

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0364 of 7 May 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

JCP Option 1 Throughbolt and Option 1 Throughbolt ITS

Torque controlled expansion anchor for use in concrete

Hexstone Ltd. T/A JCP Construction Products Opal Way Stone Business Park, Stone Staffordshire ST 15 0SW . GROSSBRITANNIEN

Plant 2, Germany

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

English translation prepared by DIBt

Page 2 of 32 | 7 May 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 32 | 7 May 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The JCP Option 1 Throughbolt and Option 1 Throughbolt ITS is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type Option 1 Throughbolt with external thread, washer and hexagon nut, sizes M8 to M27.
- Anchor type Option 1 Throughbolt ITS S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type Option 1 Throughbolt ITS SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type Option 1 Throughbolt ITS B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for Option 1 Throughbolt	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for Option 1 Throughbolt	See Annex C 6
Characteristic resistance for static and quasi static action for Option 1 Throughbolt ITS	See Annex C 10 to C 12
Displacements under tension loads for Option 1 Throughbolt	See Annex C 8
Displacements under shear loads for Option 1 Throughbolt	See Annex C 9
Displacements under tension and shear loads for Option 1 Throughbolt ITS	See Annex C 14

Page 4 of 32 | 7 May 2015

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for Option 1 Throughbolt	See Annex C 7
Resistance to fire for Option 1 Throughbolt ITS	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

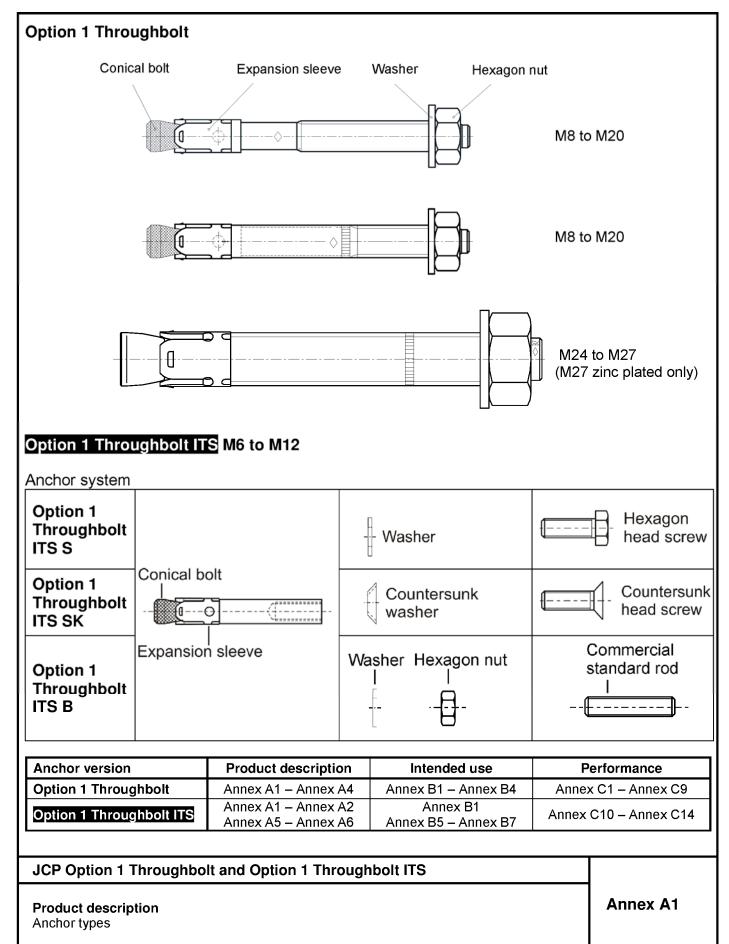
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

Page 5 of 32 | 7 May 2015

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

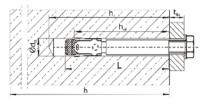

Issued in Berlin on 7 May 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:*Baderschneider

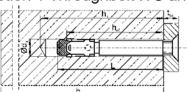
electronic copy of the eta by dibt: eta-13/0364


English translation prepared by DIBt

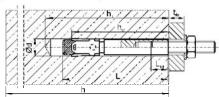
Intended use Option 1 Throughbolt



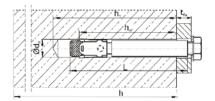
Intended use Option 1 Throughbolt ITS

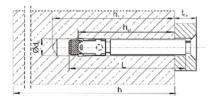

Installation type V pre-setting installation

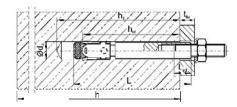
pre-set anchor body, the fixture bears on the screw or thread rod only


