

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0215 of 9 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TILCA Throughbolt BZ plus and BZ-IG

Torque controlled expansion anchor for use in concrete

Egli, Fischer & Co. AG Befestigungstechnik Gotthardstraße 6 8022 ZÜRICH SCHWEIZ

Werk 1, Deutschland

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-12/0215 English translation prepared by DIBt

Page 2 of 32 | 9 June 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 32 | 9 June 2015

European Technical Assessment ETA-12/0215 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TILCA Wedge anchor BZ plus and BZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for BZ plus	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for BZ plus	See Annex C 6
Characteristic resistance for static and quasi static action for BZ-IG	See Annex C 10 to C 12
Displacements under tension loads for BZ plus	See Annex C 8
Displacements under shear loads for BZ plus	See Annex C 9
Displacements under tension and shear loads for BZ-IG	See Annex C 14

European Technical Assessment

ETA-12/0215

Page 4 of 32 | 9 June 2015

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for BZ plus	See Annex C 7
Resistance to fire for BZ-IG	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

European Technical Assessment ETA-12/0215 English translation prepared by DIBt

Page 5 of 32 | 9 June 2015

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 June 2015 by Deutsches Institut für Bautechnik

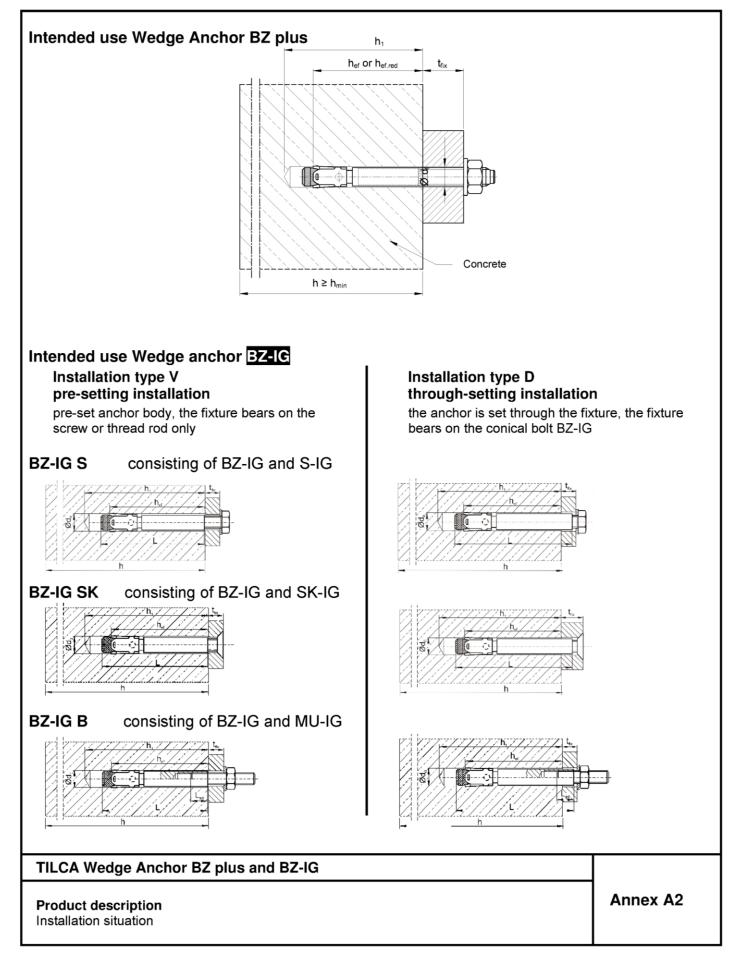
Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

Wedge and	hor BZ plus	i							
C	onical bolt	Expansion slee	ve	Washer	Hexagon nu	t			
					ł	M8 to M20			
					-	M8 to M20			
M24 to M27 (M27 zinc plated only)									
Wedge and		l6 to M12							
BZ-IG S				Washer	E	Hexagon head screw			
BZ-IG SK	Conical bo	3		Countersunk washer	E	Countersunk head screw			
BZ-IG B	Expansion	sleeve	Was I	sher Hexagon	nut	Commercial standard rod I 			
Anchor vers	ion	Product descripti	ion	Intended		Performance			
BZ plus		Annex A1 – Annex		Annex B1 – A		Annex C1 – Annex C9			
		Annex A1 – Annex		Annex B					

TILCA	Wedge	Anchor	ΒZ	plus	and	BZ-IG
-------	-------	--------	----	------	-----	-------

