Sc                       | r,sp   | [mm]     |          |           |     | 2 c <sub>cr,sp</sub>     |     |     |     |  |

<sup>1)</sup> See Annex B 2

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action in tension



| Size                                |                    |                                        |                      | M8    | M10 | M12                    | M16 | M20 |
|-------------------------------------|--------------------|----------------------------------------|----------------------|-------|-----|------------------------|-----|-----|
| Installation safety                 | dry and we concret | e                                      | [-]                  |       |     | 1,0                    |     |     |
| factor                              | flooded hole       | 2)<br><sup>(2)</sup><br><sup>(2)</sup> | [-]                  | 1,2   |     | 1                      | ,0  |     |
| Steel failure                       |                    |                                        |                      |       |     |                        |     |     |
|                                     | Property           | 5.8                                    | [kN]                 | 19    | 29  | 43                     | 79  | 123 |
| Characteristic resistance           | class              | 8.8                                    | [kN]                 | 29    | 47  | 68                     | 108 | 179 |
| with screw N <sub>Rk,s</sub>        | Property           | A4                                     | [kN]                 | 26    | 41  | 59                     | 110 | 172 |
|                                     | class 70           | С                                      | [kN]                 | 26    | 41  | 59                     | 110 | 172 |
| Combined pullout and c              | oncrete cone       | failure                                |                      |       |     |                        |     |     |
| Diameter of calculation             |                    | d <sub>H</sub>                         | [mm]                 | 12    | 16  | 18                     | 22  | 28  |
| Characteristic bond resi            | istance in un-     | cracked co                             | oncrete C2           | 20/25 |     |                        |     |     |
| Temperature range I <sup>1)</sup>   |                    | $\tau_{Rk,ucr}$                        | [N/mm²]              | 12    | 12  | 11                     | 11  | 9,5 |
| Temperature range II <sup>1)</sup>  |                    | $\tau_{\rm Rk,ucr}$                    | [N/mm²]              | 12    | 11  | 11                     | 10  | 9   |
| Temperature range III <sup>1)</sup> |                    | $	au_{Rk,ucr}$                         | [N/mm <sup>2</sup> ] | 11    | 10  | 10                     | 9   | 8   |
| Temperature range IV <sup>1)</sup>  |                    | $	au_{Rk,ucr}$                         | [N/mm²]              | 10    | 9,5 | 9                      | 8,5 | 7,5 |
| Characteristic bond resi            | istance in cra     | cked conci                             | rete C20/2           | 5     |     |                        |     |     |
| Temperature range I <sup>1)</sup>   |                    | $	au_{Rk,cr}$                          | [N/mm²]              |       |     | 5                      |     |     |
| Temperature range II <sup>1)</sup>  |                    | $	au_{Rk,cr}$                          | [N/mm²]              |       |     | 5                      |     |     |
| Temperature range III <sup>1)</sup> |                    | $	au_{Rk,cr}$                          | [N/mm <sup>2</sup> ] |       |     | 4,5                    |     |     |
| Temperature range IV <sup>1)</sup>  |                    | $	au_{Rk,cr}$                          | [N/mm²]              |       |     | 4                      |     |     |
|                                     |                    | C25/30                                 | [-]                  |       |     | 1,02                   |     |     |
|                                     | _                  | C30/37                                 | [-]                  |       |     | 1,04                   |     |     |
| Increasing factor $\tau_{Rk}$ 4     | ب <sub>د</sub> –   | C35/45                                 | [-]                  |       |     | 1,07                   |     |     |
|                                     | с<br>—             | C40/50                                 | [-]                  |       |     | 1,08                   |     |     |
|                                     | _                  | C45/55                                 | [-]                  |       |     | 1,09                   |     |     |
|                                     |                    | C50/60                                 | [-]                  |       |     | 1,10                   |     |     |
| Splitting failure                   |                    |                                        |                      |       |     |                        |     |     |
|                                     |                    | h/h <sub>ef</sub> ≥2,0                 | [mm]                 |       |     | 1,0 h <sub>ef</sub>    |     |     |
| Edge distance c <sub>cr,sp</sub>    | 2,0                | )>h/h <sub>ef</sub> >1,3               | [mm]                 |       | 4,6 | 6 h <sub>ef</sub> – 1, |     |     |
|                                     |                    | h/h <sub>ef</sub> ≤1,3                 | [mm]                 |       |     | 2,26 h <sub>ef</sub>   |     |     |
| Spacing                             |                    | S <sub>cr,sp</sub>                     | [mm]                 |       |     | 2 c <sub>cr,sp</sub>   |     |     |

<sup>1)</sup> See Annex B 2 <sup>2)</sup> Only RSB

## fischer Superbond

Performances Design of bonded anchors Static or quasi-static action in tension Annex C 3



