

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1038 of 13 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS3

Concrete screw of sizes 8, 10 and 14 for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

16 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", amended version April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and EAD 330011-00-0601 "Adjustable concrete screws", July 2014

ETA-13/1038 issued on 19 September 2014

European Technical Assessment ETA-13/1038

Page 2 of 16 | 13 January 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

2895.15 8.06.01-327/14

European Technical Assessment ETA-13/1038

Page 3 of 16 | 13 January 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS 3 is made of galvanised steel of sizes 8, 10 and 14. The anchor may be provided with hexagon head (HUS 3 H) or with countersunk head (HUS 3 C). The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

An illustration of the product and intended use is given in A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Product performance for static and quasi static action	See Annex C 1
Product performance for seismic category C1	See Annex C 2
Displacements under tension and shear load	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Product performance for resistance to fire	See Annex C 3

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z895.15 8.06.01-327/14

European Technical Assessment ETA-13/1038

Page 4 of 16 | 13 January 2015

English translation prepared by DIBt

3.4 Safety and accessibility in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

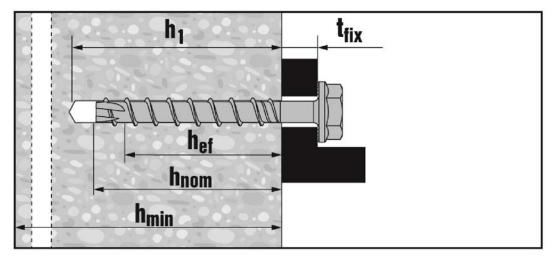
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the Commission of 24 June 1996 (Official Journal of the European Communities L 254 of 08.10.1996, p. 62–65) the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

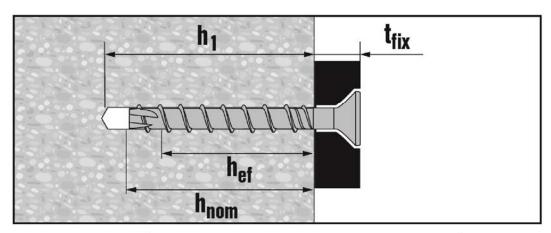
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 January 2015 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange

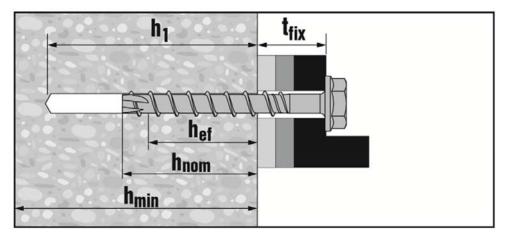
Z895.15 8.06.01-327/14



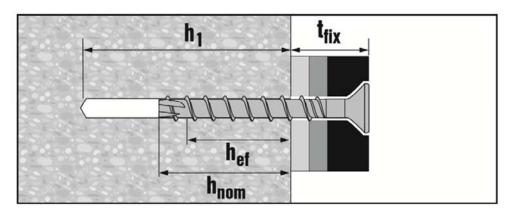
Product and installed condition without adjustment

HUS3-H (hexagon head configuration sizes 8, 10 and 14)

HUS3-HF (hexagon head configuration sizes 10 and 14)



HUS3-C (countersunk head configuration sizes 8 and 10)


Hilti Screw anchor HUS3	
Product description Installed condition without adjustment	Annex A 1

Product and installed condition with adjustment

HUS3-H (hexagon head configuration sizes 8, $10 - h_{nom2}$ only) HUS3-HF (hexagon head configuration size $10 - h_{nom2}$ only)

HUS3-C (countersunk head configuration sizes 8 and 10 – h_{nom2} only)

Hilti Screw anchor HUS3	
Product description Installed condition with adjustment	Annex A 2

English translation prepared by DIBt

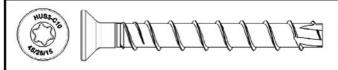
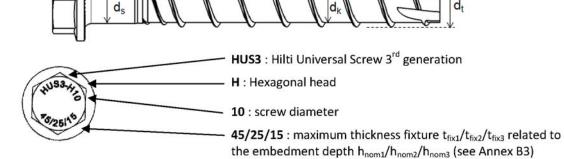