Annex A5 – Annex A6

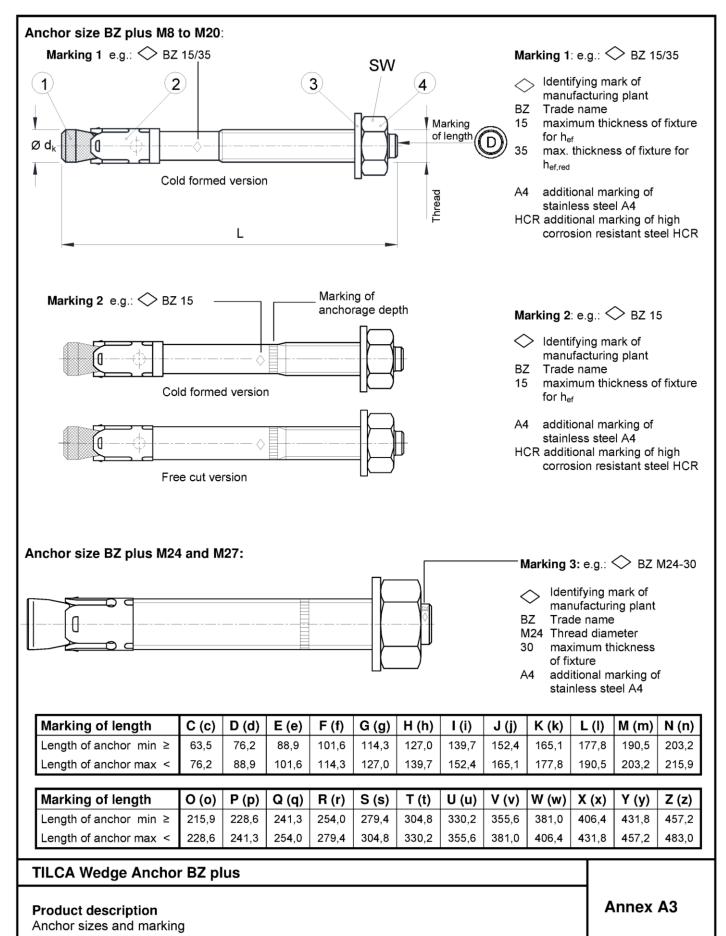
Annex B5 – Annex B7


Product description Anchor types

Annex A1

Annex C10 – Annex C14

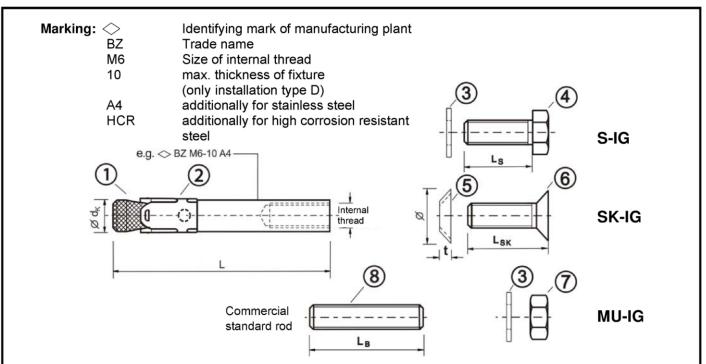
BZ-IG



Page 8 of European Technical Assessment ETA-12/0215 of 9 June 2015

English translation prepared by DIBt

able A1: Anchor dimensions BZ plus Anchor size M8 M10 M12 M16 M20 M24 M27										
	Anchor	size		Mð	MIU	MIZ	мто	M20	M24	IVIZ7
1	Conical I	bolt	Thread	M8	M10	M12	M16	M20	M24	M27
			Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Length	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	
	anchor	red. anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}			
2	Expansion	on sleeve				S	ee Table A	2		
3	Washer					S	ee Table A	2		
4	Hexagor	n nut	SW	13	17	19	24	30	36	41


Table A2: Materials BZ plus

No.	Part	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401	Steel acc. to EN 10139-12:1997	Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088:2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated

TILCA Wedge Anchor BZ plus

Product description Dimensions and materials Annex A4

Table A3: Anchor dimensions BZ-IG

No.	Anchor size		M6	M8	M10	M12	
	Conical bolt with Internal thread	$\oslash d_k$	7,9	9,8	11,8	15,7	
1	Installation type V	L	50	62	70	86	
	Installation type D	stallation type D L $50 + t_{fix}$ $62 + t_{fix}$ $70 + t_{fix}$		70 + t _{fix}	86 + t _{fix}		
2	Expansion sleeve			see ta	ible A4		
3	Washer			see ta	ble A4		
	Hexagon head screw	width across flats	10	13	17	19	
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)	
	Installation type D	Ls	14 to 20	18 to 22	20 to 22	25 to 28	
5	Countersunk _	Ø countersink	17,3	21,5	25,9	30,9	
5	washer	her t		5,0	5,7	6,7	
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm	
	Installation type V	L _{SK}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)	
	Installation type D	L _{SK}	16 to 20	20 to 25	25	30	
7	Hexagon nut wid	th across flats	10	13	17	19	
0	Commercial typ	beV L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41	
8	standard rod ¹⁾ typ	be D $L_B \ge$	21	28	34	41	
¹⁾ ac	c. to specifications (Table				D	imensions in mm	
TILCA							

Product description

Anchor parts, marking and dimensions

No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve BZ-IG	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005
4	Hexagon head screw S-IG	Steel, galvanised , coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2005, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009

TILCA Wedge Anchor BZ-IG

Product description Materials Annex A6

Specifications of intended use									
Wedge Anchor BZ plus		M8	M10	M12	M16	M20	M24	M27	
Static or quasi-static action					✓				
Seismic action (Categorie C1 + C2	2) ^{1) 2)}		 ✓ 	✓	 ✓ 	✓			
Reduced anchorage depth 2)		~	✓	✓	✓				
Fire exposure 1)					· 🗸				
Cracked and non-cracked					\checkmark				
Wedge Anchor BZ-IC	M6	M8	M10	M12					
Static or quasi-static action			 ✓ 						
Seismic action					1				
Fire exposure		,	✓						
Cracked and non-cracked			✓		1				
1)									

¹⁾ only for standard anchorage depth

²⁾ only cold formed anchors acc. to Annex A3

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4: 2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur)

TILCA Wedge Anchor BZ plus and BZ-IG

Intended use Specifications

Deutsches Institut für Bautechnik

Table B1: Installation parameters BZ plus										
Anchor size				M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	do	[mm]	8	10	12	16	20	24	28
Cutting diam	eter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	300
torque	A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	
Diameter of of hole in the fix		$d_{\rm f} \leq$	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	
Effective anchorage	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
depth	A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	
Reduced an	chorage depth									
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effe		$\mathbf{h}_{\text{ef,red}}$	[mm]	35	40	50	65			