| Size                                |                         |                         |                      | M8    | M10 | M12                    | M16 | M20 |
|-------------------------------------|-------------------------|-------------------------|----------------------|-------|-----|------------------------|-----|-----|
| Installation safety                 | dry and wet<br>concrete | ÷                       | [-]                  |       | •   | 1,0                    | •   | •   |
| factor                              | flooded hole            | γ <sub>2</sub>          | [-]                  | 1,2   |     | 1                      | ,0  |     |
| Steel failure                       |                         |                         |                      |       |     |                        |     |     |
|                                     | Property _              | 5.8                     | [kN]                 | 19    | 29  | 43                     | 79  | 123 |
| Characteristic resistance           | class                   | 8.8                     | [kN]                 | 29    | 47  | 68                     | 108 | 179 |
| with screw N <sub>Rk,s</sub>        | Property                | A4                      | [kN]                 | 26    | 41  | 59                     | 110 | 172 |
|                                     | class 70                | С                       | [kN]                 | 26    | 41  | 59                     | 110 | 172 |
| Combined pullout and co             | oncrete cone            | failure                 |                      |       |     |                        | _   |     |
| Diameter of calculation             |                         | d <sub>H</sub>          | [mm]                 | 12    | 16  | 18                     | 22  | 28  |
| Characteristic bond resis           | stance in un-o          | cracked co              | oncrete C2           | 20/25 |     |                        |     |     |
| Temperature range I <sup>1)</sup>   |                         | $\tau_{Rk,ucr}$         | [N/mm <sup>2</sup> ] | 13    | 12  | 12                     | 11  | 10  |
| Temperature range II <sup>1)</sup>  |                         | $	au_{Rk,ucr}$          | [N/mm <sup>2</sup> ] | 13    | 12  | 12                     | 11  | 9,5 |
| Temperature range III <sup>1)</sup> |                         | $	au_{Rk,ucr}$          | [N/mm <sup>2</sup> ] | 11    | 11  | 10                     | 9,5 | 8,5 |
| Temperature range IV <sup>1)</sup>  |                         | $	au_{Rk,ucr}$          | [N/mm²]              | 10    | 10  | 9,5                    | 9   | 8   |
| Characteristic bond resis           | stance in crac          | ked conc                | rete C20/2           | 5     |     |                        |     |     |
| Temperature range I <sup>1)</sup>   |                         | $	au_{Rk,cr}$           | [N/mm <sup>2</sup> ] |       |     | Į                      | 5   |     |
| Temperature range II <sup>1)</sup>  |                         | $	au_{Rk,cr}$           | [N/mm <sup>2</sup> ] |       | 5   |                        |     |     |
| Temperature range III <sup>1)</sup> |                         | $	au_{Rk,cr}$           | [N/mm <sup>2</sup> ] |       |     | 4                      | ,5  |     |
| Temperature range IV <sup>1)</sup>  |                         | $	au_{Rk,cr}$           | [N/mm <sup>2</sup> ] |       |     |                        | 4   |     |
|                                     |                         | C25/30                  | [-]                  |       |     | 1,02                   |     |     |
|                                     |                         | C30/37                  | [-]                  |       |     | 1,04                   |     |     |
| Increasing                          |                         | C35/45                  | [-]                  |       |     | 1,07                   |     |     |
| factor $\tau_{Rk}$ $\Psi_c$         | _                       | C40/50                  | [-]                  |       |     | 1,08                   |     |     |
|                                     | _                       | C45/55                  | [-]                  |       |     | 1,09                   |     |     |
| • ····                              |                         | C50/60                  | [-]                  |       |     | 1,10                   |     |     |
| Splitting failure                   |                         |                         | ,                    |       |     |                        |     |     |
|                                     |                         | h/h <sub>ef</sub> ≥2,0  | [mm]                 |       |     | 1,0 h <sub>ef</sub>    |     |     |
| Edge distance c <sub>cr,sp</sub>    | 2,0>                    | >h/h <sub>ef</sub> >1,3 | [mm]                 |       | 4,6 | 3 h <sub>ef</sub> – 1, |     |     |
|                                     |                         | h/h <sub>ef</sub> ≤1,3  | [mm]                 |       |     | 2,26 h <sub>ef</sub>   |     |     |

<sup>1)</sup> See Annex B 2

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action in tension Annex C 4



| Size                                                                                                                                                                    |                                                |                       | M8 🛛                         | M10 M                  | 12 M16                 | M20                     | M24                 | M27             | M30                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|------------------------------|------------------------|------------------------|-------------------------|---------------------|-----------------|---------------------------|
| Factor k in equation (5.7) o<br>TR 029 for the design of<br>Bonded Anchors                                                                                              | of k                                           | [-]                   | l                            |                        |                        | 2,0                     |                     |                 |                           |
| Table C6: Characteris<br>under shea                                                                                                                                     |                                                | of resi               | stance                       | 1                      |                        |                         |                     |                 |                           |
| Size                                                                                                                                                                    |                                                |                       |                              | M8                     | M10                    | M12                     | M                   | 16              | M20                       |
| Installation safety factor                                                                                                                                              |                                                | γ <sub>2</sub>        | [-]                          |                        |                        | 1,0                     |                     |                 |                           |
| Steel failure without leve                                                                                                                                              | r arm                                          |                       |                              |                        |                        |                         |                     |                 |                           |
|                                                                                                                                                                         | Property                                       | 5.8                   | [kN]                         | 9,2                    | 14,5                   | 21,1                    | 39                  | 9,2             | 62,0                      |
| . ام                                                                                                                                                                    | class                                          | 8.8                   | [kN]                         | 14,6                   | 23,2                   | 33,7                    | 62                  | 2,7             | 90,0                      |
| Characteristic                                                                                                                                                          |                                                |                       |                              |                        |                        |                         |                     |                 |                           |
|                                                                                                                                                                         | Property                                       | A4                    | [kN]                         | 12,8                   | 20,3                   | 29,5                    | 54                  | 1,8             | 86,0                      |
|                                                                                                                                                                         | Property<br>class 70                           | A4<br>C               | [kN]<br>[kN]                 | 12,8<br>12,8           | 20,3<br>20,3           | 29,5<br>29,5            |                     | 1,8<br>1,8      | 86,0<br>86,0              |
| resistance V <sub>Rk,s</sub>                                                                                                                                            | class 70                                       |                       | <u> </u>                     |                        |                        | · ·                     |                     |                 | •                         |
| resistance V <sub>Rk,s</sub>                                                                                                                                            | class 70                                       |                       | <u> </u>                     |                        |                        | · ·                     | 54                  |                 |                           |
| resistance V <sub>Rk,s</sub><br>Steel failure with lever ar                                                                                                             | class 70                                       | С                     | [kN]                         | 12,8                   | 20,3                   | 29,5                    | 54                  | 1,8             | 86,0                      |
| resistance V <sub>Rk,s</sub><br>Steel failure with lever ar<br>Characteristic                                                                                           | class 70<br>m<br>Property                      | C<br>5.8              | [kN]                         | 12,8                   | 20,3                   | 29,5                    | 54<br>1<br>20       | 4,8<br>73       | 86,0<br>337               |
| resistance V <sub>Rk,s</sub><br>Steel failure with lever ar<br>Characteristic                                                                                           | class 70<br>m<br>Property<br>class             | C<br>5.8<br>8.8       | [kN]<br>[Nm]<br>[Nm]         | 12,8<br>20<br>30       | 20,3<br>39<br>60       | 29,5<br>68<br>105       | 54<br>1<br>26<br>23 | 4,8<br>73<br>66 | 86,0<br>337<br>519        |
| Characteristic<br>resistance V <sub>Rk,s</sub><br>Steel failure with lever ar<br>Characteristic<br>resistance M <sup>0</sup> <sub>Rk,s</sub><br>Concrete pryout failure | class 70<br>m<br>Property<br>class<br>Property | C<br>5.8<br>8.8<br>A4 | [KN]<br>[Nm]<br>[Nm]<br>[Nm] | 12,8<br>20<br>30<br>26 | 20,3<br>39<br>60<br>52 | 29,5<br>68<br>105<br>92 | 54<br>1<br>26<br>23 | 73<br>66<br>32  | 86,0<br>337<br>519<br>454 |

