

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0606 of 23 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

DEWALT PURE 150-PRO injection resin with anchor rod for concrete

Bonded anchor for diamond coring for use in uncracked concrete

DeWalt Black & Decker Straße 40 65510 Idstein DEUTSCHLAND

Herstellwerk 1 Herstellwerk 2

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-12/0606 English translation prepared by DIBt

Page 2 of 27 | 23 April 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 27 | 23 April 2015

European Technical Assessment ETA-12/0606 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "DEWALT PURE150-PRO Injection resin with anchor rod for concrete" is a bonded anchor consisting of a cartridge with injection mortar DEWALT PURE150-PRO and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm or threaded sleeves with internal thread of sizes M8 to M16.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for design according to TR 029	See Annex C 1 to C 6		
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 7 to C 12		
Displacements under tension and shear loads	See Annex C 13 to C 15		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

European Technical Assessment ETA-12/0606

Page 4 of 27 | 23 April 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

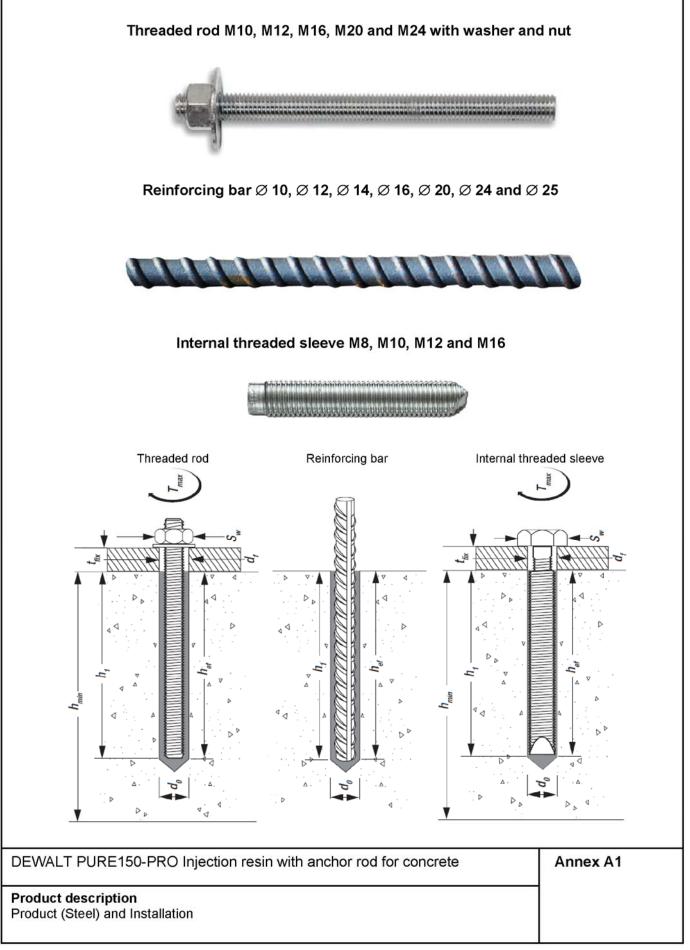
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

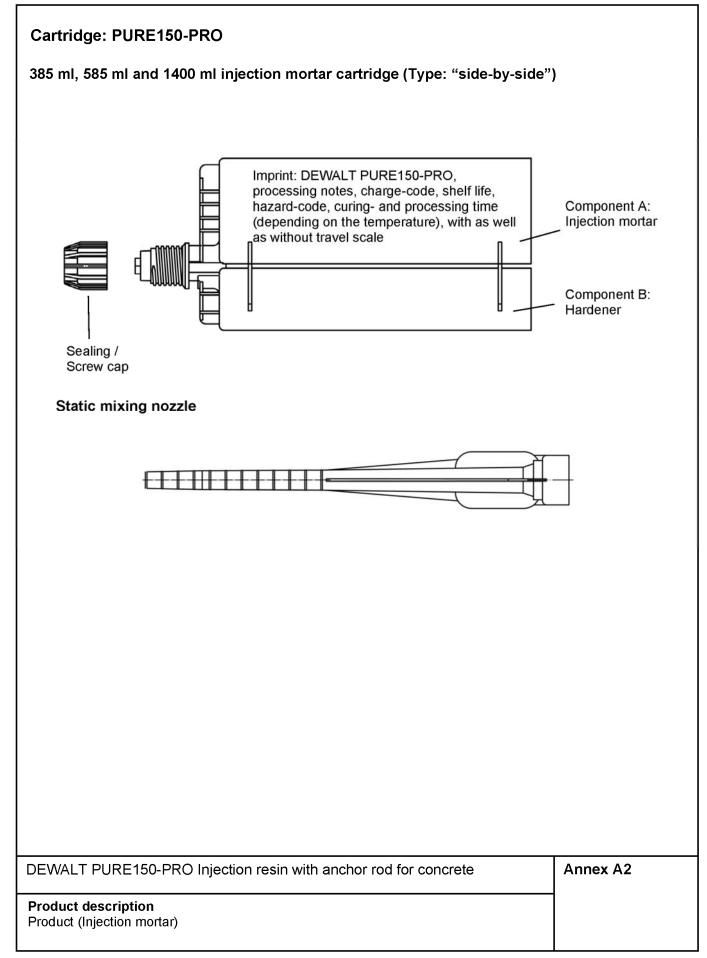
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