Option 1 Throughbolt ITS S consisting of Option 1 Throughbolt ITS and S-IG

Option 1 Throughbolt ITS SK consisting of Option 1 Throughbolt ITS and SK-IG

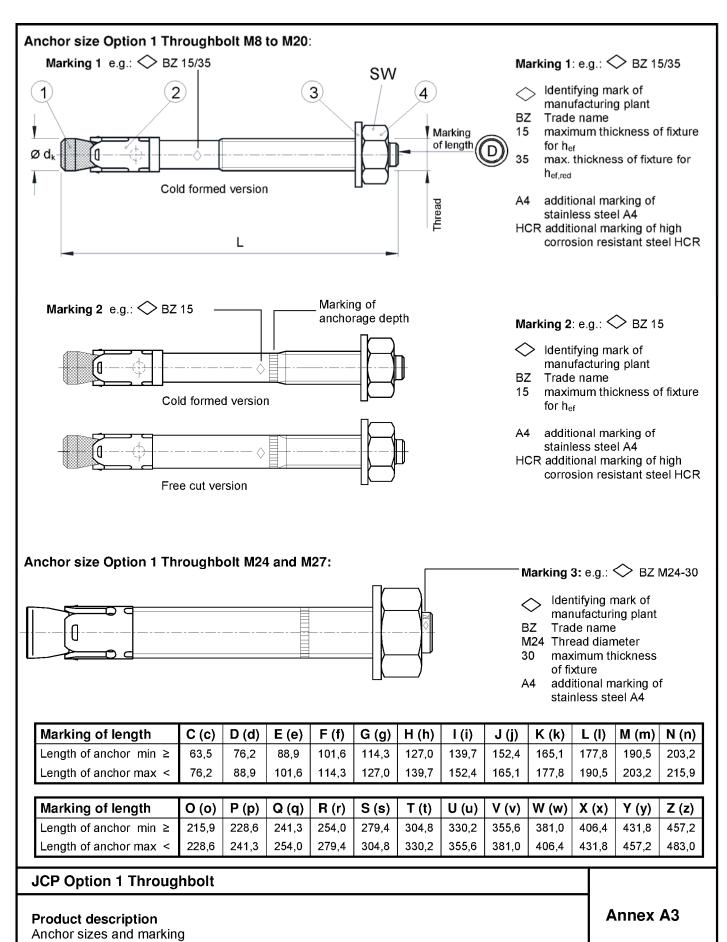



Option 1 Throughbolt ITS B consisting of Option 1 Throughbolt ITS and MU-IG



Installation type D through-setting installation

the anchor is set through the fixture, the fixture bears on the conical bolt Option 1 Throughbolt ITS



JCP Option 1 Throughbolt and Option 1 Throughbolt ITS

Product description Installation situation Annex A2

electronic copy of the eta by dibt: eta-13/0364

Table A1: Anchor dimensions Option 1 Throughbolt

	Anchor	size		M8	M10	M12	M16	M20	M24	M27
1	Conical I	oolt	Thread	M8	M10	M12	M16	M20	M24	M27
			Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Length	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	
	anchor	red. anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}			
2	2 Expansion sleeve see Table A2									
3	3 Washer					s	ee Table A	.2		
4	4 Hexagon nut SW			13	17	19	24	30	36	41

Dimensions in mm

Table A2: Materials Option 1 Throughbolt

No.	Part	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401	Steel acc. to EN 10139-12:1997	Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088:2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated

JCP Option 1 Throughbolt	
Product description Dimensions and materials	Annex A4

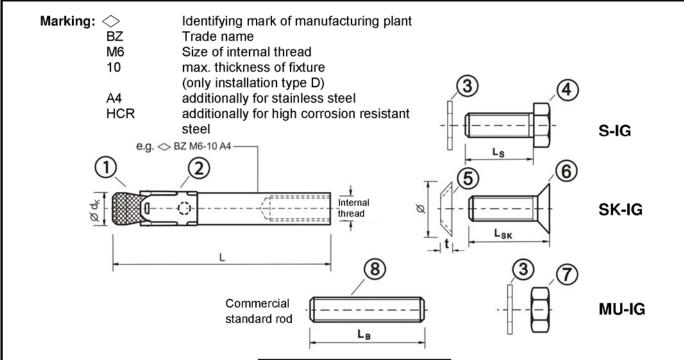


Table A3: Anchor dimensions Option 1 Throughbolt ITS

No.	Anchor size		М6	M8	M10	M12
	Conical bolt with Internal thread	$\varnothing d_k$	7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ıble A4	
3	Washer			see ta	ible A4	
	Hexagon head scre	width across flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D L _s		14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk	Ø countersink	17,3	21,5	25,9	30,9
Ľ	washer	t	3,9	5,0	5,7	6,7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Installation type V	L _{sk}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D	L _{sk}	16 to 20	20 to 25	25	30
7	Hexagon nut	width across flats	10	13	17	19
8	4)	type VL _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
L	standard rod ¹⁾	type D L _B ≥	21	28	34	41