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action under shear loads

Γ

#### Deutsches Institut DIBt für Bautechnik

I

|                                   |                            |                      |        |         |      |     | _                    |     |     |     |     |
|-----------------------------------|----------------------------|----------------------|--------|---------|------|-----|----------------------|-----|-----|-----|-----|
| Size                              | Ø                          | [mm]                 | 8      | 10      | 12   | 14  | 16                   | 20  | 25  | 28  | 32  |
| Installation safety fact          | or γ <sub>2</sub>          | [-]                  |        |         |      |     | 1,0                  |     |     | •   | •   |
| Combined pullout ar               | nd concrete con            | e failure            |        |         |      |     |                      |     |     |     |     |
| Diameter of calculatio            | n d                        | [mm]                 | 8      | 10      | 12   | 14  | 16                   | 20  | 25  | 28  | 32  |
| Characteristic bond               | resistance in ur           | n-cracked            | concr  | ete C20 | )/25 |     |                      |     |     |     |     |
| Temperature range I <sup>1)</sup> | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 8,0    | 8,5     | 9,0  | 9,5 | 9,5                  | 10  | 9,5 | 9,0 | 7,5 |
| Temperature range II <sup>1</sup> | )<br>$	au_{ m Rk, ucr}$    | [N/mm <sup>2</sup> ] | 8,0    | 8,5     | 9,0  | 9,0 | 9,5                  | 9,5 | 9,0 | 8,5 | 7,5 |
| Temperature range III             | 111,001                    | [N/mm <sup>2</sup> ] | 7,0    | 7,5     | 8,0  | 8,0 | 8,5                  | 8,5 | 8,0 | 7,5 | 6,5 |
| Temperature range IV              | $	au^{1)}$ $	au_{Rk,ucr}$  | [N/mm <sup>2</sup> ] | 6,5    | 7,0     | 7,0  | 7,5 | 7,5                  | 8,0 | 7,5 | 7,0 | 6,0 |
| Characteristic bond               | resistance in cr           | acked co             | ncrete | C20/25  | I    |     |                      |     |     |     |     |
| Temperature range I <sup>1)</sup> | ,                          | [N/mm <sup>2</sup> ] | 4,5    | 6,0     | 6,0  | 6,0 | 7,0                  | 6,0 | 6,0 | 6,0 | 6,0 |
| Temperature range II <sup>1</sup> | - 1 (K,01                  | [N/mm <sup>2</sup> ] | 4,5    | 5,5     | 5,5  | 5,5 | 6,5                  | 6,0 | 6,0 | 6,0 | 6,0 |
| Temperature range III             |                            | [N/mm <sup>2</sup> ] | 4,0    | 5,0     | 5,0  | 5,0 | 6,0                  | 5,5 | 5,5 | 5,5 | 5,5 |
| Temperature range IV              | τ <sub>Rk,cr</sub>         | [N/mm <sup>2</sup> ] | 3,5    | 4,5     | 4,5  | 4,5 | 5,5                  | 5,0 | 5,0 | 5,0 | 5,0 |
|                                   | C25/30                     | [-]                  |        |         |      |     | 1,02                 |     |     |     |     |
|                                   | C30/37                     | [-]                  |        |         |      |     | 1,04                 |     |     |     |     |
| Increasing                        | C35/45                     | [-]                  |        |         |      |     | 1,07                 |     |     |     |     |
| factor $\tau_{Rk}$ $\Psi_c$       | C40/50                     | [-]                  |        |         |      |     | 1,08                 |     |     |     |     |
|                                   | C45/55                     | [-]                  |        |         |      |     | 1,09                 |     |     |     |     |
|                                   | C50/60                     | [-]                  |        |         |      |     | 1,10                 |     |     |     |     |
| Splitting failure                 |                            |                      |        |         |      |     |                      |     |     |     |     |
|                                   | h/h <sub>ef</sub> ≥2,0     | [mm]                 |        |         |      |     | 1,0 h <sub>ef</sub>  |     |     |     |     |
| Edge distance c <sub>cr,sp</sub>  | 2,0>h/h <sub>ef</sub> >1,3 | [mm]                 |        |         |      | 4,6 | h <sub>ef</sub> –1,  | 8 h |     |     |     |
|                                   | h/h <sub>ef</sub> ≤1,3     | [mm]                 |        |         |      |     | 2,26 h <sub>e</sub>  | f   |     |     |     |
| Spacing                           | S <sub>cr,sp</sub>         | [mm]                 |        |         |      |     | 2 C <sub>cr,sp</sub> |     |     |     |     |

## fischer Superbond

Performances Design of bonded anchors Static or quasi-static action in tension Annex C 6



| loads with                          |                            |                      |              |     |                   |     |
|-------------------------------------|----------------------------|----------------------|--------------|-----|-------------------|-----|
| Size                                |                            |                      | M12          | M16 | M20               | M24 |
| Installation safety factor          | γ2                         | [-]                  |              | 1   | ,0                |     |
| Steel failure                       |                            |                      |              |     |                   |     |
| Characteristic resistance           | N <sub>Rk,s</sub>          | [kN]                 | 63           | 111 | 173               | 270 |
| Partial safety factor               | 1)<br>γ <sub>Ms,N</sub>    | [-]                  |              | 1   | ,4                |     |
| Combined pullout and c              |                            | ailure               |              |     |                   |     |
| Diameter of calculation             | d                          | [mm]                 | 12           | 16  | 20                | 25  |
| Characteristic bond res             | istance in un-c            | racked con           | crete C20/25 |     |                   |     |
| Temperature range I <sup>2)</sup>   | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 9,0          | 9,5 | 10                | 9,5 |
| Temperature range II <sup>2)</sup>  | $	au_{Rk,ucr}$             |                      | 9,0          | 9,5 | 9,5               | 9,0 |
| Temperature range III <sup>2)</sup> | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 8,0          | 8,5 | 8,5               | 8,0 |
| Temperature range IV <sup>2)</sup>  | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 7,0          | 7,5 | 8,0               | 7,5 |
| Characteristic bond res             | istance in cracl           | ked concre           | te C20/25    |     |                   |     |
| Temperature range I <sup>2)</sup>   | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 6,0          | 7,0 | 6,0               | 6,0 |
| Temperature range II <sup>2)</sup>  | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 5,5          | 6,5 | 6,0               | 6,0 |
| Temperature range III <sup>2)</sup> | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 5,0          | 6,0 | 5,5               | 5,5 |
| Temperature range IV <sup>2)</sup>  | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 4,5          | 5,5 | 5,0               | 5,0 |
|                                     | C25/30                     | [-]                  |              | 1,  | 02                |     |
|                                     | C30/37                     | [-]                  |              | 1,  | 04                |     |
| Increasing                          | C35/45                     | [-]                  |              | 1,  | 07                |     |
| factor $\tau_{Rk}$ $\Psi_{c}$       | C40/50                     | [-]                  |              | 1,  | 19                |     |
|                                     | C45/55                     | [-]                  |              | 1,  | 08                |     |
|                                     | C50/60                     | [-]                  |              | 1,  | 10                |     |
| Splitting failure                   |                            |                      |              |     |                   |     |
|                                     | h/h <sub>ef</sub> ≥2,0     | [mm]                 |              | •   | h <sub>ef</sub>   |     |
| Edge distance c <sub>cr,sp</sub>    | 2,0>h/h <sub>ef</sub> >1,3 | [mm]                 |              |     | – 1,8 h           |     |
|                                     | h/h <sub>ef</sub> ≤1,3     | [mm]                 |              |     | 3 h <sub>ef</sub> |     |
| Spacing                             | S <sub>cr,sp</sub>         | [mm]                 |              | 2 c | cr,sp             |     |