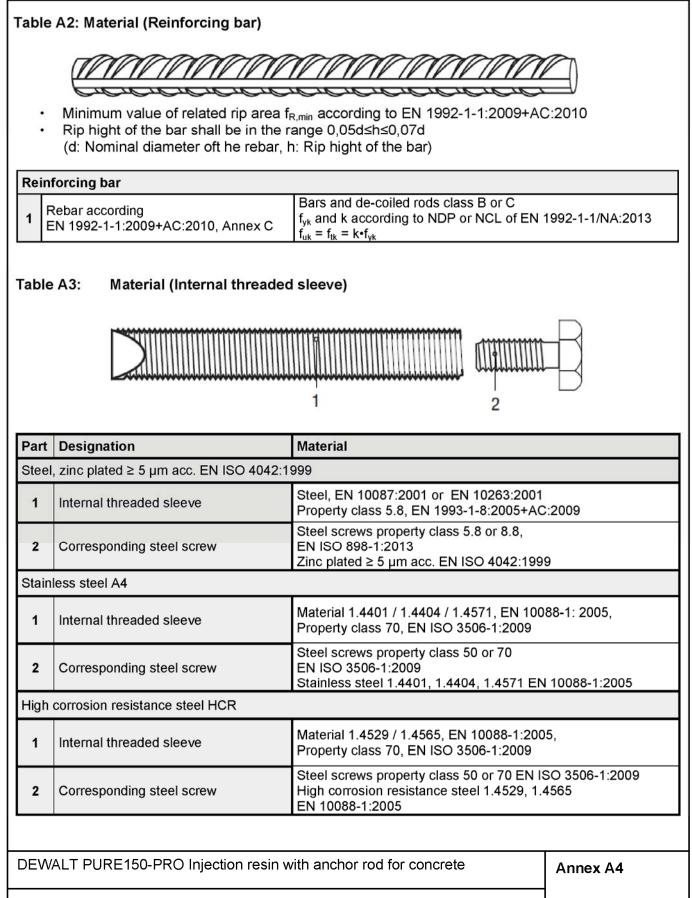
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 April 2015 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider



Tabl	e A1: Materials (Threaded rod)	
		1 3	2
	Designation	Material	
	l, zinc plated ≥ 5 μm acc. EN ISO 404 SO 1461:2009	2:1999 or Steel, hot-dip galvanised ≥ 40 μ	m acc.
1	Threaded rod	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8 acc. EN 1993-1-8:20 $A_5 > 8\%$ fracture elongation, $f_{uk} = f_{ub}$	005+AC:2009 f _{yk} = f _{yb}
2	Hexagon Nut EN ISO 4032:2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) Property class 5 (for class 5.8 rod) Property class 8 (for class 8.8 rod) EN ISO 898-2:2012	
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated	
Stai	nless steel		
1	Threaded rod	Material 1.4401 / 1.4571, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation, f _{uk} = R _{m.min}	$f_{yk} = R_{p0,2,min}$
2	Hexagon Nut EN ISO 4032:2012	Material 1.4401 / 1.4571 EN 10088-1:2005, Property class 70 EN ISO 3506-2:2009	
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401 or 1.4571, EN 10088-1:2005	
High	corrosion resistance steel		
1	Threaded rod	Material 1.4529 / 1.4565, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation, f _{uk} = R _{m.min}	f _{yk} = R _{p0,2,min}
2	Hexagon Nut EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, Property class 70 EN ISO 3506-2:2009	
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565 acc. EN 10088-1:2005	
Coi - - -	nmercial standard rod with: Materials, dimensions and mechar Inspection certificate 3.1 acc. to EN Marking of embedment depth		
DEW	ALT PURE150-PRO Injection resin	with anchor rod for concrete	Annex A3
	ict description ial (Threaded rod)		

Product description Material (Reinforcing bar) Werkstoffe (Internal threaded sleeve)

726292 15

Specifications of intended use

Anchorages subject to:

 Static and quasi-static loads: Threaded rod M10 to M24, Rebar Ø10 to Ø25, Internal threaded rod M8 to M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete

Temperature Range:

- I: 40 °C to +40 °C (max. long term temperature +24 °C und max. short term temperature +40 °C)
- II: 40 °C to +60 °C (max. long term temperature +43 °C und max. short term temperature +60 °C)
- III: 40 °C to +72 °C (max. long term temperature +43 °C und max. short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete
- Flooded holes (not sea water)
- Hole drilling by diamond drilling
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex B1