Table A1: Material and screw types

Designation	Material										
Screw anchor	Carbon steel	Carbon steel									
	Anchor size HUS3	8	10	14							
	Characteristic yield strength	f _{yk}	[N/mm ²]	695	690	630					
	Characteristic ultimate strength	f _{uk}	[N/mm ²]	810	805	730					
	Elongation at rupture A ₅ [%] ≤8										
		Screw anchor Carbon steel Anchor size HUS3 Characteristic yield strength Characteristic ultimate strength	Screw anchor Carbon steel	Screw anchor Carbon steel Anchor size HUS3 Characteristic yield strength f_{yk} [N/mm²] Characteristic ultimate strength f_{uk} [N/mm²]	Screw anchor Carbon steel Anchor size HUS3 Characteristic yield strength f_{yk} [N/mm²] 695 Characteristic ultimate strength f_{uk} [N/mm²] 810	Screw anchor Carbon steel					


- 1) Hilti HUS3-H, hexagonal head configuration, galvanized
- 2) Hilti HUS3-HF, hexagonal head configuration, multylaier coating

3) Hilti HUS3-C, countersunk head configuration.

Table A2: Specification and marking

Anchor size HUS3			8			10			14			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115	
Threaded outer diameter	d _t	[mm]		10,30			12,40			16,85		
Core diameter	d _k	[mm]		7,85			9,90			12,95		
Shaft diameter	ds	[mm]	8,45			10,55			13,80			
Stressed section	As	[mm ²]		48,4 77,0			131,7					

Hilti Screw anchor HUS3	
Production description Material and screw types	Annex A 3

Intended use

Anchorages subject to:

- Static and quasi-static loads:
 - HUS3-H and HUS3-C all sizes and all embedment depths.
 - HUS3-HF diameters 10 and 14. Diameter 10 all the embedment depths, diameter 14 h₁ and h₂ only.
- Seismic action for Performance Category C1: head types HUS3-H and HUS3-C only, all sizes for maximum embedment depth only (h₃).
- Fire exposure: HUS3-H only (Hexagon head configuration) all sizes and all embedment depths.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000,
- Strength classes C20/25 to C50/60 according to EN 206-1:2000,
- Non-cracked or cracked concrete: all sizes and all embedment depths.

Use conditions (Environmental conditions)

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions and under fire exposure are designed for design method A in accordance with:
 - Either ETAG 001, Annex C, Edition August 2010
 - Or CEN/TS 1992-4:2009
- · Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- In case of requirements for resistance to fire exposure it must be ensured that local spalling of the concrete cover does not occur.

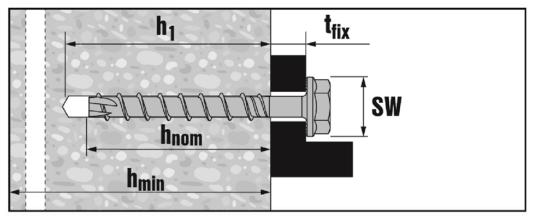
Installation:

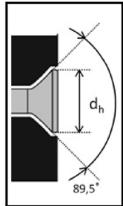
- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and is not damaged.
- Adjustability according to Annex B5 for:

Size 8 HUS3-H and HUS3-C (h_{nom2}=60mm)

Size 10 HUS3-H, HUS3-C and HUS3-HF (h_{nom2}=75mm)

Hilti Screw anchor HUS3	
Intended Use	Annex B 1
Specifications	


Table B1: Installation parameters


Anchor size HUS3			8			10			14			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmenth depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115	
Nominal drill hole diameter	d _o	[mm]		8			10			14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		8,45			10,45			14,50		
Clearance hole diameter	d _f ≤	[mm]	12			14			18			
Wrench size (H-type)	SW	[mm]		13		15			21			
Diameter of countersunk head	d _h	[mm]		18		21			-			
Torx size (C-type)	Т	-		45			50			-		
Depth of drill hole	h₁≥	[mm]	60	70	80	65	85	95	75	95	125	
Depth of drill hole (with adjustability setting process)	h₁≥		-	80	-	-	95	-	-	-	1	
Setting tool	-	-				Hilti	SIW 22	T-A ¹⁾				