<sup>1)</sup> In absence of other national regulations

<sup>2)</sup> See Annex B 2

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action in tension Annex C 7



|                                                                                                                                                            | <b>0</b> [ma | 1                                                           | 0           | 10     | 10               | 44    | 10                            | - 00                      | 05         | 00             | 20       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|-------------|--------|------------------|-------|-------------------------------|---------------------------|------------|----------------|----------|
|                                                                                                                                                            | Ø [m         | mj                                                          | 8           | 10     | 12               | 14    | 16                            | 20                        | 25         | 28             | 32       |
| Concrete pryout failure                                                                                                                                    |              |                                                             |             |        |                  |       |                               |                           |            |                |          |
| Factor k in equation (5.7) of<br>Fechnical Report TR 029,<br>Section 5.2.3.3                                                                               | k [-         | ]                                                           |             |        |                  |       | 2,0                           |                           |            |                |          |
| Table C10: Characteristic va                                                                                                                               |              | resis                                                       | tance       | for fi | scher            | rebar | ancho                         | ors FR                    | A und      | der she        | ear      |
| Table C10: Characteristic value           load with mortar                                                                                                 |              | resis                                                       | tance       | for fi | scher            | rebar | ancho                         | ors FR                    | A unc      | der she        | ear      |
|                                                                                                                                                            |              | resis                                                       | tance       |        | scher<br>M12     |       | ancho<br><b>//16</b>          | ors FR                    |            | der she<br>M24 |          |
| load with mortar                                                                                                                                           |              | resis                                                       | tance       |        |                  |       |                               | 1                         |            |                |          |
| load with mortar                                                                                                                                           | FIS SB       |                                                             | tance       |        |                  | N     |                               | 1                         | 20         |                | 1        |
| load with mortar<br>Size<br>Steel failure without lever arm                                                                                                | FIS SB       | resis                                                       |             |        | M12              | N     | <b>//16</b><br>55             | M2                        | 20         | M24            | 1        |
| load with mortar Size Steel failure without lever arm Characteristic resistance                                                                            | FIS SB       | V <sub>Rk,s</sub>                                           | [kN]        |        | M12              | N     | <b>//16</b><br>55             | M2                        | 20         | M24            | 1        |
| load with mortar Size Steel failure without lever arm Characteristic resistance Partial safety factor                                                      | FIS SB       | V <sub>Rk,s</sub><br>1)<br>1s,v                             | [kN]        |        | M12              | N     | <b>//16</b><br>55             | M2                        | 2 <b>0</b> | M24            | <b>1</b> |
| load with mortar Size Steel failure without lever arm Characteristic resistance Partial safety factor Steel failure with lever arm                         | FIS SB       | V <sub>Rk,s</sub>                                           | [kN]<br>[-] |        | <b>M12</b><br>30 | N     | <b>/16</b><br>55<br>1,<br>233 | <b>M</b> 2<br>80<br>,56   | 2 <b>0</b> | <b>M2</b> 4    | <b>1</b> |
| Size<br>Steel failure without lever arm<br>Characteristic resistance<br>Partial safety factor<br>Steel failure with lever arm<br>Characteristic resistance | FIS SB       | $V_{\text{Rk,s}}$<br>$I_{\text{Kk,s}}$<br>$I_{\text{Rk,s}}$ | [kN]<br>[-] |        | <b>M12</b><br>30 | N     | <b>/16</b><br>55<br>1,<br>233 | <b>M</b> 2<br>80,56<br>45 | 2 <b>0</b> | <b>M2</b> 4    | <b>1</b> |