Intended Use

Specifications

Anchor size		M 10	M 12	M 16	M 20	M 24
Nominal drill hole diameter	d₀ [mm] =	12	14	18	24	28
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96
hole depth	h _{ef,max} [mm] =	200	240	320	400	480
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14	18	22	26
Diameter of steel brush	d₅ [mm] ≥	14	16	20	26	30
Torque moment	T _{inst} [Nm]	20	40	80	120	160
Thickness of fisture	t _{fix,min} [mm] >			0		
Thickness of fixture	t _{fix,max} [mm] <			1500		
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	50	60	80	100	120
Minimum edge distance	c _{min} [mm]	50	60	80	100	120

Table B2: Installation parameters for reinforcing bar

Rebar size		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	28	32
Embedment depth and bore	h _{ef,min} [mm] =	60	70	75	80	90	96	100
hole depth	h _{ef,max} [mm] =	200	240	280	320	400	480	500
Diameter of steel brush	d₀ [mm] ≥	16	18	20	22	26	30	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	50	60	70	80	100	120	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	120	125

Table B3: Installation parameters for internal threaded sleeves

M 10	M 8	M 12	M 16			
16	12	20	24			
18	14	24	28			
90	80	110	150			
12	9	14	18			
20	16	26	30			
20	10	40	80			
130	110	160	210			
80	60	100	120			
80	60	100	120			
Minimum edge distance cmin [mm] 60 80 100 1 EWALT PURE150-PRO Injection resin with anchor rod for concrete						

Annex B2

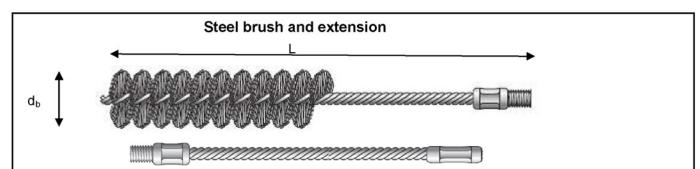
Intended Use

Installation parameters

Installation Instructions

Installation Solid Material diamond drilling 2 3 2x 2x 6 13 14 4 Ē e.g E 20°C 2x 2x hef 10 hours min. 10 cm Drill a hole to the size and embedment required. Please repeat step 5. Fill the cleaned hole approximately two-7 11 1 thirds with adhesive starting from the rear of the hole. For all diameters use a piston Attach a supplied static mixing nozzle to the cartridge and load the cartridge into the Rinse the drill hole until dear water comes out of the drill 2 8 plug and extension nozzle. Slowly withdraw hole the static mixing nozzle as the hole fills to avoid creating air pockets. For embedments correct dispensing tool. For every working Brush the hole with an appropriate sized wirebrush a minimum of interruption longer than the recommended - 3 larger than 190 mm an extension nozzle two times. Start at the rear of the drill hole. If the rear of the drill gel time (as seen on table setting time) as must be used. Observe gelworking times. hole cannot be reached by brush an extension must be used. well as for new cartridges, a new static mixer must be used. 12 Push the threaded rod or reinforcing bar into the hole while turning slightly to Please repeat step 2. 4 Prior to inserting the threaded rod into the ensure positive distribution of the adhesive 9 filled hole, the position of the embedment until the embedment depth is reached. The rod or rebar should be free of dirt, grease, Starting from the rear of the hole, blow the hole clean with compressed air a minimum of two times. If the rear of the 5 depth must be marked on the anchor rods or rebar. Insert marked rebar/rod into unfilled oil or other foreign material. drill hole cannot be reached an extension must be used. hole to check if embedment is reached. Allow the adhesive to cure to the specified 13 Allow the adhesive to cure to the specific time prior to applying any load or torque. Brush the hole again with an appropriate sized wirebrush 6 a minimum of two times. If the rear of the drill hole cannot 10 Prior to dispensing into the anchor hole, squeeze out a minimum of 10cm until the Do not move or load the anchor until it is be reached by brush an extension must be used. fully cured. mortar shows a consistent colour. 14 After full curing, the fixture can be installed. Make sure the max. torque is not exceeded. Ensure that the anchor is fully seated at the bottom of the hole (in case the threaded rod is not marked) and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.

Table B4: Minimum curing time


Concrete Temperatur	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ + 5 °C	120 min	50 h	100 h
≥ +10 °C	90 min	30 h	60 h
≥ +20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ +40 °C	12 min	4 h	8 h

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex B3

Intended Use Installation instructions Minimum curing time

Table B5: Parameter cleaning and setting tools

Threaded rod	Internal threaded sleeve	Rebar	Drill bit Ø d₀	Brush di nominal d _b	minimum d _{b,min}	Piston plug denom. (Ø)
[mm]	[mm]		[mm]	[mm]	[mm]	[mm]
M10		8	12	14	12,5	-
M12	M8	10	14	16	14,5	-
-		12	16	18	16,5	-
M16	M10	14	18	20	18,5	-
-		16	20	22	20,5	-
M20	M12	20	24	26	24,5	#24 (22)
M24	M16	-	28	30	28,5	#28 (27)
		25	32	34	32,5	#28 (29)

Hand pump (volume 750 ml) Drill bit diameter (d₀): 12 mm to 20 mm

Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d_0): 24 mm to 32 mm

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Intended Use

Cleaning and setting tools

Annex B4

Table C1:Characteristic values for tension loads in uncracked concrete
(Design method according to TR 029)