Table B2: Minimum spacings and edge distances, reduced anchorage depth, BZ plus

Anchor size	M8	M10	M12	M16				
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140		
Cracked concrete	Cracked concrete							
Minimum spacing	S _{min}	[mm]	50	50	50	65		
Minimum spacing	for c \geq	[mm]	60	100	160	170		
Minimum odgo distonoo	C _{min}	[mm]	40	65	65	100		
Minimum edge distance	for s \geq	[mm]	185	180	250	250		
Non-cracked concrete								
	S _{min}	[mm]	50	50	50	65		
Minimum spacing	for c \geq	[mm]	60	100	160	170		
Minimum edge distance	C _{min}	[mm]	40	65	100	170		
within eage distance	for s \geq	[mm]	185	180	185	65		

TILCA Wedge Anchor BZ plus

Intended use

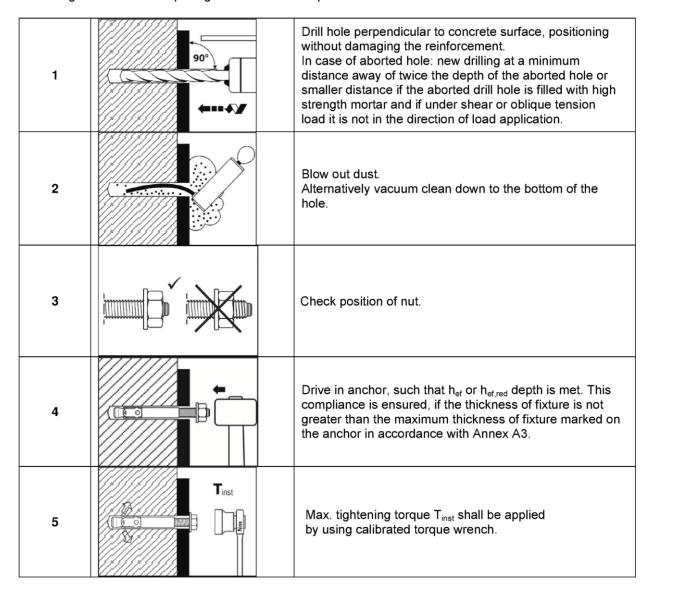
Installation parameters, Minimum spacings and edge distances for reduced anchorage depth