## fischer Superbond

**Performances** Design of bonded anchors Static or quasi-static action under shear loads



| Size                                                                                                                                                             |                                                                                           |                                                                                                                             | M8                                           | M10                             | M12                           | M16               | M20                    | M24                    | M27            | M30                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|-------------------------------|-------------------|------------------------|------------------------|----------------|----------------------------|
|                                                                                                                                                                  | Un-cr                                                                                     | acked and cracke                                                                                                            | d conc                                       | rete; te                        | mperatu                       | ure rang          | ge I, II, I            | II, IV                 |                |                            |
| Displacement                                                                                                                                                     | δ <sub>N0</sub>                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                                   | 0,07                                         | 0,08                            | 0,09                          | 0,10              | 0,11                   | 0,12                   | 0,13           | 0,13                       |
| Displacement                                                                                                                                                     | δ <sub>N∞</sub>                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                                   | 0,13                                         | 0,14                            | 0,15                          | 0,17              | 0,17                   | 0,18                   | 0,19           | 0,19                       |
|                                                                                                                                                                  | r long term<br>d strength)                                                                |                                                                                                                             | ,4                                           | or threa                        | aded ro                       | ods <sup>1)</sup> |                        | 1                      |                |                            |
| Size                                                                                                                                                             |                                                                                           |                                                                                                                             | M8                                           | M10                             | M12                           | M16               | M20                    | M24                    | M27            | M30                        |
|                                                                                                                                                                  | Un-cr                                                                                     | acked and cracke                                                                                                            | ed conc                                      | rete; te                        | mperatu                       | ure rang          | ae I. II. I            | II, IV                 |                |                            |
|                                                                                                                                                                  |                                                                                           |                                                                                                                             | 1                                            |                                 | -                             |                   |                        | <u>, '</u>             |                |                            |
| Displacement                                                                                                                                                     | $\delta_{V0}$                                                                             | [mm/kN]                                                                                                                     | 0,18                                         | 0,15                            | 0,12                          | 0,09              | 0,07                   | 0,06                   | 0,05           | 0,05                       |
| Displacement                                                                                                                                                     | δ <sub>V∞</sub>                                                                           | [mm/kN]                                                                                                                     | 0,27                                         | 0,15<br>0,22                    | 0,12<br>0,18                  | _                 | -                      |                        | 0,05<br>0,08   | 0,05<br>0,07               |
| Displacement<br><sup>1)</sup> Calculation of the<br>Displacement for                                                                                             | δ <sub>V∞</sub><br>e displacen<br>r short tern<br>r long term<br>ar resistanc             | [mm/kN]<br>nent for design load<br>n load = $\delta_{V0} \cdot V_d / 1$<br>load = $\delta_{V\infty} \cdot V_d / 1$ ,<br>ce) | 0,27<br>d<br>,4<br>4<br>n load               | 0,22<br>for fise                | 0,18<br>cher in               | 0,09<br>0,14      | 0,07<br>0,11           | 0,06<br>0,09<br>ed anc | 0,08<br>hors R | 0,07                       |
| Displacement<br><sup>1)</sup> Calculation of the<br>Displacement for<br>Displacement for<br>(V <sub>d</sub> : design sheat<br><b>Table C13:</b> Disp             | δ <sub>V∞</sub><br>e displacen<br>r short tern<br>r long term<br>ar resistanc<br>placemer | [mm/kN]<br>nent for design load<br>n load = $\delta_{V0} \cdot V_d / 1$<br>load = $\delta_{V\infty} \cdot V_d / 1$ ,<br>se) | 0,27<br>d<br>,4<br>4<br>on load<br><b>M8</b> | 0,22<br>for fise                | 0,18<br>cher in<br><b>M10</b> | 0,09<br>0,14      | 0,07<br>0,11           | 0,06                   | 0,08           | 0,07                       |
| Displacement<br><sup>1)</sup> Calculation of the<br>Displacement for<br>Displacement for<br>(V <sub>d</sub> : design sheat<br><b>Table C13:</b> Displace<br>Size | δ <sub>V∞</sub><br>e displacen<br>r short tern<br>r long term<br>ar resistanc<br>placemer | [mm/kN]<br>nent for design load<br>n load = $\delta_{V0} \cdot V_d / 1$<br>load = $\delta_{V\infty} \cdot V_d / 1$ ,<br>se) | 0,27<br>d<br>,4<br>4<br>on load<br><b>M8</b> | 0,22<br>for fiso<br>e I, II, II | 0,18<br>cher in<br><b>M10</b> | 0,09<br>0,14      | 0,07<br>0,11<br>thread | 0,06<br>0,09<br>ed anc | 0,08<br>hors R | 0,07<br>G MI <sup>1)</sup> |

Table C14: Displacements under shear load for fischer internal threaded anchors RG MI<sup>1)</sup>

| Size               |                 |                | M8           | M10       | M12  | M16  | M20  |
|--------------------|-----------------|----------------|--------------|-----------|------|------|------|
| Un-cracked and cra | cked concret    | e; temperature | range I, II, | , III, IV |      |      |      |
| Displacement       | δ <sub>vo</sub> | [mm/kN]        | 0,12         | 0,09      | 0,08 | 0,07 | 0,05 |
| Displacement       | δ <sub>V∞</sub> | [mm/kN]        | 0,18         | 0,14      | 0,12 | 0,10 | 0,08 |

<sup>1)</sup> Calculation of the displacement for design load Displacement for short term load =  $\delta_{V0} \cdot V_d / 1,4$ Displacement for long term load =  $\delta_{V\infty} \cdot V_d / 1,4$ 

(V<sub>d</sub>: design shear resistance)