1) acc. to specifications (Table A4)

Dimensions in mm

JCP Option 1 Throughbolt ITS

Product description

Anchor parts, marking and dimensions

Annex A5

Z15068.15

electronic copy of the eta by dibt: eta-13/0364

English translation prepared by DIBt

Table A4: Materials Option 1 Throughbolt ITS

No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt Option 1 Throughbolt ITS with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve Option 1 Throughbolt ITS	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009

JCP Option 1 Throughbolt ITS	
Product description Materials	Annex A6

Specifications of intended use

Option 1 Throughbolt	M8	M10	M12	M16	M20	M24	M27
Static or quasi-static action				✓			
Seismic action (Categorie C1 + C2) 1) 2)		✓	✓	✓	✓		
Reduced anchorage depth 2)	✓	✓	✓	✓			
Fire exposure 1)				✓			
Cracked and non-cracked				✓			

Option 1 Throughbolt ITS	M6	M8	M10	M12
Static or quasi-static action		١	/	
Seismic action				
Fire exposure		,	/	
Cracked and non-cracked		,	/	

¹⁾ only for standard anchorage depth

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4: 2009, Annex D
 (It must be ensured that local spalling of the concrete cover does not occur)

JCP Option 1 Throughbolt and Option 1 Throughbolt ITS Intended use Specifications Annex B1

²⁾ only cold formed anchors acc. to Annex A3

Table B1: Installation parameters Option 1 Throughbolt

Anchor size				М8	M10	M12	M16	M20	M24	M27
Nominal drill	Nominal drill hole diameter d ₀ [mm]		8	10	12	16	20	24	28	
Cutting diame	eter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	300
torque	A4, HCR	T_{inst}	[Nm]	20	35	50	110	200	290	
Diameter of on the fixed hole in the fixed hole.		$d_f\!\leq\!$	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	
Effective anchorage	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
depth	A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	
Reduced anchorage depth										
Depth of drill hole		$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
	Reduced effective anchorage depth		[mm]	35	40	50	65			

Table B2: Minimum spacings and edge distances, reduced anchorage depth, Option 1
Throughbolt

Anchor size			М8	M10	M12	M16				
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140				
Cracked concrete										
Minimum engoing	S _{min}	[mm]	50	50	50	65				
Minimum spacing	for c ≥	[mm]	60	100	160	170				
Minimum adaa diatanaa	C _{min}	[mm]	40	65	65	100				
Minimum edge distance	for s ≥	[mm]	185	180	250	250				
Non-cracked concrete										
Minimum angaing	S _{min}	[mm]	50	50	50	65				
Minimum spacing	for c ≥	[mm]	60	100	160	170				
Minimum adaa distance	C _{min}	[mm]	40	65	100	170				
Minimum edge distance	for s ≥	[mm]	185	180	185	65				

JCP Option 1 Throughbolt

Intended use

Installation parameters,

Minimum spacings and edge distances for reduced anchorage depth

Annex B2

Table B3: Minimum spacings and edge distances, standard anchorage depth, Option 1 Throughbolt

Anchor size			М8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	member								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete						•			
Minimum spacing	S _{min}	[mm]	40	45	60	60	95	100	125
	for c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete				•	•	•	•		•
Minimum spacing	S _{min}	[mm]	40	45	60	65	90	100	125
	for c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	180
	for s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	
Cracked concrete	•			•	•		•	•	
Minimum spacing	S _{min}	[mm]	40	50	60	60	95	125	
	for c ≥	[mm]	70	75	100	100	150	125	1 /
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	125	
	for s ≥	[mm]	80	90	140	180	200	125	
Non-cracked concrete				•	•				•
Minimum spacing	S _{min}	[mm]	40	50	60	65	90	125	
	for c ≥	[mm]	80	75	120	120	180	125	1 /
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	125	1 /
_	for s ≥	[mm]	100	120	150	150	240	125	1/
Minimum thickness of concrete	member								
Steel zinc plated and stainless	steel A4, H	CR							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140			
Cracked concrete	,-								
Minimum spacing	S _{min}	[mm]	40	45	60	70			1
· · ·	for c ≥	[mm]	70	90	100	160	1 /		/
Minimum edge distance	C _{min}	[mm]	40	50	60	80	1 /		
_	for s ≥	[mm]	80	115	140	180			
Non-cracked concrete						•	•	-	•
Minimum spacing	S _{min}	[mm]	40	60	60	80		/	1
	for c ≥	[mm]	80	140	120	180	1 /		/
Minimum edge distance	C _{min}	[mm]	50	90	75	90	1 /		
	for s ≥	[mm]	100	140	150	200	1/	/	/

Fire exposure from one side	·									
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature							
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature							
Fire exposure from more than	one side									
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature							
Minimum edge distance	C _{min.fi}	[mm]	≥ 300 mm							

Intermediate values by linear interpolation.