	<u> </u>		,					
Anchor size threaded rod				M 10	M 12	M 16	M 20	M24
Steel failure								
Characteristic tension resistance		N _{Rk,s}	[kN]	See TR029, Chapter 5.2.2.2., Eq. (5.1) N _{Rk,s} = A _s ·f _{uk}				
Stressed cross section			[mm²]	58,0	84,3	156,7	244,8	352,5
Combined pullout and concr	ete cone failure							
Characteristic bond resistance	in uncracked concre	ete C20	0/25					
Dry and wet concrete		$\tau_{\text{Rk,ucr}}$	[N/mm²]	11,0	10,0	10,0	9,5	9,0
Temperature range I: 40°C/24°C	Flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13,0	12,0	11,0	11,0	10,0
Temperature range II: 60°C/43°C	Dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	6,5	6,0	6,0	5,5
	Flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,0	7,5	7,0	7,0	6,5
T	Dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	6,0	6,0	5,5	5,0	5,0
Temperature range III: 72°C/43°C	Flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,0	6,5	6,0	6,0
	•	C30/3	7	1,04				
Increasing factor ψ_c for characteristic bond resistance τ	Bkuer	C40/50		1,08				
	nk,ucr	C50/6	0	1,10				
Splitting failure								
Oberesteristic edge distance e		h≥2h _{ef}		1,0h _{ef}				
Characteristic edge distance $c_{cr,sp}$ [2,0h _{ef} >h>1,3h _{ef} h≤1,3h _{ef}		r 5h _{ef} – 2h 2,4h _{ef}				
Characteristic spacing		S _{cr,sp}	[mm]	2∘c _{cr,sp}				
Installation safety factor (dry and w	vet concrete)	γ2	2 1,0 1,		,2			
Installation safety factor (flooded b	ore hole)	γ2		1,4				

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C1

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)

Table C2:Characteristic values for shear loads in uncracked concrete
(Design method according to TR 029)

Anchor size threaded rod	Anchor size threaded rod				M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance	V _{Rk,s}	[kN]	See TR029, Chapter 5.2.3.2., Eq. (5.5 V _{Rk,s} =0,5·A _s ·f _{uk}				Eq. (5 .5),
Stressed cross section	As	[mm²]	58,0 84,3 156,7 244,8 35				
Steel failure with lever arm							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	See TR029, Chapter 5.2.3.2., Eq. (5.6 b), M ⁰ _{Rk,s} =1,2 [.] W _{el} ·f _{uk}				
Elastic section modulus	W _{el}	[mm³]	62,3	109,1	276,6	540,3	933,4
Concrete pryout failure							
Factor k in equation (5.7) of Technical Repor TR 029 for the design of Bonded Anchors	t				2,0		
Installation safety factor	γ2				1,0		
Concrete edge failure							
See chapter 5.2.3.4 of Technical Report TR	029 for th	ne desig	n of Boi	nded An	chors		
Installation safety factor	γ ₂				1,0		

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C2

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to TR 029) $\,$

Table C3:Characteristic values for tension loads in uncracked concrete
(Design method according to TR 029)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure							I			
Characteristic tension resistant	ce	N _{Rk,s}	[kN]		See TR029, Chapter 5.2.2.2. Eq. (5.1), N _{Rk,s} = A _s ⋅f _{uk}					
Stressed cross section		As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Combined pullout and concr	ete cone failure									
Characteristic bond resistance	in uncracked concre	te C20)/25							
Temperature range I: 40°C/24°C			[N/mm²]	11,0	10,0	10,0	10,0	9,5	9,0	9,0
mperature range I: 40°C/24°C flooded bore hole		$\tau_{\text{Rk,ucr}}$	[N/mm²]	13,0	12,0	12,0	11,0	11,0	10,0	10,0
	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5	5,5
Temperature range II: 60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,0	7,5	7,5	7,0	7,0	6,5	6,5
Temperature range III: 72°C/43°C	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	6,0	6,0	5,5	5,5	5,0	5,0	5,0
Temperature range m. 72 C/43 C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Increasing factor ψ_c for charact	eristic	C30/3					1,04			
bond resistance $\tau_{Rk,ucr}$		C40/5 C50/6	-				1,08 1,10			
Splitting failure		050/0	0				1,10			
Characteristic edge distance $c_{\alpha,sp}$ [mm]		2,0h _{ef}	≥2h _{ef} >h>1,3h _{ef} :1,3h _{ef}				1,0h _{ef} 5h _{ef} – 21 2,4h _{ef}	h		
Characteristic spacing	Characteristic spacing		[mm]				2°C _{cr,sp}			
Installation safety factor (dry an	nstallation safety factor (dry and wet concrete)			1,0 1,2						
nstallation safety factor (flooded bore hole)				1,4						

electronic copy of the eta by dibt: eta-12/0606

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C3

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to TR 029)

Table C4:Characteristic values for shear loads in uncracked concrete
(Design method according to TR 029)

Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	
Steel failure without lever arm										
Characteristic shear resistance	V _{Rk,s} [kN]			Siehe TR029, Abs. 5.2.3.2., Gleichung (5 V _{Rk,s} =0,5·A _s ·f _{uk}						
Stressed cross section	As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9	
Steel failure with lever arm										
Characteristic bending resistance $M^0_{Rk,s}$ [Nm]			Siehe TR029, Abs. 5.2.3.2., Gleichung (5.6 b) M ⁰ _{Rk.s} =1,2·W _{el} ·f _{uk}						6 b),	
Elastic section modulus	Wel	[mm³]	98,2	169,6	269,4	402,1	785,4	1357	1534	
Concrete pry out failure										
Factor k in Equation (5.7) of Technical R TR 029 for the design of Bonded Ancho						2,0				
Installation safety factor	γ_2					1,0				
Concrete edge failure										
See chapter 5.2.3.4 of Technical Report	TR 029 f	or the d	esign of	fbonde	d ancho	ors				
Installation safety factor y ₂			1,0							

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C4

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to TR 029) $\,$

Page 17 of European Technical Assessment ETA-12/0606 of 23 April 2015

English translation prepared by DIBt

Table C5:Characteristic values for tension loads in uncracked concrete
(Design method according to TR 029)

Anchor size internal t	hreaded sleeve			M 8	M 10	M 12	M 16		
External diameter		d	[mm]	12	16	20	24		
Embedment depth		h _{ef}	[mm]	80	90	110	150		
Steel failure (internal	threaded sleeve)								
Characteristic tension r zinc plated	esistance,	N _{Rk,s}	[kN]	19,5	42,8	71,1	83,7		
Characteristic tension r stainless steel A4	esistance,	N _{Rk,s}	[kN]	24,2	53,1	88,1	103,8		
Steel failure (threaded	i rod)								
Characteristic tension r	esistance	N _{Rk,s}	[kN]		See TR029, Chapter 5.2.2.2 Eq. (5.1), N _{Rk.s} = A _s ·f _{uk}				
Stressed cross section		As	[mm²]	36,6	58,0	84,3	156,7		
Combined pullout and	I concrete cone failure			•					
Characteristic bond res	istace in uncracked conc	rete C20	/25						
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10,0	10,0	9,5	9,0		
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12,0	11,0	11,0	10,0		
Temperature range II:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	5,5		
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	7,0	7,0	6,5		
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	5,5	5,0	5,0		
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0		
Increasing factor ψ_c for resistance $\tau_{Rk,ucr}$	characteristic bond	C30/37 C40/50 C50/60			1,0	8			
Splitting failure		0.00/00		I	1,1	0			
			h≥2h _{ef}	1	1,0	h _{ef}			
Characteristic edge dist	tance c _{or,sp} [mm]		n _{ef} >h>1,3h _{ef}		5h _{ef} -	- 2h			
		S _{cr,sp}	h≤1,3h _{ef}		2,4				
	haracteristic spacing		[mm]	2°C _{cr,sp}					
Installation safety facto	r (dry and wet concrete)	γ ₂		1,2					
Installation safety factor	r (flooded bore hole)	γ_2		1,4					

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C5

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to TR 029) $\,$

Table C6:Characteristic values for shear loads in uncracked concrete
(Design method according to TR 029)

Anchor size internal threaded sleev	e		M 8	M 10	M 12	M 16
External diameter	d	[mm]	12	16	20	24
Embedment depth	h _{ef}	[mm]	80	90	110	150
Steel failure without lever arm (inte	rnal threade	ed sleeve)				
Characteristic shear resistance, zinc plated	V _{Rk,s}	[kN]	9,7	21,4	35,5	41,9
Characteristic shear resistance, A4 steel	$V_{Rk,s}$	[kN]	12,1	26,5	44,1	51,9
Steel failure without lever arm (three	eaded rod)					
Characteristic shear resistance	V _{Rk,s}	[kN]	See		ter 5.2.3.2., E 0,5·A _s ·f _{uk}	q. (5.5),
Stressed cross section	As	[mm²]	36,6	58,0	84,3	156,7
Steel failure with lever arm (internal	threaded sl	eeve)				
Characteristic bending moment, zinc plated	M ⁰ _{Rk,s}	[Nm]	46,5	131,8	267,2	405,7
Characteristic bending moment, A4 steel	M ⁰ _{Rk,s}	[Nm]	57,7	163,4	331,3	503,0
Steel failure with lever arm (threade	d rod)					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	See TR		er 5.2.3.2., E 1,2·W _{el} ·f _{uk}	q. (5.6 b),
Elastic section modulus	W _{el}	[mm³]	31,2	62,3	109,1	276,6
Concrete pryout failure						
Factor k in Equation (5.7) of Technical TR 029 for the design of Bonded Anch					2,0	
Installation safety factor	γ2				1,0	
Concrete edge failure						
See chapter 5.2.3.4 of Technical Repo	ort TR 029 for	the desig	n of Bonde	d Anchors		
Installation safety factor	γ_2				1,0	