## fischer Superbond

## Performances

Displacements threaded rods and fischer internal threaded anchor RG MI



|                                                                                                                                                                                                        |                                                                                  | Ø                                                                                                                                                                                                                        | 8                                                                                                                   | 10                                                                                                                          | 12                       | 14                                                      | 16                     | 20           | 25                                      | 28          | 32                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------|------------------------|--------------|-----------------------------------------|-------------|-------------------|
| Un-cracked and                                                                                                                                                                                         | d crack                                                                          | ed concrete; to                                                                                                                                                                                                          | emperat                                                                                                             | ture ran                                                                                                                    | ge I, II, I              | II, IV                                                  | 1                      |              |                                         |             |                   |
| Displacement                                                                                                                                                                                           | δ <sub>NO</sub>                                                                  | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                | 0,07                                                                                                                | 0,08                                                                                                                        | 0,09                     | 0,09                                                    | 0,10                   | 0,11         | 0,12                                    | 0,13        | 0,1:              |
| Displacement                                                                                                                                                                                           | δ <sub>N∞</sub>                                                                  | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                | 0,12                                                                                                                | 0,13                                                                                                                        | 0,13                     | 0,15                                                    | 0,16                   | 0,16         | 0,18                                    | 0,20        | 0,2               |
|                                                                                                                                                                                                        | t for sho<br>t for lon<br>bond sti                                               | fort term load = $\delta_{\rm f}$<br>og term load = $\delta_{\rm f}$<br>rength)                                                                                                                                          | δ <sub>N0</sub> · τ <sub>sd</sub> /<br><sub>N∞</sub> · τ <sub>sd</sub> /                                            | 1,4<br>1,4                                                                                                                  | for rein                 | forcing                                                 | bars <sup>1)</sup>     |              |                                         |             |                   |
| Size                                                                                                                                                                                                   |                                                                                  | Ø                                                                                                                                                                                                                        | 8                                                                                                                   | 10                                                                                                                          | 12                       | 14                                                      | 16                     | 20           | 25                                      | 28          | 32                |
| Un-cracked and                                                                                                                                                                                         | d crack                                                                          | ed concrete; to                                                                                                                                                                                                          | emperat                                                                                                             | ture rang                                                                                                                   | ge I, II, I              | II, IV                                                  |                        |              |                                         |             | 1                 |
| Displacement                                                                                                                                                                                           | δ <sub>V0</sub>                                                                  | [mm/kN]                                                                                                                                                                                                                  | 0,18                                                                                                                | 0,15                                                                                                                        | 0,12                     | 0,10                                                    | 0,09                   | 0,07         | 0,06                                    | 0,05        | 0,0               |
| Displacement                                                                                                                                                                                           | δ <sub>V∞</sub>                                                                  | [mm/kN]                                                                                                                                                                                                                  | 0,27                                                                                                                | 0,22                                                                                                                        | 0,18                     | 0,16                                                    | 0,14                   | 0,11         | 0,09                                    | 0,08        | 0,0               |
| Size<br>Jn-cracked and                                                                                                                                                                                 | d crack                                                                          |                                                                                                                                                                                                                          |                                                                                                                     |                                                                                                                             | ľ                        | M12                                                     | M16                    | 6            | M20                                     | N           | 124               |
|                                                                                                                                                                                                        | aoraon                                                                           | ed concrete; te                                                                                                                                                                                                          | emperat                                                                                                             | ture rang                                                                                                                   | ge I, II, I              | II, IV                                                  |                        |              |                                         |             |                   |
| Displacement                                                                                                                                                                                           |                                                                                  | ed concrete; te                                                                                                                                                                                                          | •                                                                                                                   | t <b>ure rang</b><br>n/(N/mm <sup>2</sup>                                                                                   |                          | <b>II, IV</b><br>),09                                   | 0,10                   | )            | 0,11                                    | 0           | ,12               |
| •                                                                                                                                                                                                      |                                                                                  | δ <sub>N0</sub><br>δ <sub>N∞</sub>                                                                                                                                                                                       | [mm<br>[mm                                                                                                          | 1/(N/mm <sup>2</sup><br>1/(N/mm <sup>2</sup>                                                                                | 2)] (                    | -                                                       | 0,10<br>0,16           |              | 0,11<br>0,16                            |             | ,12<br>,18        |
| Displacement<br><sup>1)</sup> Calculation of<br>Displacemen                                                                                                                                            | f the dis<br>t for sho<br>t for lon<br>cond sti                                  | $δ_{N^{\infty}}$<br>⇒placement for d<br>prt term load = δ<br>ig term load = δ<br>rength)                                                                                                                                 | [mm<br>[mm<br>lesign lo<br>$\delta_{N0} \cdot \tau_{sd}$ /<br>$N_{\infty} \cdot \tau_{sd}$ /                        | n/(N/mm <sup>2</sup><br>n/(N/mm <sup>2</sup><br>ad<br>1,4<br>1,4                                                            | )](                      | ),09<br>),13                                            | 0,16                   | 3            | 0,16                                    |             |                   |
| Displacement <sup>1)</sup> Calculation of Displacemen Displacemen (τ <sub>sd</sub> : design t Table C18: [ Size                                                                                        | f the dis<br>t for sho<br>t for lon<br>cond str<br>Displac                       | $δ_{N0}$<br>$δ_{N∞}$<br>placement for d<br>port term load = δ<br>ig term load = δ<br>rength)<br>cements unde                                                                                                             | [mm<br>[mm<br>lesign lo<br>$\delta_{N0} \cdot \tau_{sd}$ /<br>$\delta_{N\infty} \cdot \tau_{sd}$ /                  | n/(N/mm <sup>2</sup><br>n/(N/mm <sup>2</sup><br>ad<br>1,4<br>1,4<br>ar load f                                               | for fiscl                | ),09<br>),13<br>her reb                                 | 0,16                   | 3<br>nors FF | 0,16                                    | 0           |                   |
| Displacement <sup>1)</sup> Calculation of Displacemen Displacemen (τ <sub>sd</sub> : design b Table C18: [ Size Un-cracked and                                                                         | f the dis<br>t for sho<br>t for lon<br>cond str<br>Displac                       | $δ_{N0}$<br>$δ_{N∞}$<br>placement for d<br>port term load = δ<br>rength)<br>cements under<br>red concrete; te                                                                                                            | [mm<br>[mm<br>lesign lo<br>$\delta_{N0} \cdot \tau_{sd}$ /<br>$\delta_{N\infty} \cdot \tau_{sd}$ /                  | n/(N/mm <sup>2</sup><br>n/(N/mm <sup>2</sup><br>ad<br>1,4<br>1,4<br>ar load f                                               | for fisch                | 0,09<br>0,13<br>ner reb<br><b>112</b>                   | 0,16<br>ar anch<br>M16 | nors FF      | 0,16<br>RA <sup>1)</sup><br>M20         | 0<br>       | ,18<br>124        |
| Displacement <sup>1)</sup> Calculation of Displacement Displacement (τ <sub>sd</sub> : design t Table C18: [ Size Un-cracked and Displacement                                                          | f the dis<br>t for sho<br>t for lon<br>cond str<br>Displac                       | $δ_{N0}$<br>$δ_{N∞}$<br>splacement for d<br>ort term load = δ<br>ig term load = δ<br>rength)<br>cements under<br>sed concrete; te<br>$δ_{V0}$                                                                            | [mm<br>[mm<br>lesign lo<br>$\delta_{N0} \cdot \tau_{sd}$ /<br>$\delta_{N\infty} \cdot \tau_{sd}$ /                  | n/(N/mm <sup>2</sup><br>ad<br>1,4<br>1,4<br>ar load f<br>ture rang                                                          | for fisch<br>ge I, II, I | ),09<br>),13<br>her reb<br><b>M12</b><br>II, IV<br>),12 | 0,16<br>ar anch<br>M16 | anors FR     | 0,16<br>RA <sup>1)</sup><br>M20<br>0,07 | 0<br>0<br>0 | ,18<br>124<br>,06 |
| Displacement<br>Displacement<br>$(\tau_{sd} : design k$<br><b>Table C18:</b> [<br><b>Size</b><br><b>Un-cracked and</b><br>Displacement<br>Displacement<br><sup>1)</sup> Calculation of<br>Displacement | f the dis<br>t for sho<br>t for lon<br>cond sti<br>Displac<br>d crack<br>d crack | $δ_{N0}$<br>$δ_{N∞}$<br>splacement for d<br>fort term load = δ<br>ig term load = δ<br>rength)<br>cements under<br>splacements under<br>$δ_{V0}$<br>$δ_{V∞}$<br>splacement for d<br>for term load = δ<br>ig term load = δ | $[mm] [esign lo\delta_{N0} \cdot \tau_{sd} /\delta_{N0} \cdot \tau_{sd} /er sheaemperations\delta_{V0} \cdot V_d /$ | n/(N/mm <sup>2</sup><br>n/(N/mm <sup>2</sup><br>ad<br>1,4<br>1,4<br>ar load f<br>ture rang<br>[mm/kt<br>[mm/kt<br>ad<br>1,4 | for fisch<br>ge I, II, I | 0,09<br>0,13<br>ner reb<br><b>112</b>                   | 0,16<br>ar anch<br>M16 | anors FR     | 0,16<br>RA <sup>1)</sup><br>M20         | 0<br>0<br>0 | ,18<br>124        |