 $^{^{1)}}$ Installation with other impact screw driver of equivalente power and performance is possible

Table B2: Minimum thickness of concrete member, minimum edge distance and spacing

Anchor size HUS3			8			10			14			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embed	dmenth depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Minumum thick member	ness of concrete	h _{min}	[mm]	100	100	120	100	130	140	120	160	200
Cracked and non-cracked	Minimum spacing	S _{min}	[mm]	40	50	50	50	50	60	60	75	75
concrete	Minimum edge distance	C _{min}	[mm]	50	50	50	50	50	60	60	75	75

Hilti Screw anchor HUS3	
Intended Use	Annex B 2
Installation parameter	

Table B3: Screw length and maximum thickness of fixture for HUS3-H and HUS3-HF¹⁾

Anchor size		8			10		14				
Nominal embedment depth	h _{nom1} 50	h _{nom2}	h _{nom3}	h _{nom1} 55	h _{nom2}	h _{nom3} 85	h _{nom1} 65	h _{nom2} 85	h _{nom3} 115		
[mm]	Thickness of fixture [mm]										
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}		
55	5	-	-	-	-	-	-	-	-		
60	-	-	-	5	-	-	-	-	-		
65	15	5	-	-	-	-	-	-	-		
70	-	-	-	15	-	-	-	-	-		
75	25	15	5	-	-	-	10	-	-		
80	-	-	-	25	5	-	-	-	-		
85	35	25	15	-	-	-	-	-	-		
90	-	-	-	35	15	5	-	-	-		
100	50	40	30	45	25	15	35	15	-		
110	-	-	-	55	35	25	-	-	-		
120	70	60	50	-	-	-	-	-	-		
130	-	-	-	75	55	45	65	45	15		
150	100	90	80	95	75	65	85	65	35		

¹⁾ HUS3-HF available only diameter 10 and 14. Diameter 10 all embedment depth, for diameter 14 only h_{nom1} and h_{nom2}

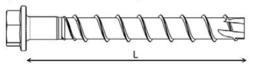
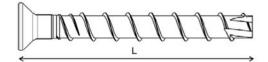
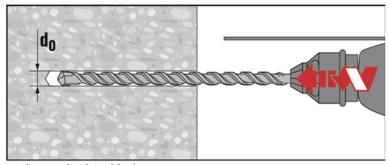
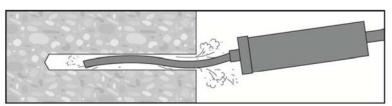
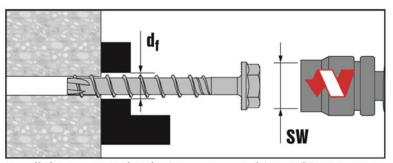



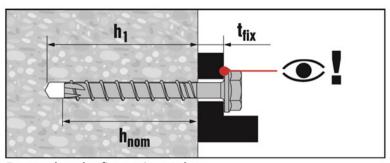
Table B4: Screw length and maximum thickness of fixture for HUS3-C


Anchor size		8		10			
Nominal embedment depth	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
[mm]	50	60 Thic	70 kness of	55 fixture [75 mml	85	
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	
65	15	5	-	-	-	-	
70	-	-	-	15	-	-	
75	25	15	=	-	-	-	
85	35	25	15	-	-	-	
90	7-	-	-	35	15	-	
100	-	-	-	45	25	15	


Hilti Screw anchor HUS3	
Intended Use	Annex B 3
Installation parameters	

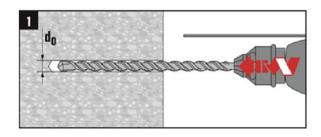

Installation instruction without adjustment

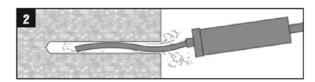
Make a cylindrical hole

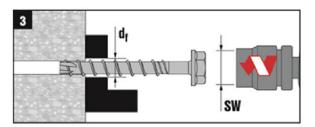


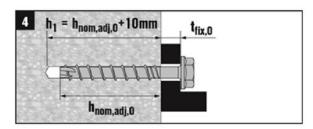
Clean the borehole

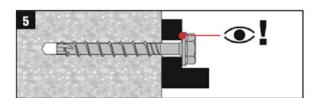
Install the screw anchor by impact screw driver Hilti SIW 22T-A