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C6

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to TR 029) $\,$

Table C7:Characteristic values for tension loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	
Steel failure									
Characteristic tension resistance		N _{Rk,s}	[kN]	See CE		992-4-5, _{Rk,s} = A _s ·	, Chapte f _{uk}	r 6.2.2	
Stressed cross section		As	[mm²]	58,0	84,3	156,7	244,8	352,	
Combined pullout and concre	ete cone failure								
Characteristic bond resistance in u	incracked concrete C	20/25							
T	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	11,0	10,0	10,0	9,5	9,0	
Temperature range I: 40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	13,0	12,0	11,0	11,0	10,0	
dry or wet concrete			[N/mm²]	7,0	6,5	6,0	6,0	5,5	
Temperature range II: 60°C/43°C flooded bore hole		τ _{Rk,ucr}	[N/mm²]	8,0	7,5	7,0	7,0	6,5	
Tourse week up and 111, 70%0 (40%0	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
Temperature range III: 72°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,0	6,5	6,0	6,0	
Increasing factor ψ_c for		C30/3				1,04	-		
characteristic bond resistance $\tau_{Rk,uc}$	я	C40/5 C50/6	-	1,08					
Factor acc. CEN/TS 1992-4-5, cha	pter 6.2.2.3	k ₈		10,1					
Concrete cone failure		I	•			,			
Characteristic edge distance		C _{cr,N}	[mm]			1,5∘h _{ef}			
Characteristic spacing		S _{cr,N}	[mm]			2∘c _{cr,sp}			
Factor acc. CEN/TS 1992-4-5, cha	pter 6.2.3.1		k _{ucr}			10.1			
Splitting failure									
A A A A A A A A A A			≥2h _{ef}			1,0h _{ef}			
Characteristic edge distance $c_{cr,sp}$ [I	nmj		>h>1,3h _{ef} 1,3h _{ef}			5h _{ef} – 2h 2,4h _{ef}	1		
Characteristic spacing	haracteristic spacing		[mm]			2∘c _{cr,sp}			
stallation safety factor (dry and wet concrete)		γ_{inst}		1,0 1,2		,2			
stallation safety factor (flooded bore hole)						1,4			

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C7

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C8:Characteristic values for shear loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance	V _{Rk,s}	[kN]	See			4-5, Ch 0,5∙A _s ∙f _{uk}	•
Stressed cross section	As	[mm²]	58,0	84,3	156,7	244,8	352,5
Steel failure with lever arm	l		•		1		
Characteristic bending resistance $M^{0}_{Rk,s}$ [Nm]				See CEN/TS 1992-4-5, Chapte 6.3.2.2, M ⁰ _{Rk,s} =1,2 [.] W _{el} ·f _{uk}			
Elastic section modulus	Wei	[mm³]	62,3	109,1	276,6	540,3	933,4
Ductility factor		k ₂	0,80				
Concrete pryout failure							
Factor acc. Eq. (27) CEN/TS 1992-4-5, chapter 6.3.3		k ₃			2,0		
Installation safety factor	$\gamma_{\rm inst}$				1,0		
Concrete edge failure							
Effective length of anchor	١ _f	[mm]		l _f = min(h _{ef} ; 8d _{nom)}			
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor γ_{inst}					1,0		

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C8

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C9:Characteristic values for tension loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Steel failure										
Characteristic tension resistant	ce	N _{Rk,s}	[kN]		See CEN/TS 1992-4-5, Chapter 6.2.2, $N_{\text{Rk,s}}$ = A _s ·f _{uk}					
Stressed cross section		As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9
Combined pullout and concr	ete cone failure									
Characteristic bond resistance	in uncracked conc	rete C2	20/25							
Temperature range I: 40°C/24°C	dry or wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	11,0	10,0	10,0	10,0	9,5	9,0	9,0
flooded bore hole			[N/mm ²]	13,0	12,0	12,0	11,0	11,0	10,0	10,0
Temperature range II: 60°C/43°C			[N/mm ²]	7,0	6,5	6,5	6,0	6,0	5,5	5,5
Temperature range ii. 00 0/40 0	flooded bore hole		[N/mm²]	8,0	7,5	7,5	7,0	7,0	6,5	6,5
Temperature range III: 72°C/42°C	dry or wet concrete		[N/mm²]	6,0	6,0	5,5	5,5	5,0	5,0	5,0
Temperature range III: 72°C/43°C flooded bore hole		τ _{Rk,ucr}	[N/mm²]	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Increasing factor ψ_c for		C30/3	-				1,04			
characteristic bond resistance	τ _{Rk,ucr}	C40/5 C50/6	-	1,08						
Factor acc. CEN/TS 1992-4-5 cha	oter 6.2.3.3	000/0	6 k ₈	10,1						
Concrete cone failure										
Characteristic edge distance		C _{cr,N}	[mm]				1,5∙h _e	f		
Characteristic spacing		S _{cr,N}					2.Ccr.N	1		
Factor acc. CEN/TS 1992-4-5 cha	oter 6.2.3.1		k _{ucr}				10,1			
Splitting failure										
			≥2h _{ef}				1,0h _{ef}			
Characteristic edge distance c	_{r,sp} [mm]		>h>1.3h _{ef}				<u>5h_{ef} – 2</u> 2,4h _{ef}			
Characteristic spacing		S _{cr,sp}	[mm]				2,4Hef 2∘C _{cr,sp}			
	nstallation safety factor (dry and wet concrete)			1,0 1,2						
nstallation safety factor (flooded bore hole)				1,4						