JCP Option 1 Throughbolt

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B3

Installation instructions Option 1 Throughbolt

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Check position of nut.
4		Drive in anchor, such that h _{ef} or h _{ef,red} depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A3.
5	Tinst	Max. tightening torque T _{inst} shall be applied by using calibrated torque wrench.

JCP Option 1 Throughbolt	
Intended Use Installation instructions	Annex B4

Installation parameters Option 1 Throughbolt ITS Table B4:

Anchor size			М6	М8	M10	M12	
Effective anchorage depth		h_{ef}	[mm]	45	58	65	80
Drill hole diameter		d ₀	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
Installation mamont		S	[Nm]	10	30	30	55
Installation moment, zinc plated steel	T_{inst}	SK	[Nm]	10	25	40	50
Zine plated steel	-	В	[Nm]	8	25	30	45
Installation manage		S	[Nm]	15	40	50	100
Installation moment, stainless steel A4, HCR	T _{inst}	SK	[Nm]	12	25	45	60
Stalliless steel A4, HOIX		В	[Nm]	8	25	40	80
Installation type V (Pre-setting in	nstallatio	n)					
Diameter of clearance hole in the t	ixture	$d_f \le$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-set	ting insta	allation)					
Diameter of clearance hole in the t	ixture	$d_f \le$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.
2) see Annex A2

Minimum spacings and edge distances Option 1 Throughbolt ITS Table B5:

Anchor size			М6	M8	M10	M12
Minimum thickness of concrete member	h_{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	for c ≥	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	for s ≥	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	for c ≥	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]	;	See normal	temperatur	е
Minimum edge distance	C _{min,fi}	[mm]	;	See normal	temperatur	е
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperatur	
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm	

JCP Option 1 Throughbolt ITS

Intended use

Installation parameters, minimum spacings and edge distances

Annex B5

Z15068.15

electronic copy of the eta by dibt: eta-13/0364

8.06.01-21/15

Installation instructions Option 1 Throughbolt ITS

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

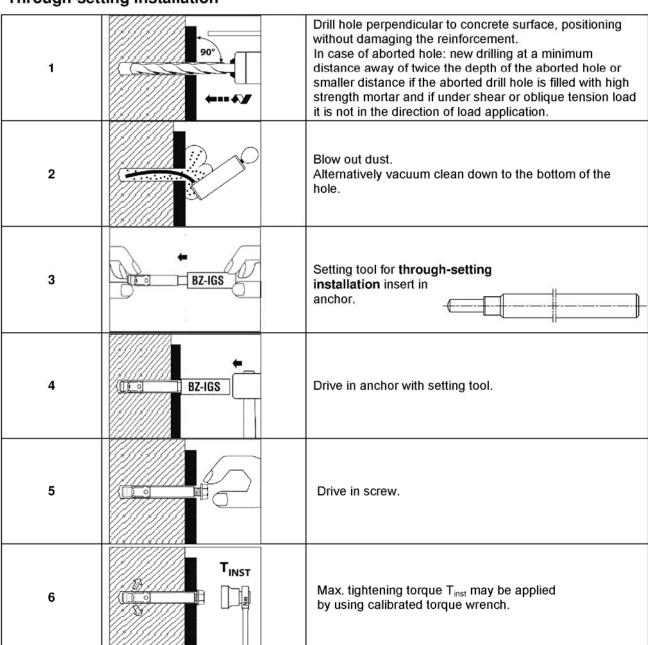
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

5.00		55
1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3	\$501-ZB	Setting tool for pre-setting installation insert in anchor.
4	\$100 PM	Drive in anchor with setting tool.
5		Drive in srew.
6	Tinst	Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.