## Table C19A: Characteristic values of resistance for fischer threaded rods FIS A and RGM under seismic action performance category C1 with FIS SB or capsule RSB in hammer drilled hole

| Size                                  |                       |                    |        |        | M8         | M10      | M12      | M16      | M20                    | M24 | M27 <sup>5)</sup> | M30 |
|---------------------------------------|-----------------------|--------------------|--------|--------|------------|----------|----------|----------|------------------------|-----|-------------------|-----|
| Characteris                           | tic resistance        | ce ter             | nsior  | load   | , steel fa | ailure   | •        |          |                        |     |                   |     |
|                                       | Zinc plated           | Prop               | erty   | 5.8    | 19         | 29       | 43       | 79       | 123                    | 177 | 230               | 281 |
| N <sub>Rk,s,C1</sub>                  | steel                 | class              | ;      | 8.8    | 30         | 47       | 68       | 126      | 196                    | 282 | 368               | 449 |
|                                       | Stainless             | _                  |        | 50     | 19         | 29       | 43       | 79       | 123                    | 177 | 230               | 281 |
| [kN]                                  | steel A4 and          | Prop<br>  class    |        | 70     | 26         | 41       | 59       | 110      | 172                    | 247 | 322               | 393 |
|                                       | steel C               |                    |        | 80     | 30         | 47       | 68       | 126      | 196                    | 282 | 368               | 449 |
|                                       | Zinc plated           | Prop               |        | 5.8    |            |          |          |          | 1,50                   |     |                   |     |
| 1)<br>ƳM,s,C1 .                       | steel                 | class              | ;      | 8.8    |            |          |          |          | 1,50                   |     |                   |     |
|                                       | Stainless             | Prop               | ortv   | 50     |            |          |          |          | 2,86                   |     |                   |     |
| [-]                                   | steel A4 and steel C  | class              | -      | 70     |            |          |          | 1,50     | ) <sup>2)</sup> / 1,87 |     |                   |     |
|                                       |                       |                    |        | 80     |            |          |          |          | 1,6                    |     |                   |     |
|                                       | tic bond res          | sistan             | ice, c | ombi   | ned pul    | lout and | concret  | e cone t | failure                |     |                   |     |
| Temperature<br>range l <sup>3)</sup>  | ,                     | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 4,6        | 5,0      | 5,6      | 5,6      | 5,6                    | 5,6 | 5,6               | 6,4 |
| Temperature<br>range II <sup>3)</sup> |                       | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 4,3        | 4,6      | 5,6      | 5,6      | 5,6                    | 5,6 | 5,3               | 6,0 |
| Temperature range III <sup>3)</sup>   |                       | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 3,9        | 4,3      | 4,9      | 4,9      | 4,9                    | 4,9 | 4,5               | 5,1 |
| Temperature<br>range IV <sup>3)</sup> |                       | τ <sub>Rk,C1</sub> | [N/n   | nm²]   | 3,6        | 3,9      | 4,5      | 4,5      | 4,5                    | 4,5 | 4,1               | 4,7 |
|                                       | tic resistance        | ce sh              | ear l  | oad, s | steel fail | ure with | out leve | r arm    |                        |     |                   |     |
|                                       | Zinc<br>plated        | Prop               | perty  | 5.8    | 9          | 15       | 21       | 39       | 61                     | 89  | 115               | 141 |
| V <sub>Rk,s,C1</sub> 1)               | steel                 | clas               | S      | 8.8    | 15         | 23       | 34       | 63       | 98                     | 141 | 184               | 225 |
|                                       | Stainless             | _                  |        | 50     | 9          | 15       | 21       | 39       | 61                     | 89  | 115               | 141 |
| [kN]                                  | steel A4<br>and steel | Prop<br>class      | -      | 70     | 13         | 20       | 30       | 55       | 86                     | 124 | 161               | 197 |
|                                       | C                     | 0140               | -      | 80     | 15         | 23       | 34       | 63       | 98                     | 141 | 184               | 225 |

<sup>1)</sup> For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0 <sup>2)</sup>  $f_{uk} = 700 \text{ N/mm}^2$ ;  $f_{yk} = 560 \text{ N/mm}^2$ <sup>3)</sup> See Annex B 2 <sup>4)</sup> Only RSB

<sup>5)</sup> Only FIS SB

#### fischer Superbond

Performances Design of bonded anchors Seismic performances category C1



# **Table C19B:** Characteristic values of resistance for standard threaded rods under seismicaction performance category C1 with mortar FIS SB or capsule RSB inhammer drilled hole

| Size                 |                                  |                                  |            | M8             | M10      | M12        | M16 | M20 | M24 | M27 <sup>2)</sup> | M30 |
|----------------------|----------------------------------|----------------------------------|------------|----------------|----------|------------|-----|-----|-----|-------------------|-----|
| Characte             | eristic resista                  | nce tensio                       | on load, s | steel failu    | ure      |            |     |     |     |                   |     |
| Steel fail           | lure                             |                                  |            | See Table C19A |          |            |     |     |     |                   |     |
|                      | eristic bond r<br>ed pullout and |                                  |            |                |          |            |     |     |     |                   |     |
| Characte             | eristic resista                  | nce shear                        | load, ste  | el failure     | e withou | ut lever a | rm  |     |     |                   |     |
|                      | Zinc plated                      | Property                         | 5.8        | 6              | 11       | 15         | 27  | 43  | 62  | 81                | 99  |
| V <sub>Rk,s,C1</sub> | steel                            | class                            | 8.8        | 11             | 16       | 24         | 44  | 69  | 99  | 129               | 158 |
|                      | Stainless                        |                                  | 50         | 6              | 11       | 15         | 27  | 43  | 62  | 81                | 99  |
| [kN]                 | steel A4                         | Property <sup>-</sup><br>class . | 70         | 9              | 14       | 21         | 39  | 60  | 87  | 113               | 138 |
|                      | and steel C                      |                                  | 80         | 11             | 16       | 24         | 44  | 69  | 99  | 129               | 158 |