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C9

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C10:Characteristic values for shear loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	
Steel failure without lever arm										
Characteristic shear resistance	V _{Rk,s}	[kN]	ŝ	See CE)92-4-5, _{.,s} =0,5∙A		er 6.3.2.1	1,	
Stressed cross section	As	[mm²]	78,5	113,1	153,9	201,1	314,2	452,4	490,9	
Steel failure with lever arm										
Characteristic bending resistance	istance M ⁰ _{Rk,s} [Nm]				Siehe CEN/TS 1992-4-5, Abs. 6.3.2.2, M ⁰ _{Rk,s} =1,2 [.] W _{el} ·f _{uk}					
Elastic section modulus	W _{el}	[mm³]	98,2	169,6	269,4	402,1	785,4	1357	1534	
Ductility factor		k ₂	0,80							
Concrete pry out failure										
Factor acc. Eq. (27) CEN/TS 1992-4-5 chapter 6.3.3		k₃				2,0				
Installation safety factor	γ_{inst}					1,0				
Concrete edge failure										
Effective length of anchor	I _f	[mm]			l _f = n	nin(h _{ef} ; 8	3d _{nom)}			
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	16	20	24	25	
Installation safety factor	a safety factor γ_{inst}			1,0						

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C10

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C11:Characteristic values for tension loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size internal th	nreaded sleeve			M 8	M 10	M 12	M 16		
External diameter		d	[mm]	12	16	20	24		
Embedment depth		h _{ef}	[mm]	80	90	110	150		
Steel failure (internal f	hreaded sleeve)								
Characteristic tension re	esistance, Zinc plated	N _{Rk,s}	[kN]	19,5	42,8	71,1	83,7		
Characteristic tension re steel A4	,	N _{Rk,s}	[kN]	24,2	53,1	88,1	103,8		
Steel failure (threaded	rod)								
Characteristic tension re	esistance	N _{Rk,s}	[kN]	See CEN	See CEN/TS 1992-4-5, Chapter 6 N _{Rk,s} = A _s ·f _{uk}				
Stressed cross section		As	[mm²]	36,6	58,0	84,3	156,7		
Combined pullout and	concrete cone failure								
Characteristic bond resi	stance in uncracked cor	ncrete C2	0/25						
Temperature range I:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	10,0	10,0	9,5	9,0		
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12,0	11,0	11,0	10,0		
Temperature range II:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	5,5		
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	7,0	7,0	6,5		
Temperature range III:	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	5,5	5,0	5,0		
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	7,0	6,5	6,0	6,0		
Increasing factor ψ_c for	characteristic bond	C30/37		1,04					
resistance $\tau_{Rk,ucr}$		C40/50		1,08					
Factor acc. CEN/TS 1992-	4-5 chapter 6 2 2 3	C50/60			<u>1,1</u> 10				
Concrete cone failure	roonaptoro.2.2.0	10			10				
Characteristic edge dist	ance	C _{cr,N}	[mm]		1,5.	h _{ef}			
Characteristic spacing		S _{cr.N}	[mm]		2·c	÷.			
Factor acc. CEN/TS 1992-	4-5 chapter 6.2.3.1		k _{ucr}		10				
Splitting failure									
Characteristic edge distance c _{cr.sp} [mm]		2.0h	h≥2h _{ef} _{ef} >h>1,3h _{ef}		1,0 5h _{ef} -				
	- with F		n≤1,3h _{ef}		2,4				
Characteristic spacing	S _{cr,sp}	[mm]	2∘c _{cr,sp}						
Installation safety factor	(dry and wet concrete)	γ_{inst}		1,2					
Installation safety factor		Yinst			1,4	4			

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C11

Performances

Characteristic values for tension loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C12:Characteristic values for shear loads in uncracked concrete
(Design method according to CEN/TS 1992-4)