I

Deutsches Institut für Bautechnik

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	100 40 70 40 80 50 100 100 40 70 40 80 80 40 80 50	120 45 70 45 90 45 70 50 100 120 50 75 55 90 50 75	140 60 100 60 140 60 120 75 150 140 60 120 75 150 140 60 140 60 120 75 150 140 60 120 60 140	170 60 100 60 180 65 120 80 150 160 60 100 60 180 65	200 95 150 95 200 90 180 130 240 200 95 150 95 200 95 200	230 100 180 100 220 100 180 100 220 250 125 125 125 125 125	250 125 300 180 540 125 300 180 540
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	40 70 40 80 50 100 100 40 70 40 80 40 80	45 70 45 90 45 70 50 100 120 50 75 55 90 50	60 100 60 140 60 120 75 150 140 60 100 60 140 60	60 100 60 180 65 120 80 150 160 60 100 60 180 65	95 150 95 200 90 180 130 240 200 95 150 95 200	100 180 100 220 100 180 100 220 250 250 125 125 125 125	125 300 180 540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	40 70 40 80 50 100 100 40 70 40 80 40 80	45 70 45 90 45 70 50 100 120 50 75 55 90 50	60 100 60 140 60 120 75 150 140 60 100 60 140 60	60 100 60 180 65 120 80 150 160 60 100 60 180 65	95 150 95 200 90 180 130 240 200 95 150 95 200	100 180 100 220 100 180 100 220 250 250 125 125 125 125	125 300 180 540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	70 40 80 40 80 50 100 100 40 70 40 80 40 80	70 45 90 45 70 50 100 120 50 75 55 90 50	100 60 140 60 120 75 150 140 60 100 60 140 60	100 60 180 65 120 80 150 160 60 100 60 180 65	150 95 200 90 180 130 240 200 95 150 95 200	180 100 220 100 180 100 220 250 250 125 125 125 125	300 180 540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	70 40 80 40 80 50 100 100 40 70 40 80 40 80	70 45 90 45 70 50 100 120 50 75 55 90 50	100 60 140 60 120 75 150 140 60 100 60 140 60	100 60 180 65 120 80 150 160 60 100 60 180 65	150 95 200 90 180 130 240 200 95 150 95 200	180 100 220 100 180 100 220 250 250 125 125 125 125	300 180 540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	40 80 40 50 100 40 70 40 80 40 80	45 90 45 70 50 100 120 50 75 55 90 50	60 140 60 120 75 150 140 60 100 60 140 60	60 180 65 120 80 150 160 60 100 60 180 65	95 200 90 180 130 240 200 95 150 95 200	100 220 100 180 100 220 250 125 125 125 125	180 540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	80 40 80 50 100 40 70 40 80 40 80	90 45 70 50 100 120 50 75 55 90 50	140 60 120 75 150 140 60 100 60 140 60 60 60 60 60 60 60 60 60	180 65 120 80 150 160 60 100 60 180 65	200 90 180 130 240 200 95 150 95 200	220 100 180 100 220 250 125 125 125 125	540 125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	40 80 50 100 100 40 70 40 80 40 80	45 70 50 100 120 50 75 55 90 50	60 120 75 150 140 60 100 60 140 60	65 120 80 150 160 60 100 60 180	90 180 130 240 200 95 150 95 200	100 180 220 250 125 125 125 125	125 300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	80 50 100 40 70 40 80 40 80	70 50 100 120 50 75 55 90 50	120 75 150 140 60 100 60 140 60	120 80 150 160 60 100 60 180 65	180 130 240 200 95 150 95 200	180 100 220 250 125 125 125 125 125	300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	80 50 100 40 70 40 80 40 80	70 50 100 120 50 75 55 90 50	120 75 150 140 60 100 60 140 60	120 80 150 160 60 100 60 180 65	180 130 240 200 95 150 95 200	180 100 220 250 125 125 125 125 125	300 180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	50 100 100 40 70 40 80 40 80	50 100 120 50 75 55 90 50	75 150 140 60 100 60 140 60	80 150 160 60 100 60 180 65	130 240 200 95 150 95 200	100 220 250 125 125 125 125 125	180
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	100 100 40 70 40 80 40 80	100 120 50 75 55 90 50	150 140 60 100 60 140 60	150 160 60 100 60 180 65	240 200 95 150 95 200	220 250 125 125 125 125 125	
[mm] [mm] [mm] [mm] [mm] [mm] [mm]	100 40 70 40 80 40 80	120 50 75 55 90 50	60 100 60 140 60	160 60 100 60 180 65	200 95 150 95 200	250 125 125 125 125 125	540
[mm] [mm] [mm] [mm] [mm] [mm]	40 70 40 80 40 80	50 75 55 90 50	60 100 60 140 60	60 100 60 180 65	95 150 95 200	250 125 125 125 125 125	
[mm] [mm] [mm] [mm] [mm]	40 70 40 80 40 80	50 75 55 90 50	60 100 60 140 60	60 100 60 180 65	95 150 95 200	125 125 125 125 125	
[mm] [mm] [mm] [mm] [mm]	40 70 40 80 40 80	50 75 55 90 50	60 100 60 140 60	60 100 60 180 65	95 150 95 200	125 125 125 125 125	
[mm] [mm] [mm] [mm] [mm]	70 40 80 40 80	75 55 90 50	100 60 140 60	100 60 180 65	150 95 200	125 125 125	
[mm] [mm] [mm] [mm] [mm]	70 40 80 40 80	75 55 90 50	100 60 140 60	100 60 180 65	150 95 200	125 125 125	
[mm] [mm] [mm] [mm]	40 80 40 80	55 90 50	60 140 60	60 180 65	95 200	125 125	
[mm] [mm]	80 40 80	90 50	140 60	180 65	200	125	
[mm]	40 80	50	60	65	1		
[mm]	80				90	125	
[mm]	80				30	125	
<u> </u>		/5		120	180	125	
[[mm]]		60		80			+ /
[[mm]]	100	120	75 150	150	130 240	125 125	+/
[mm]	100	120	150	150	240	125	
		(00	(00				1
[[mm]	80	100	120	140			
				70		1	/
					- /		
		l					
[mm]	40	50	60	80			
[mm]	80	115	140	180			
						4	
[mm]							
[mm]		140	120	180			/
[mm]	50	90	75	90			
[mm]	100	140	150	200		\checkmark	
[mm]			See n	ormal amb	hient tempe	rature	
[[umu]	I		000 11	onna ann	sient tempe	ature	
[mm]	1			ormal arel	hight tomas	roturo	
			See n			rature	
լլՠՠյ				2 300	mm		
	[mm] [mm] [mm] [mm] [mm] [mm]	[mm] 80 [mm] 40 [mm] 70 [mm] 40 [mm] 80 [mm] 50 [mm] 100 [mm] 100	[mm] 80 100 [mm] 40 45 [mm] 70 90 [mm] 40 50 [mm] 40 60 [mm] 80 115 [mm] 80 140 [mm] 50 90 [mm] 100 140 [mm] [mm] [mm] [mm] [mm] [mm]	[mm] 80 100 120 [mm] 40 45 60 [mm] 70 90 100 [mm] 40 50 60 [mm] 40 50 60 [mm] 80 115 140 [mm] 80 140 120 [mm] 50 90 75 [mm] 100 140 150 See n [mm] See n [mm] See n See n	[mm] 80 100 120 140 [mm] 40 45 60 70 [mm] 70 90 100 160 [mm] 40 50 60 80 [mm] 40 60 60 80 [mm] 80 115 140 180 [mm] 80 140 120 180 [mm] 50 90 75 90 [mm] 100 140 150 200	[mm] 80 100 120 140 [mm] 40 45 60 70 [mm] 70 90 100 160 [mm] 40 50 60 80 [mm] 80 115 140 180 [mm] 80 115 140 180 [mm] 80 140 120 180 [mm] 50 90 75 90 [mm] 100 140 150 200 [mm] See normal ambient temper [mm] See normal ambient temper [mm] See normal ambient temper	[mm] 80 100 120 140 [mm] 40 45 60 70 [mm] 70 90 100 160 [mm] 40 50 60 80 [mm] 80 115 140 180 [mm] 80 115 140 180 [mm] 80 140 120 180 [mm] 50 90 75 90 [mm] 100 140 150 200 [mm] See normal ambient temperature [mm] See normal ambient temperature [mm] See normal ambient temperature

Intended use


Minimum spacings and edge distances for standard anchorage depth

Installation instructions BZ plus

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
 Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be
- placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply - Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

TILCA Wedge Anchor BZ plus

Intended Use Installation instructions

Installation parameters BZ-IG Table B4:

Anchor size				M6	M8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter	Drill hole diameter		[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \ge$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
la stelle tien as en ent		S	[Nm]	10	30	30	55
Installation moment, zinc plated steel	T _{inst}	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
Installation moment, stainless steel A4, HCR		S	[Nm]	15	40	50	100
	T _{inst}	SK	[Nm]	12	25	45	60
Stalliess Steel A4, HOR		В	[Nm]	8	25	40	80
Installation type V (Pre-setting	installatio	n)					
Diameter of clearance hole in the	fixture	d _f ≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-se	tting insta	allation)					
Diameter of clearance hole in the	fixture	[mm]	9	12	14	18	
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	$t_{fix} \ge$	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm. ²⁾ see Annex A2