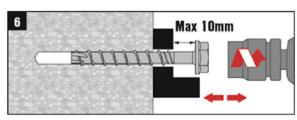


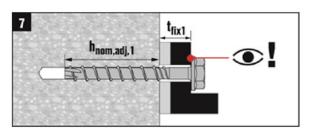

Ensure that the fixture is caught

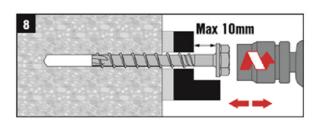

Hilti Screw anchor HUS3	
Intended Use Installation Instruction without adjustment	Annex B 4

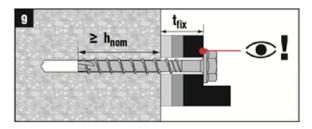



Installation instruction with adjustment









For setting HUS3-H8, HUS3-C 8 (h_{nom2} = 60 mm) and HUS3-H, HUS3-C, HUS3-HF 10 (h_{nom2} = 75 mm) it is allowed to adjust (loosening max. 10 mm and re-tightening) the screw. The adjustment can be done maximum two times.

The final embedment depth after adjustment process must be larger or equal than h_{nom2} .

The total allowed thickness of shims added during the adjustment process is 10mm.

Hilti Screw anchor HUS3

Intended Use

Installation instruction with adjustment

Annex B 5

English translation prepared by DIBt

Anchor siz	ze HUS3				8			10		14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal er	nbedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustmen	t											
Total max. adjustment	thickness of t layers	t _{adj}	[mm]	-	10	-	-	10	-	-	-	-
Max. numb	er of adjustments	n _a	[-]	-	2	-	-	2	-	-	-	-
Steel failure for tension and shear load												
		N _{Rk,s}	[kN]		39,2			62,2			96,6	
Characteristic resistance		V _{Rk,s}	[kN]		17			28			45	
cnaracteris	suc resistance	k ₂ ²⁾	[-]	0,8								
		$M^0_{Rk,s}$	[Nm]		46			92			187	
Pull-out failure												
	stic resistance in ed concrete C20/25	$N_{Rk,p}$	[kN]	9	12	16	12	20	1)	1)	1)	1)
Characteristic resistance in cracked concrete C20/25		$N_{Rk,p}$	[kN]	6	9	12	1)	1)	1)	1)	1)	1)
Increasing	C30/37			1,22								
factor	C40/50	ψ_{c}	[-]	1,41								
concrete	C50/60			1,55								
Concrete c	one and splitting fai	lure										
Effective er	mbedment depth	h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Factor for	Cracked	k _{cr} ²⁾	[-]					7,2				
	Non-cracked	k _{ucr} ²⁾	[-]					10,1				
Concrete cone	Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
failure	Spacing	S _{cr,N}	[mm]					3 h _{ef}				
Splitting	Edge distance	C _{cr,sp}	[mm]	60	70	85	65	90	110	85	100	140
failure	Spacing	S _{cr,sp}	[mm]	120	140	170	130	180	220	170	200	280
Installation	safety factor	$\gamma_2^{(3)} = \gamma_{inst}^{(2)}$	[-]					1,0				
Concrete p	ry-out failure											
k factor	k factor $k^{3} = k_3^{2}$ [-]				2	,0	1,0			2,0		
Concrete e	dge failure											
Effective le	ngth of anchor	I _f = h _{ef}	[-]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Outside dia	Outside diameter of anchor d _{nom} [mm]			8 10 14								

Hilti Screw anchor HUS3	
Product Performance For static and quasi-static action	Annex C 1

¹⁾ Pull-out failure is not decisive
2) Parameters relevant only for design according to CEN/TS 1992-4:2009
3) Parameter relevant only for design according to ETAG001 Annex C