## **Table C20:** Characteristic values of resistance for reinforcing rebars under seismic action performance category C1 with mortar FIS SB in hammer drilled hole

| Size                                                                  |                    | Ø            | 8        | 10       | 12     | 14     | 16      | 20       | 25       | 28        | 32  |
|-----------------------------------------------------------------------|--------------------|--------------|----------|----------|--------|--------|---------|----------|----------|-----------|-----|
| Characteristic resistar                                               | nce tensio         | n load, stee | el failu | ire      |        |        |         |          |          |           |     |
| N <sub>Rk,s,C1</sub>                                                  |                    | [kN]         | 28       | 44       | 63     | 85     | 111     | 173      | 270      | 339       | 443 |
| Characteristic bond re                                                | esistance,         | combined     | pullou   | it and c | oncret | e cone | failure | e (dry a | nd wet d | concrete) |     |
| Temperature range I <sup>1)</sup>                                     | $	au_{Rk,C1}$      | [N/mm²]      | 3,2      | 4,3      | 4,5    | 4,5    | 5,3     | 4,5      | 4,5      | 4,5       | 5,1 |
| Temperature range II <sup>1)</sup>                                    | $	au_{Rk,C1}$      | [N/mm²]      | 3,2      | 3,9      | 4,1    | 4,1    | 4,9     | 4,5      | 4,5      | 4,5       | 5,1 |
| Temperature range III <sup>1)</sup>                                   | $\tau_{\rm Rk,C1}$ | [N/mm²]      | 2,8      | 3,6      | 3,8    | 3,8    | 4,5     | 4,1      | 4,1      | 4,1       | 4,7 |
| Temperature range IV <sup>1)</sup>                                    | $	au_{Rk,C1}$      | [N/mm²]      | 2,5      | 3,2      | 3,4    | 3,4    | 4,1     | 3,8      | 3,8      | 3,8       | 4,3 |
| Characteristic resistance shear load, steel failure without lever arm |                    |              |          |          |        |        |         |          |          |           |     |
| V <sub>Rk,s,C1</sub>                                                  |                    | [kN]         | 10       | 12       | 22     | 30     | 39      | 61       | 95       | 119       | 155 |

<sup>1)</sup> See Annex B 2

<sup>2)</sup> Only FIS SB

## fischer Superbond

**Performances** Design of bonded anchors Seismic performances category C1



# **Table C21:** Characteristic values of resistance for fischer threaded rods FIS A, RGM and<br/>standard threaded rods under seismic action performance category C2 with<br/>FIS SB in hammer drilled hole

| Size                               |                                      |                   |          | M8      | M10     | M12     | M16      | M20  | M24  | M27 | M30 |
|------------------------------------|--------------------------------------|-------------------|----------|---------|---------|---------|----------|------|------|-----|-----|
| Character                          | ristic resistance te                 | nsion load,       | steel fa | ailure  |         |         |          |      |      |     |     |
|                                    | Zine plated steel                    | Property          | 5.8      |         |         | 39      | 72       | 108  | 177  |     |     |
| N <sub>Rk,s,C2</sub>               | Zinc plated steel                    | class             | 8.8      |         |         | 61      | 116      | 173  | 282  |     |     |
|                                    |                                      | Drawate           | 50       |         |         | 39      | 72       | 108  | 177  |     |     |
| [kN]                               | Stainless steel<br>A4 and steel C    | Property<br>class | 70       |         |         | 53      | 101      | 152  | 247  |     |     |
|                                    |                                      | 01033             | 80       |         |         | 61      | 116      | 173  | 282  |     |     |
| Character                          | ristic bond resistar                 | nce, combii       | ned pull | lout an | d conc  | rete co | one fail | ure  |      |     |     |
| Temperatu                          | re range I <sup>1)</sup> $	au_{R}$   | k,C2 [            | N/mm²]   |         |         | 4,5     | 3,2      | 2,6  | 3,0  |     |     |
| Temperatu                          | re range II <sup>1)</sup> $	au_{R}$  | k,C2 [            | N/mm²]   |         |         | 4,5     | 3,2      | 2,6  | 3,0  |     |     |
| Temperatu                          | re range III <sup>1)</sup> $	au_{R}$ | k,C2 [            | N/mm²]   |         |         | 3,9     | 2,7      | 2,3  | 2,6  |     |     |
| Temperatu                          | re range IV <sup>1)</sup> $	au_{R}$  | k,C2 [            | N/mm²]   |         |         | 3,6     | 2,5      | 2,1  | 2,4  |     |     |
|                                    | - 1                                  |                   | 6        |         | 1       |         |          |      |      |     | 1   |
|                                    | δ <sub>N,(DLS)</sub> 3)              |                   | l/mm²)]  |         |         | 0,09    | 0,10     | 0,11 | 0,12 |     |     |
|                                    | $\delta_{N,(ULS)}^{3)}$              | [mm/(N            | l/mm²)]  |         |         | 0,15    | 0,17     | 0,17 | 0,18 |     |     |
|                                    |                                      |                   |          |         |         |         |          |      |      |     |     |
|                                    |                                      |                   |          |         |         |         |          |      |      |     |     |
| Character                          | ristic resistance sh                 | ear load, s       |          | ure wit | hout le |         |          |      |      |     |     |
|                                    | Zinc plated steel                    | Property          | 5.8      | -       | -       | 13,9    | 27,3     | 42,7 | 62,3 | -   | -   |
| V <sub>Rk,s,C2</sub> <sup>2)</sup> |                                      | class             | 8.8      | -       | -       | 22,4    | 44,1     | 68,6 | 98,7 | -   | -   |
|                                    | Stainless steel A4                   | Property          | 50       | -       | -       | 13,9    | 27,3     | 42,7 | 62,3 | -   | -   |
| [kN]                               | and steel C                          | class             | 70       | -       | -       | 19,8    | 38,5     | 60,2 | 86,8 | -   | -   |
|                                    |                                      |                   | 80       | -       | -       | 22,4    | 44,1     | 68,6 | 98,7 | -   | -   |

| δ <sub>V,(DLS)</sub> <sup>4)</sup> | [mm/(N/mm <sup>2</sup> )] | - | - | 0,18 | 0,10 | 0,07 | 0,06 | - | - |
|------------------------------------|---------------------------|---|---|------|------|------|------|---|---|
| δ <sub>V,(ULS)</sub> <sup>4)</sup> | [mm/(N/mm <sup>2</sup> )] | - | - | 0,25 | 0,14 | 0,11 | 0,09 | - | - |

<sup>1)</sup> See Annex B 2

 $^{2)}$  For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0

<sup>3)</sup> Calculation for displacement

<sup>4)</sup> Calculation for displacement

$$\begin{split} \delta_{\text{N0}} &= \, \delta_{\text{N0-Faktor}} \bullet \tau; \\ \delta_{\text{N\infty}} &= \, \delta_{\text{N\infty-Faktor}} \bullet \tau; \end{split}$$

 $\begin{array}{l} \delta_{\text{V0}} = \ \delta_{\text{V0-Faktor}} \bullet \textbf{V}; \\ \delta_{\text{V\infty}} = \ \delta_{\text{V\infty-Faktor}} \bullet \textbf{V}; \end{array}$ 

## fischer Superbond

**Performances** Design of bonded anchors Seismic performances category C2 Annex C 13