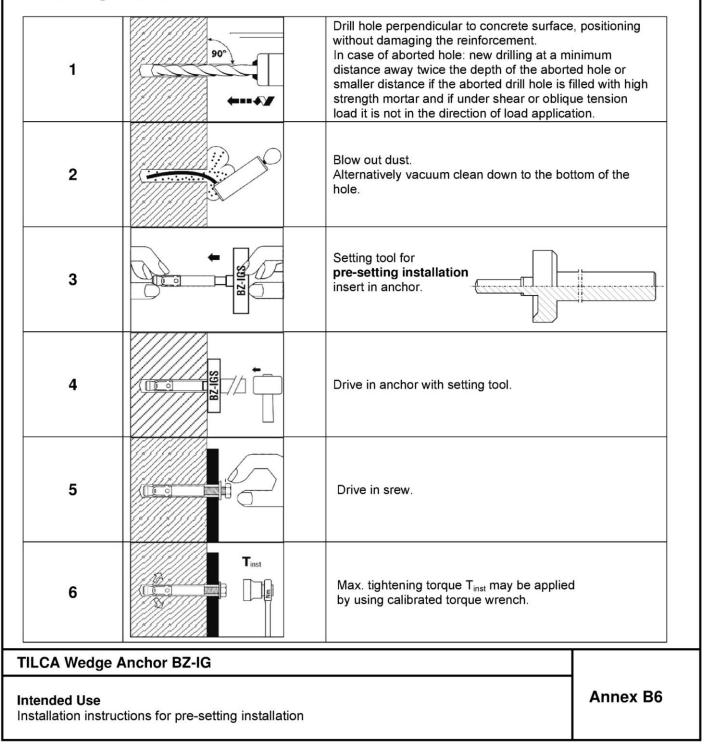
Minimum spacings and edge distances BZ-IG Table B5:

Anchor size			M6	M8	M10	M12	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160	
Cracked concrete							
Minimum spacing	S _{min}	[mm]	50	60	70	80	
	for $c \ge$	[mm]	60	80	100	120	
Minimum edge distance	C _{min}	[mm]	50	60	70	80	
	for s \geq	[mm]	75	100	100	120	
Non-cracked concrete							
Minimum spacing	S _{min}	[mm]	50	60	65	80	
	for $c \ge$	[mm]	80	100	120	160	
Minimum edge distance	C _{min}	[mm]	50	60	70	100	
	for s \geq	[mm]	115	155	170	210	
Fire exposure from one side							
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	e	
Minimum edge distance	C _{min,fi}	[mm]		See normal	temperature	9	
Fire exposure from more than one side							
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	e	
Minimum edge distance	C _{min.fi}	[mm]	≥ 300 mm				

TILCA Wedge Anchor BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances



Installation instructions BZ-IG

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

Installation	instructions BZ-IG		
Through-se	etting installation		
1	90°	Drill hole perpendicular to concrete surface without damaging the reinforcement. In case of aborted hole: new drilling at a m distance away of twice the depth of the abo smaller distance if the aborted drill hole is f strength mortar and if under shear or oblig it is not in the direction of load application.	inimum orted hole or illed with high
2		Blow out dust. Alternatively vacuum clean down to the bo hole.	ttom of the
3	► BZ-IGS	Setting tool for through-setting installation insert in anchor.	
4	BZ-IGS	Drive in anchor with setting tool.	
5		Drive in screw.	
6		Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.	3
TILCA Wedge	Anchor BZ-IG		
Intended Use			Annex B7

Installation instructions for through-setting installation

Table C1: Characteristic val cracked concret						plated,			
design method A		•				CEN/TS	5 1992-4	1	
Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure									
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ́Ms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)			
Increasing factor for $N_{Rk,p}$ and $N_{Rk,p,red}$	ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,1}$	5	•	-
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	$\mathbf{h}_{\mathrm{ef,red}}$	[mm]	35 ²⁾	40	50	65			
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7,2		_	

¹⁾ Pull-out is not decisive.
 ²⁾ Use restricted to anchoring of structural components statically indeterminate.

TILCA	Wedge	Anchor	ΒZ	plus
-------	-------	--------	----	------

Performance
Characteristic values for tension loads, BZ plus zinc plated
cracked concrete, static and quasi-static action,
design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C2: Characteristic value cracked concrete, design method A ac	static and	l quas	i-static a	ction,		-	92-4	
Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		. 1	,5	•	1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)		
Increasing factor for $N_{Rk,p,red}$	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65		
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]		*		7,2	-	

¹⁾ Pull-out is not decisive.

²⁾ Use restricted to anchoring of structural components statically indeterminate.

TILCA	Wedge	Anchor	ΒZ	plus
-------	-------	--------	----	------

Performance
Characteristic values for tension loads, BZ plus A4 / HCR,
cracked concrete, static and quasi-static action,
design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C3: Characteristic non-cracked design method	concrete, st	atic a	nd quas	si-static	action,	•	5 1992-4	Ļ	
Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0		1	
Steel failure	12 1100		1						
Characteristic tension resistance	e N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1	1,5	1,6	1	,5
Pull-out	1110		,			,	,		,
Standard anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth				1	1	1		1	1
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)			
Splitting For the proof against split	ting failure N ⁰ _{Rk.c} h	as to be	replaced b	y N ⁰ _{Rk.sp} witl	h considera	tion of the n	nember thic	kness	
Standard anchorage depth	• • • • • •		•						
Splitting for standard thickness the values s _{cr.sp} and c _{cr.sp} may be line								ed;	
Standard thickness of concrete	h _{min,1} ≥		100	120	140	170	200	230	250
Case 1									
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	1)	50
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]			1	3 h _{ef}			
Case 2			1						
Characteristic resistance	N10	FL-NIT	40	40	05	25	1)	1)	1)
in non-cracked concrete C20/25		[kN]	12	16	25	35	ŕ	,	,
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)			4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Splitting for minimum thickness	s of concrete m								
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35			
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		5	l h _{ef}				
Reduced anchorage depth	Scr,sp (- 2 Ccr,sp)	fund			rier		V	V	/
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		1 /	1 /
Characteristic resistance					1)	1)			
in non-cracked concrete C20/25		[kN]	7,5	9	.,	· ·			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300			
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0}$	5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}		35 ²⁾	40	50	65			
Factor acc. to CEN/TS 1992-4	k _{ucr}					10,1	-	~	-
 ¹⁾ Pull-out is not decisive. ²⁾ Use restricted to anchoring of struc 	tural components		/ indetermin	nate.					
TILCA Wedge Anchor BZ	Z plus								
Performance Characteristic values for tens non-cracked concrete, stati design method A according to	c and quasi-sta	tic act	tion,		2-4			Anne	« C3