Anchor size internal threaded sl	eeve		M 8	M 10	M 12	M 16
External diameter	d	[mm]	12	16	20	24
Embedment depth	h _{ef}	[mm]	80	90	110	150
Steel failure without lever arm (inte	rnal threaded	l sleeve)				
Characteristic shear resistance, zinc plated	V _{Rk,s}	[kN]	9,7	21,4	35,5	41,9
Characteristic shear resistance, A4 steel	V _{Rk,s}	[kN]	12,1	26,5	44,1	51,9
Steel failure without lever arm (three	aded rod)					
Characteristic shear resistance	V _{Rk,s}	[kN]	See (2-4-5, Chapter 0,5·A _s ·f _{uk}	6.3.2.1,
Stressed cross section	As	[mm²]	36,6	58,0	84,3	156,7
Steel failure with lever arm (internal threaded sleeve)						
Characteristic bending moment, Zinc plated	M ⁰ _{Rk,s}	[Nm]	46,5	131,8	267,2	405,7
Characteristic bending moment, A4 steel	M ⁰ _{Rk,s}	[Nm]	57,7	163,4	331,3	503,0
Ductility factor	k ₂			(0,80	
Steel failure with lever arm (threade	d rod)					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	See CI		-4-5, Chapte 1,2·W _{el} ·f _{uk}	r 6.3.2.2,
Elastic section modulus	W _{el}	[mm³]	31,2	62,3	109,1	276,6
Ductility factor	k ₂			. (0,80	
Concrete pryout failure						
Factor acc. CEN/TS 1992-4-5, chapter	r 6.2.3	k ₃			2,0	
Installation safety factor	γ_{inst}				1,0	
Concrete edge failure						
Effective length of anchor	I _f	[mm]		l _f = min	(h _{ef} ; 8d _{nom)}	
Outside diameter of anchor	d _{nom}	[mm]	12	16	20	24
Installation safety factor	$\gamma_{\rm inst}$				1,0	

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C12

Performances

Characteristic values for shear loads in uncracked concrete (Design method according to CEN/TS 1992-4)

Table C13: Displacements under tension loads ¹⁾ (threaded rod)

Anchor size th	readed rod		M 10	M 12	M 16	M 20	M24
Temperature ra	nge 40°C/24°C	;					
Displacement	δ_{N0} - Factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029
Displacement	$\delta_{N\infty}$ - Factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114
Temperature ra	nge 72°C/43°C	and 60°C/43°C					
Displacement	δ_{N0} - Factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033
Displacement	$\delta_{\text{N}\infty}\text{-}\text{Factor}$	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0}$ - Factor- τ

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty} - \text{Factor} \cdot \tau$

Table C14: Displacements under shear loads ¹⁾ (threaded rod)

Anchor size threaded rod				M 12	M 16	M 20	M24
Displacement	δ_{V0} - Factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$ - Factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - \text{Factor} \cdot \tau$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} - \text{Factor} \cdot \tau$

DEWALT PURE150-PRO Injection resin with anchor rod for concrete

Annex C13

Performances

Table C15: Displacements under tension loads ¹⁾ (Reinforcing bar)

Reinforcing I	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25				
Temperature range 40°C/24°C											
Displacement	δ_{N0} - Factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,029	0,030		
Displacement	$\delta_{N\infty}$ - Factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,114	0,118		
Temperature range 72°C/43°C and 60°C/43°C											
Displacement	δ_{N0} - Factor	[mm/(N/mm ²)]	0,015	0,018	0,020	0,023	0,028	0,032	0,034		
Displacement	$\delta_{N\infty}$ - Factor	[mm/(N/mm ²)]	0,060	0,070	0,081	0,091	0,111	0,131	0,136		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - \text{Factor} \cdot \tau$

 $\delta_{N\infty} = \ \delta_{N\infty} \text{ - Factor} \cdot \tau$

Table C16: Displacements under shear loads ¹⁾ (Reinforcing bar)

Reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25
Displacement	δ_{V0} - Factor	[mm/kN]	0,05	0,05	0,04	0,04	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ - Factor	[mm/kN]	0,08	0,07	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - \text{Factor} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty} - Factor \cdot \tau$

DEWALT PURE150-PRO Verbundmörtel mit Ankerstange in Beton

Annex C14

Performances Displacements (Reinforcing bar)

Anchor size inter	nal threaded	sleeve	M 8	M 10	M 12	M 16			
Temperature range 40°C/24°C									
Displacement	δ_{N0} - Factor	[mm/ (N/mm²)]	0,015	0,020	0,024	0,029			
Displacement	$\delta_{\text{N}\infty}\text{-}Factor$	[mm/ (N/mm²)]	0,061	0,079	0,096	0,114			
Temperature range 72°C/43°C and 60°C/43°C									
Displacement	δ_{N0} - Factor	[mm/ (N/mm²)]	0,018	0,023	0,028	0,033			
Displacement	$\delta_{N\infty}\text{-}Factor$	[mm/ (N/mm²)]	0,070	0,091	0,111	0,131			

Table C17: Displacements under tension loads ¹⁾ (internal threaded sleeve)

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0}$ - Factor $\cdot \tau$ $\delta_{N\infty} = \delta_{N\infty}$ - Factor $\cdot \tau$

Table C18: Displacements under tension loads ¹⁾ (internal threaded sleeve)

Anchor size in	ternal thread	M 8	M 10	M 12	M 16	
Displacement	δ_{V0} - Factor	[mm/ kN]	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$ - Factor	[mm/ kN]	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - \text{Factor} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty} - Factor \cdot \tau$

DEWALT PURE150-PRO Verbundmörtel mit Ankerstange in Beton

Annex C15

Performances Displacements (internal threaded sleeve)