JCP Option 1 Throughbolt ITS

Intended Use


Installation instructions for pre-setting installation

Annex B6

Installation instructions Option 1 Throughbolt ITS

Through-setting installation

JCP Option 1 Throughbolt ITS

Intended Use

Installation instructions for through-setting installation

Annex B7

Table C1: Characteristic values for **tension loads**, Option 1 Throughbolt **zinc plated**, **cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			14112	1,0	WIZO	1012 1	14121
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ̃Ms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth						•			
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)			
Increasing factor for N _{Rk,p} and N _{Rk,p,red}	ψc	[-]		•		$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$	5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
Factor according to CEN/TS 1992-4	k _{cr}	[-]			•	7,2			-

¹⁾ Pull-out is not decisive.

JCP Option 1 Throughbolt Performance Characteristic values for tension loads, Option 1 Throughbolt zinc plated cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4 Annex C1

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C2: Characteristic values for **tension loads**, Option 1 Throughbolt **A4 / HCR**, **cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

				T	I	l	T	l
Anchor size			М8	M10	M12	M16	M20	M24
Installation safety factor	γ2 = γinst	[-]				1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γ́ M s	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{\text{Rk},p,\text{red}}$	[kN]	5	7,5	1)	1)		
Increasing factor for $N_{Rk,p \text{ and }} N_{Rk,p,\text{red}}$	ψς	[-]			$\left(\frac{f_{ci}}{}\right)$	25 0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor according to CEN/TS 1992-4	k _{cr}	[-]				7,2		

¹⁾ Pull-out is not decisive.

JCP Option 1 Throughbolt Performance Characteristic values for tension loads, Option 1 Throughbolt A4 / HCR, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4 Annex C2

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for **tension loads**, Option 1 Throughbolt **zinc plated**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ2 = γinst	[-]				1,0			
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)			
Splitting For the proof against splitti	ng failure N ⁰ _{Rk,c} h	as to be	replaced b	y N ⁰ _{Rk,sp} with	n considera	tion of the m	nember thick	kness	
Standard anchorage depth									
Splitting for standard thickness the values $s_{cr,sp}$ and $c_{cr,sp}$ may be linea								ed;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1									
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	1)	50
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]				3 h _{ef}			
Case 2									
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	1)	1)	1)
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Splitting for minimum thickness	of concrete m	ember							
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			1 /
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]	12	16	25	35			
in non-cracked concrete C20/25 Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})				h _{ef}		/		
Reduced anchorage depth	Scr,sp (- Z Ccr,sp)	[[iiiiii]			Hef		V	V	V
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		1 /	1 ,
Characteristic resistance		-				1)	/		/
in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7,5	9	1)	"			
Spacing (edge distance)	S _{cr,sp} (= 2 C _{cr,sp})	[mm]	200	200	250	300	V		
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψς	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$:		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
	31,100		l .	1	1	1			

¹⁾ Pull-out is not decisive.

JCP Option 1 Throughbolt

Performance

Characteristic values for **tension loads**, Option 1 Throughbolt **zinc plated**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Annex C3

Use restricted to anchoring of structural components statically indeterminate.

Table C4: Characteristic values for **tension loads**, Option 1 Throughbolt **A4 / HCR**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			М8	M10	M12	M16	M20	M24
Installation safety factor	γ ₂ = γinst	[-]				1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1	,5		1,68	1,5
Pull-out							•	
Standard anchorage depth								
Characteristic resistance in	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)
non-cracked concrete C20/25	I NRK,p	[KIV]	12	10				
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)		
Splitting For the proof against splittin	g failure N ⁰ _{Rk,c} has to	be repla	aced by N ⁰ _{Rk}	_{sp} with consi	deration of t	he member t	thickness	
Standard anchorage depth	- ,							
Splitting for standard thickness o the values $s_{\alpha,sp}$ and $c_{\alpha,sp}$ may be linearly							pplied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1				•			•	
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]			3	h _{ef}		
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	1)	1)
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	230	250	280	400	440	500
Splitting for minimum thickness of	of concrete mem	oer						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		/
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35		
Spacing (edge distance)	S _{cr,sp} (= 2 c _{cr,sp})	[mm]		5	h _{ef}		V	
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		/
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	1)	1)		
Spacing (edge distance)	S _{cr,sp} (= 2 C _{cr,sp})	[mm]	200	200	250	300		
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψc	[-]		•	$\left(\frac{f_{ck,ci}}{25}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Reduced alloholage depth	riet,red i	[00	,	00	, 00		

¹⁾ Pull-out is not decisive.