8.06.01-159/15

Table C4: Characteristic v non-cracked co design method	oncrete, statio	c and	quasi-st	atic actio	on,	TS 1992	2-4	
Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0		
Steel failure	12 - 11100							
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1	,5		1,68	1,5
Pull-out	1113				, -		.,	-,-
Standard anchorage depth								
Characteristic resistance in			40	10	05	0.5	1)	1)
non-cracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	.,	.,
Reduced anchorage depth								
Characteristic resistance in	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)		
non-cracked concrete C20/25								
Splitting For the proof against splittin	ig failure N° _{Rk,c} has to	be repla	aced by N [°] _{Rk}	_{,sp} with consi	deration of t	ne member	thickness	
Standard anchorage depth		(
Splitting for standard thickness o the values s _{cr.sp} and c _{cr.sp} may be linear							pplied;	
Standard thickness of concrete	h _{min,1} ≥		100	120	140	160	200	250
Case 1	rimin,1 =	[]	100	120	140	100	200	200
Characteristic resistance in	0							
non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]			3	h _{ef}		
Case 2								
Characteristic resistance in	N ⁰ _{Rk,sp}	[LN]	12	16	25	35	1)	1)
non-cracked concrete C20/25		[kN]						
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	230	250	280	400	440	500
Splitting for minimum thickness	of concrete mem	ber		I			1	
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in	N ⁰ _{Rk,sp}	[kN]	12	16	25	35		
non-cracked concrete C20/25 Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		5	l h _{ef}			
Reduced anchorage depth	S _{cr,sp} (- 2 C _{cr,sp})	funul		5	llef			/
Minimum thickness of concrete		[]	80	80	100	140		1
Characteristic resistance in	h _{min,3} ≥	[mm]	80	80			+	/
non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	1}	1)		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300	1/	
Increasing factor					(f.,	0,5	V	V
for $N_{Rk,p(red)}$ and $N^0_{Rk,sp}$	ψc	[-]			$\left(\frac{J_{ck,cu}}{25}\right)$			
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]				10,1		
Pull-out is not decisive.			1			, •		
⁾ Use restricted to anchoring of structu	ral components stati	cally inde	eterminate.					
TILCA Wedge Anchor BZ	plus						-	
Performance Characteristic values for tension non-cracked concrete, static design method A according to	and quasi-static	action,	-	1992-4			Ann	ex C4

8.06.01-159/15

Table C5: Characteristic values for shear loads, BZ plus,cracked and non-cracked concrete, static or quasi static action,design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size				M8	M10	M12	M16	M20	M24	M27
Installation safety fac	tor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure withou	ut lever arm, Steel	zinc pla	ted							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility		k ₂	[-]				1,0			
Partial safety factor	artial safety factor γ_{Ms} [-]				1,	25		1,33	1,25	1,25
Steel failure withou	ut lever arm, Stain	less stee	el A4, H	ICR			_		_	_
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Factor for ductility	Factor for ductility k ₂						1,0			
Partial safety factor γ_{Ms}			[-]		1,	25		1,4	1,25	\bigvee
Steel failure with le	ever arm, Steel zin	c plated								
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor γ_{Ms}			[-]		1,	25		1,33	1,25	1,25
Steel failure with le	ever arm, Stainless	s steel A	4, HCR							
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	200	454	785,4	
Partial safety factor		γMs	[-]		1,	25		1,4	1,25	
Concrete pry-out fa	ailure									
Factor k acc. to ETA or k_3 acc. to CEN/TS		k ₍₃₎	[-]		2,	4			2,8	
Concrete edge fail	ure							_		
Effective length of anchor in shear	Steel zinc plated	ا _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	ا _f	[mm]	46	60	70	85	100	125	
Effective length of anchor in shear	Steel zinc plated	$I_{f,red}$	[mm]	35	40	50	65		1 /	1 /
loading with h _{ef,red}	Stainless steel A4, HCR	$I_{\rm f,red}$	[mm]	35	40	50	65			
Outside diameter of	anchor	d _{nom}	[mm]	8	10	12	16	20	24	27

TILCA Wedge Anchor BZ plus

Performance Characteristic values for shear loads, BZ plus, cracked and non-cracked concrete, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Deutsches Institut für Bautechnik

Table C6: Characteristic resistance for seismic loading, BZ plus, standard anchorage depth,performance category C1 and C2, design according to TR045

Tension loads						
Anchor size			M10	M12	M16	M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1	,0	
Steel failure, steel zinc pl	ated					
Characteristic resistance C1	$N_{Rk,s,seis,C1}$	[kN]	27	40	60	86
Characteristic resistance C2	$N_{Rk,s,seis,C2}$	[kN]	27	40	60	86
Partial safety factor	γMs,seis	[-]	1,53	1	1,6	
Steel failure, stainless ste	eel A4, HCR					
Characteristic resistance C1	$N_{Rk,s,seis,C1}$	[kN]	27	40	64	108
Characteristic resistance C2	$N_{Rk,s,seis,C2}$	[kN]	27	40	64	108
Partial safety factor	γMs,seis	[-]		1,5		1,68
Pull-out						
Characteristic resistance C1	$N_{Rk,p,seis,C1}$	[kN]	9	16	25	36
Characteristic resistance C2	$N_{Rk,p,seis,C2}$	[kN]	3,6	10,2	13,8	22,4

Shear loads										
Steel failure without lever arm, Steel zinc plated										
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69				
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2				
Partial safety factor	γ̃Ms,seis	[-]	1,25 1,33							
Steel failure without lev	ver arm, Stainl	ess st	teel A4, HCR							
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69				
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2				
Partial safety factor	γ _{Ms,seis}	[-]	1,25 1,4							

TILCA Wedge Anchor BZ plus

Performance

Characteristic resistance for **seismic loading**, BZ plus, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045

English translation prepared by DIBt

	aracteristi andard an sign acc. t	chorag	e dept	h, crack	ed and r	non-crac								
Anchor size				M8	M10	M12	M16	M20	M24	M27				
Tension load						1	I	1		I				
Steel failure														
Steel zinc plate	ed													
	R30			1,4	2,2	3,2	6,0	9,4	13,6	17,6				
Characteristic	R60	- N	[LN]]	1,1	1,8	2,8	5,2	8,2	11,8	15,3				
resistance	R90	- N _{Rk,s,fi}	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0				
	R120	-		0,7	1,2	2,2	4,0	6,3	9,1	11,8				
Stainless steel	A4, HCR													
	R30			3,8	6,9	11,5	21,5	33,5	48,2					
Characteristic	R60	- NI	[kN]	2,9	5,2	8,6	16	25,0	35,9] /				
resistance	R90	– N _{Rk,s,fi}	[KIN]	2,0	3,5	5,6	10,5	16,4	23,6					
	R120			1,6	2,7	4,2	7,8	12,1	17,4	\bigvee				
Shear load														
Steel failure wi	thout lever	arm												
Steel zinc plate	ed													
	R30	- - V _{Rk,s,fi}		1,6	2,6	3,8	7,0	11	16	20,6				
Characteristic	R60		V _{Rk,s,fi}	[kN]	1,5	2,5	3,6	6,8	11	15	19,8			
resistance	R90			V Rk,s,fi	V Rk,s,fi	V Rk,s,fi	V Rk,s,fi	¥ Rk,s,fi	[KIN]	1,2	2,1	3,5	6,5	10
	R120			1,0	2,0	3,4	6,4	10	14	18,6				
Stainless steel	A4, HCR													
	R30	_		3,8	6,9	11,5	21,5	33,5	48,2					
Characteristic	R60	- V _{Rk,s,fi}	[kN]	2,9	5,2	8,6	16	25,0	35,9					
resistance	R90	V Rk,s,fi	[[[]]]	2,0	3,5	5,6	10,5	16,4	23,6					
	R120			1,6	2,7	4,2	7,8	12,1	17,4	\bigvee				
Steel failure wi	th lever arn	n												
Steel zinc plate	ed													
	R30	_		1,7	3,3	5,9	15	29	50	75				
Characteristic	R60	- M ⁰ _{Rk,s,fi}	[Nm]	1,6	3,2	5,6	14	28	48	72				
resistance	R90	IVI Rk,s,fi	[ixiii]	1,2	2,7	5,4	14	27	47	69				
	R120			1,1	2,5	5,3	13	26	46	68				
Stainless steel	A4, HCR													
	R30	_		3,8	9,0	17,9	45,5	88,8	153,5					
Characteristic	R60	− M ⁰ _{Rk,s,fi}	[Nm]	2,9	6,8	13,3	33,9	66,1	114,3					
resistance	R90	IVI Rk,s,fi	[INIII]	2,1	4,5	8,8	22,2	43,4	75,1					
	R120			1,6	3,4	6,5	16,4	32,1	55,5					

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive $N_{Rk,p}$ in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by $N_{Rk,c}^0$.

TILCA Wedge Anchor BZ plus

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	Ν	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	δ_{N^∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	Ν	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	δ _{N∞}	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension l	oads C2								
Displacements for DLS δ_1	,seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		
Displacements for ULS δ_1	l,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Stainless steel A4, HCR									
Tension load in cracked concrete	Ν	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	/
Displacement	δ _{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	
	δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	/
Displacement	δ _{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	
	δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension l	oads C2								/
Displacements for DLS δ	,seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		/
	l,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Reduced anchorage depth			*					·	r
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0	/		1 /
Displacement	δ _{N0}	[mm]	0,8	0,7	0,5	1,0	/		
	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1	V		
Tension load in non-cracked concrete	N	[kN]	3,7	4,3	8,5	12,6	/	/	1
Displacement	δ _{N0}	[mm]	0,1	0,2	0,2	0,2			
	δ _{N∞}	[mm]	0,7	0,7	0,7	0,7	1/	/	

TILCA Wedge Anchor BZ plus

Performance Displacements under tension load

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dep	th				-				_
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	δ_{V^∞}	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seism	ic shear	loads C	2						
	is,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS $\delta_{V,se}$	is,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	
	δ_{V^∞}	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seism	ic shear	loads C	2						
IUI DES	is,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS $\delta_{V,se}$	is,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Reduced anchorage dept	h								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5] /		
· · · · · · · · · · · · · · · · · · ·	$\delta_{V\infty}$	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3] /		
	$\delta_{V\infty}$	[mm]	2,9	3,6	5,9	6,4	1/		/