JCP Option 1 Throughbolt

Performance

Characteristic values for **tension loads**, Option 1 Throughbolt **A4** / **HCR**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Annex C4

Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for **shear loads**, Option 1 Throughbolt, **cracked** and **non-cracked concrete**, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size				М8	M10	M12	M16	M20	M24	M27
Installation safety fac	tor	γ2 = γinst	[-]				1,0			
Steel failure withou	ut lever arm, Steel	zinc pla	ted							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility		k ₂	[-]				1,0			
Partial safety factor		γMs	[-]		1,:	25		1,33	1,25	1,25
Steel failure withou	ut lever arm, Stain	less stee	el A4, H	ICR						
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Factor for ductility		\mathbf{k}_2	[-]				1,0			
Partial safety factor		γMs	[-]		1,3	25		1,4	1,25	
Steel failure with lever arm, Steel zinc plated										
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor		γ̃Ms	[-]	1,25			1,33	1,25	1,25	
Steel failure with le	ever arm, Stainles	s steel A	4, HCR							
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	200	454	785,4	
Partial safety factor		γмѕ	[-]	1,25			1,4	1,25		
Concrete pry-out fa	ailure									
Factor k acc. ETAG k ₃ acc. CEN/TS 199		k ₍₃₎	[-]		2,	4			2,8	
Concrete edge faile	ure									
Effective length of anchor in shear	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	l _f	[mm]	46	60	70	85	100	125	
Effective length of anchor in shear	Steel zinc plated	$I_{\rm f,red}$	[mm]	35	40	50	65			
loading with h _{ef,red}	Stainless steel A4, HCR	$I_{\rm f,red}$	[mm]	35	40	50	65			
Outside diameter of	anchor	d_{nom}	[mm]	8	10	12	16	20	24	27

JCP Option 1 Throughbolt

Performance

Characteristic values for **shear loads**, Option 1 Throughbolt, **cracked** and **non-cracked concrete**, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Annex C5

Table C6: Characteristic resistance for **seismic loading**, Option 1 Throughbolt, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045

Tension loads									
Anchor size			M10	M12	M16	M20			
Installation safety factor	γ2 = γinst	[-]		1,	,0				
Steel failure, steel zinc plated									
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	27	40	60	86			
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	27	40	60	86			
Partial safety factor	γ̃Ms,seis	[-]	1,53	1,53 1,5					
Steel failure, stainless ste	eel A4, HCR								
Characteristic resistance C1	N _{Rk,s,scis,C1}	[kN]	27	40	64	108			
Characteristic resistance C2	$N_{\text{Rk,s,seis,C2}}$	[kN]	27	40	64	108			
Partial safety factor	γ̃Ms,seis	[-]		1,5		1,68			
Pull-out									
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	9	16	25	36			
Characteristic resistance C2	N _{Rk,p,seis,C2}	[kN]	3,6	10,2	13,8	22,4			

Shear loads											
Steel failure without lever arm, Steel zinc plated											
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	20	27	44	69					
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2					
Partial safety factor	γMs,seis	[-]	[-] 1,25 1,33								
Steel failure without leve	er arm, Stainle	ess st	eel A4, HCR								
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	20	27	44	69					
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2					
Partial safety factor	γ̃Ms,seis	[-]		1,25		1,4					

JCP Option 1 Throughbolt

Performance

Characteristic resistance for **seismic loading**, Option 1 Throughbolt, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045

Annex C6

Table C7: Characteristic values **for tension and shear load** under **fire exposure,** Option 1 Throughbolt, **standard anchorage depth,** cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Anchor size				M8	M10	M12	M16	M20	M24	M27	
Tension load											
Steel failure											
Steel zinc plate	ed										
	R30			1,4	2,2	3,2	6,0	9,4	13,6	17,6	
Characteristic	R60	NI	ILAI1	1,1	1,8	2,8	5,2	8,2	11,8	15,3	
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0	
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8	
Stainless steel	A4, HCR										
	R30			3,8	6,9	11,5	21,5	33,5	48,2		
Characteristic	R60	NI	[LAI]	2,9	5,2	8,6	16	25,0	35,9		
resistance	R90	$N_{Rk,s,fi}$	[kN]	2,0	3,5	5,6	10,5	16,4	23,6		
	R120	•		1,6	2,7	4,2	7,8	12,1	17,4	V	
Shear load											
Steel failure wi	ithout lever	arm									
Steel zinc plate	ed										
•	R30			1,6	2,6	3,8	7,0	11	16	20,6	
Characteristic	R60	- $V_{Rk,s,fi}$	M	FI - A 17	1,5	2,5	3,6	6,8	11	15	19,8
resistance	R90		[kN]	1,2	2,1	3,5	6,5	10	15	19,0	
	R120	•		1,0	2,0	3,4	6,4	10	14	18,6	
Stainless steel	A4, HCR										
	R30			3,8	6,9	11,5	21,5	33,5	48,2		
Characteristic	R60		FI.A.17	2,9	5,2	8,6	16	25,0	35,9	1 /	
resistance	R90	$V_{Rk,s,fi}$	[kN]	2,0	3,5	5,6	10,5	16,4	23,6	1 /	
	R120	•		1,6	2,7	4,2	7,8	12,1	17,4		
Steel failure wi	ith lever arm										
Steel zinc plate	ed										
•	R30			1,7	3,3	5,9	15	29	50	75	
Characteristic	R60		,, ,	1,6	3,2	5,6	14	28	48	72	
resistance	R90	· M ⁰ _{Rk,s,fi}	[Nm]	1,2	2,7	5,4	14	27	47	69	
	R120	•		1,1	2,5	5,3	13	26	46	68	
Stainless steel											
	R30			3,8	9,0	17,9	45,5	88,8	153,5		
Characteristic	R60	0		2,9	6,8	13,3	33,9	66,1	114,3	1 /	
resistance	R90	· M ⁰ _{Rk,s,fi}	[Nm]	2,1	4,5	8,8	22,2	43,4	75,1	1 /	
	R120	•		1,6	3,4	6,5	16,4	32,1	55,5	1/	

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive $N_{Rk,p}$ in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by $N_{Rk,c}^0$.

JCP Option 1 Throughbolt

Performance

Characteristic values for tension and shear load under fire exposure, Option 1 Throughbolt, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D

Annex C7

Table C8: Displaceme	ents under tension l	oad, Option 1 Throughbolt
Table Co. Displaceili	citto allaci tellololi i	oaa, option i imoagnboit

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	$\delta_{\text{N}\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	$\delta_{N\infty}$	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension lo									
Displacements for DLS $$\delta_{\text{N}}$$	seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		
Displacements for ULS $$\delta_{\text{N}}$$	seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	
	$\delta_{N\infty}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	
	$\delta_{N\infty}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension lo	ads C2								
Displacements for DLS δ_{N}	seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		
	seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Reduced anchorage depth									
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0		1 /	1 /
Displacement	δ_{N0}	[mm]	0,8	0,7	0,5	1,0			
	$\delta_{N^{\infty}}$	[mm]	1,2	1,0	0,8	1,1			
Tension load in non-cracked concrete	N	[kN]	3,7	4,3	8,5	12,6	/	/	/
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	1 /		
	$\delta_{N^{\infty}}$	[mm]	0,7	0,7	0,7	0,7			

.ICP	Ontion	1	Throughbolt
JUL	Oblibii		IIII Ougiiboit

Performance

Displacements under tension load

Annex C8

Deutsches
Institut
für
Bautechnik

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage de	pth								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	t v	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	$\delta_{V\infty}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seis	mic shear	loads C	2						
IUI DES	,seis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS δ_{V}	,seis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	t v	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	$\delta_{ extsf{V0}}$	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	
	$\delta_{V\infty}$	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seis	mic shear	loads C	2						
IOI DEO	,seis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7		
Displacements for ULS δ_{V}	,seis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1		
Reduced anchorage de	pth								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	i v	[kN]	6,9	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5			
	$\delta_{V\infty}$	[mm]	3,0	4,7	5,5	5,3		/	
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	t v	[kN]	7,3	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3			
	δ_{V^∞}	[mm]	2,9	3,6	5,9	6,4		/	

	Ontion	1	Throu	ahbolt
JUC	ODUOL		HIIIOU	ulibuli

Performance

Displacements under shear load

Annex C9

Table C10: Characteristic values for **tension loads, Option 1 Throughbolt ITS, cracked concrete,** static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			М6	М8	M10	M12	
Installation safety factor	γ2 = γinst	[-]	1,2				
Steel failure							
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial safety factor	γ́Ms	[-]		1,	,5		
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
Partial safety factor	γMs	[-]	1,87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure		·					
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor according to CEN/TS 1992-4	k _{cr}	[-]		7.	,2		

JCP Option 1 Throughbolt ITS

Performance
Characteristic values for tension loads
Option 1 Through

Characteristic values for tension loads, Option 1 Throughbolt ITS, cracked concrete, static and quasi-static action,

design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Annex C10

electronic copy of the eta by dibt: eta-13/0364

Table C11: Characteristic values for tension loads, Option 1 Throughbolt ITS, non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			М6	M8	M10	M12
Installation safety factor	γ2 = γinst	[-]		1,	2	
Steel failure						
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	γ́Ms	[-]		1	,5	
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	γ̃Ms	[-]		1,	87	•
Pull-out						
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Splitting (N ⁰ _{Rk,c} has to be replace	ed by N ⁰ _{Rk,sp.} The hi	igher resist	ance of Case 1	and Case 2 ma	y be applied.)	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		3	h _{ef}	
Case 2						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		5	h _{ef}	
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]		$\left(\frac{f_{ck,ci}}{25}\right)$	$\frac{ube}{5}$ 0,5	
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor according to CEN/TS 1992	-4 k _{ucr}	[-]		10),1	