TILCA Wedge Anchor BZ plus

Performance

Displacements under shear load

Table C10: Characteristic values for tension loads, BZ-IC, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4 Anchor size M6 **M**8 M10 M12 Installation safety factor 1,2 [-] $\gamma_2 = \gamma_{inst}$ Steel failure Characteristic tension resistance, $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 16,1 22.6 26,0 56.6 steel zinc plated Partial safety factor [-] 1,5 γMs Characteristic tension resistance, [kN] 14,1 25,6 35,8 59,0 N_{Rk.s} stainless steel A4, HCR Partial safety factor [-] 1.87 γMs **Pull-out failure** Characteristic resistance in 9 [kN] 5 12 20 N_{Rk,p} cracked concrete C20/25 0,5 (fck,cube) Increasing factor ψc [-] Concrete cone failure Effective anchorage depth 45 65 h_{ef} [mm] 58 80 Factor acc. to CEN/TS 1992-4 k_{cr} [-] 7,2

TILCA Wedge Anchor BZ-IG

Performance Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

able C11: Characteristic valu non-cracked con design method A a	crete, static a	and qua	asi-static a	,	/TS 1992-4	4		
Anchor size			M6	M8	M10	M12		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1,	2			
Steel failure								
Characteristic tension resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6		
Partial safety factor	γMs	[-]		1	,5			
Characteristic tension resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0		
Partial safety factor	γ́Ms	[-]	1,87					
Pull-out								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30		
Splitting (N ⁰ _{Rk,c} has to be replace	ed by $N^0_{Rk,sp.}$ The hi	gher resis	tance of Case 1	and Case 2 ma	y be applied.)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160		
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		3	h _{ef}			
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	12	16	20	30		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}			
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}^0$	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80		
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]		10),1			

TILCA Wedge Anchor BZ-IG

Performance Characteristic values for tension loads, EZ-IG, non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			M6	M8	M10	M12	
Installation safety factor	γ2 = γinst	[-]		1	,0		
BZ-IG, steel zinc plated	72 7.000						
Steel failure without lever arm, Installat	ion type \	/					
Characteristic shear resistance	V _{Rk.s}	[kN]	5,8	6,9	10,4	25,8	
Steel failure without lever arm, Installat		<u> </u>	-		-	-	
Characteristic shear resistance	V _{Rk.s}	[kN]	5,1	7,6	10,8	24,3	
Steel failure with lever arm, Installation	type V						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6	
Steel failure with lever arm, Installation							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	36,0	53,2	76,0	207	
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]		. 1,	25		
Factor of ductility	k ₂	[-]		1	,0		
BZ-IG, stainless steel A4, HCR							
Steel failure without lever arm, Installat	ion type \	/					
Characteristic shear resistance	V _{Rk,s}	[kN]	5,7	9,2	10,6	23,6	
Partial safety factor	γMs	[-]		. 1,	25		
Steel failure without lever arm, Installat	ion type I	<u>,</u>					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6	
Partial safety factor	γMs	[-]		. 1,	25		
Steel failure with lever arm, Installation	type V						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6	
Partial safety factor	γMs	[-]		. 1,	56		
Steel failure with lever arm, Installation	type D						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2	
Partial safety factor	γMs	[-]		1,	25		
Factor of ductility	k ₂	[-]		1	,0		
Concrete pry-out failure							
Factor k acc. to ETAG 001, Annex C or k_3 acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,5	1,5	2,0	2,0	
Concrete edge failure							
Effective length of anchor in shear loading	۱ _f	[mm]	45	58	65	80	
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	

Performance

Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Table C13: Characteristic values for tension and shear load under fire exposure, BZ-IC cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D Anchor size M6 M8 M10 M12 **Tension load** Steel failure Steel zinc plated R30 0,7 1,4 2,5 3,7 R60 0,6 1,2 2,0 2,9 Characteristic $N_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] resistance R90 0,5 0,9 1,5 2,2 R120 0.4 0.8 1.3 1.8 Stainless steel A4, HCR R30 2,9 5,4 8.7 12,6 R60 1,9 3,8 9,2 6,3 Characteristic N_{Rk,s,fi} [kN] resistance R90 1,0 2,1 3.9 5,7 R120 0.5 1.3 2.7 4.0 Shear load Steel failure without lever arm Steel zinc plated R30 0,7 1,4 2,5 3,7 1,2 2,9 Characteristic R60 0,6 2,0 $V_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] resistance R90 0,5 0,9 1,5 2,2 1.3 R120 0,4 0,8 1.8 Stainless steel A4, HCR R30 2,9 5,4 8,7 12,6 R60 1,9 3,8 6,3 9,2 Characteristic $V_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] resistance R90 1,0 3,9 5,7 2,1 R120 0,5 2,7 1,3 4,0 Steel failure with lever arm Steel zinc plated R30 5.7 0.5 1.4 3.3 Characteristic R60 0,4 1,2 2.6 4.6 $M^0_{Rk,s,fi}$ [Nm] resistance R90 0,4 2,0 3,4 0,9 R120 0,3 0,8 1,6 2,8 Stainless steel A4, HCR 2.2 19,6 R30 5.5 11.2 Characteristic R60 1,5 3,9 8,1 14,3 $M^0_{Rk,s,fi}$ [Nm] resistance R90 0,7 2,2 5,1 8,9 R120 0,4 1,3 3,5 6,2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

TILCA Wedge Anchor BZ-IG

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **BZ-IG** cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Table C14: Displacements under tension load, BZ-IG

Anchor size			M6	M8	M10	M12
Tension load in cracked concrete	Ν	[kN]	2,0	3,6	4,8	8,0
Displacements	δ _{N0}	[mm]	0,6	0,6	0,8	1,0
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	Ν	[kN]	4,8	6,4	8,0	12,0
Displacements	δ _{N0}	[mm]	0,4	0,5	0,7	0,8
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4

Table C15: Displacements under shear load, BZ-IG

Anchor size			M6	M8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Dianlacomente	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
Displacements	δ _{V∞}	[mm]	4,2	4,4	3,8	5,3

TILCA Wedge Anchor BZ-IG

Performance Displacements under tension load and under shear load