JCP Option 1 Throughbolt ITS	
Performance]
Characteristic values for tension loads, Option 1 Throughbolt ITS,	Annex C11
non-cracked concrete, static and quasi-static action,	
design method A according to ETAG 001. Annex C or CEN/TS 1992-4	

Table C12: Characteristic values for shear loads, Option 1 Throughbolt ITS, cracked and non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4

Anchor size			М6	M8	M10	M12	
Installation safety factor	γ2 = γinst	[-]	1,0				
Option 1 Throughbolt ITS, steel zinc p	lated						
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8	
Steel failure without lever arm, Installa	tion type I)			•	•	
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3	
Steel failure with lever arm, Installation	n type V						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6	
Steel failure with lever arm, Installation	n type D				•		
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207	
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γ́мs	[-]		1,	25		
Factor of ductility	k ₂	[-]		1	,0		
Option 1 Throughbolt ITS, stainless st	eel A4, HC	R					
Steel failure without lever arm, Installa	tion type \	/					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6	
Partial safety factor	γ́Ms	[-]	1,25				
Steel failure without lever arm, Installa	tion type [)					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6	
Partial safety factor	γ́Ms	[-]		1,	25		
Steel failure with lever arm, Installation	n type V						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6	
Partial safety factor	γ́Ms	[-]	1,56				
Steel failure with lever arm, Installation	n type D						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	28,2	44,3	69,9	191,2	
Partial safety factor	γ́ M s	[-]	1,25				
Factor of ductility	k ₂	[-]	1,0				
Concrete pry-out failure							
Factor k acc. ETAG 001, Annex C or k ₃ acc. CEN/TS 1992-4	k ₍₃₎	[-]	1,5	1,5	2,0	2,0	
Concrete edge failure				•	1		
Effective length of anchor in shear loading	I _f	[mm]	45	58	65	80	
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	

Performance Characteristic values for shear loads, Option 1 Throughbolt ITS, cracked and non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4 Annex C12

Table C13: Characteristic values for tension and shear load under fire exposure, Option 1
Throughbolt ITS, cracked and non-cracked concrete C20/25 to C50/60,
design acc. to TR 020 or CEN/TS 1992-4, Annex D

Anchor size			М6	М8	M10	M12
Tension load						
Steel failure						
Steel zinc plate	d					
	R30		0,7	1,4	2,5	3,7
Characteristic	R60	, _{fi} [kN]	0,6	1,2	2,0	2,9
resistance	R90 N _{Rk,s}	fi [KIN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel	A4, HCR					
	R30		2,9	5,4	8,7	12,6
Characteristic	R60 N _{Rk,s}	,fi [kN]	1,9	3,8	6,3	9,2
resistance	R90	,fi [KIN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Shear load						
Steel failure wit	hout lever arm					
Steel zinc plate	d					
	R30		0,7	1,4	2,5	3,7
Characteristic	R60 ,	II-NII	0,6	1,2	2,0	2,9
resistance R90	R90	V _{Rk,s,fi} [kN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel	A4, HCR					
	R30		2,9	5,4	8,7	12,6
Characteristic R60	R60 ,,	[LAI]	1,9	3,8	6,3	9,2
resistance	R90 V _{Rk,s}	,fi [kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Steel failure wit	h lever arm					
Steel zinc plate	d					
	R30		0,5	1,4	3,3	5,7
Characteristic	R60 M ⁰ Rk	[NIm]	0,4	1,2	2,6	4,6
	R90	s,fi [Nm]	0,4	0,9	2,0	3,4
	R120		0,3	0,8	1,6	2,8
Stainless steel	A4, HCR					
	R30		2,2	5,5	11,2	19,6
Characteristic	R60	[Nlms]	1,5	3,9	8,1	14,3
resistance	M°s, a l	s,fi [Nm]	0,7	2,2	5,1	8,9
	R120		0,4	1,3	3,5	6,2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Annex C13
A

Table C14: Displacements under tension load, Option 1 Throughbolt ITS

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
I Displacements ——	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4

Table C15: Displacements under shear load, Option 1 Throughbolt ITS

Anchor size		М6	М8	M10	M12	
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
	$\delta_{V^{\infty}}$	[mm]	4,2	4,4	3,8	5,3

JCP Option 1 Throughbolt ITS

Performance
Displacements under tension load and under shear load

Annex C14