Table C2: Product performance for seismic category C1

Anchor size	HUS3			8	10	14		
				h _{nom3}	h _{nom3}	h _{nom3}		
Nominal emb	edment depth	h _{nom}	[mm]	70	85	115		
Steel failure f	or tension and	d shear load						
Characteristic	rosistanco	$N_{Rk,s,seis}$	[kN]	39,2	62,2	96,6		
Characteristic	resistance -	$V_{Rk,s,seis}$	[kN]	11,9	22,5			
Pull-out failu	re							
Characteristic		$N_{Rk,p,seis}$	[kN]	12	1)	1)		
Concrete con	e failure							
Effective emb	edment	h _{ef}	[mm]	54,9	67,1	91,8		
Concrete cone	Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}			
failure	Spacing	S _{cr,N}	[mm]		3 h _{ef}			
Installation sa	fety factor	γ ₂	[-]		1,0			
Concrete pr	y-out failure							
k factor		k	[-]		2,0			
Concrete ed	ge failure							
Effective leng	th of anchor	I _f = h _{ef}	[-]	54,9	67,1	91,8		
Outside diam	eter of anchor	d _{nom}	[mm]	8 10 14				

¹⁾ Pull-out failure is not decisive.

Hilti Screw anchor HUS3	
Performances For seismic category C1	Annex C 2

Table C3: Product performance for resistance to Fire

Anchor size H	US3 H				8			10		14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embed	dment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115	
Steel failure fo	or tension ar	d shear	load (F	_{Rk,s,fi} = N	_{Rk,s,fi} = V	Rk,s,fi)							
	R30	$F_{Rk,s,fi}$	[kN]	3,2	3,5	3,8	6,1	6	,2	10,4	10,6		
	R60	$F_{Rk,s,fi}$	[kN]	2,4	2,6	2,8	4,6	4	,7	7,8	8,1		
	R90	$F_{Rk,s,fi}$	[kN]	1,6	1,6	1,9	3,1	3	3,2		5,	,5	
Characteristic resistance	R120	$F_{Rk,s,fi}$	[kN]	1,2	1,2	1,5	2,4	2	2,5		4,	,3	
	R30	$M^0_{Rk,s,fi}$	[Nm]	14,6	15,9	17,2	35,2	35	5,6	78,9	79),8	
	R60	$M^0_{Rk,s,fi}$	[Nm]	11,0	11,7	13,0	26,6	27,1		59,6	60,7		
	R90	M ⁰ _{Rk,s,fi}	[Nm]	7,4	7,4	8,8	18,0	18,6		40,2	41,7		
	R120	$M^0_{Rk,s,fi}$	[Nm]	5,7	5,3	6,8	13,7	14,4		30,6	32,1		
Pull-out failur	е												
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	4,9	3,1	4,8	7,8	
	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,8	2,4	1,9	3,2	3,9	2,5	3,8	6,3	
Concrete cone	e failure												
Characteristic resistance	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	3,0	6,4	14,4	
	R120	N ⁰ _{Rk,c,fi}	[kN]	1,4	2,1	3,2	1,6	3,8	5,3	2,4	5,1	11,5	
Edge distance													
	R30 to R120	C _{cr,N}	[mm]	2 h _{ef}									
Anchor spacing	1												
	R30 to R120	S _{cr,N}	[mm]	4 h _{ef}									
Concrete pry-	out failure												
	R30 to R120	k	[-]	1,0	2	,0	1,0			2,0			

Hilti Screw anchor HUS3	
Performances For resistance to fire	Annex C 3

Table C5: Displacements under tension load

Anchor size HI	JS3			8				10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth h _{nom} [mm]		[mm]	50	60	70	55	75	85	65	85	115		
Constant	Tension Load	N	[kN]	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2	
Cracked concrete	Displacement	δ_{N0}	[mm]	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5	
C20/25 to C50/60		$\delta_{N\infty}$	[mm]	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0	
C30/00		$\delta_{\text{N,seis}}$	[mm]	-	i	0,6	-	-	0,9	ı	-	1,3	
Non-cracked	Tension Load	N	[kN]	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8	
concrete C20/25 to C50/60	Displacement -	δ_{N0}	[mm]	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3	
		$\delta_{N\infty}$	[mm]		0,3			0,2			0,5		

Table C6: Displacements under shear load

Anchor size HU	Anchor size HUS3				8			10		14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth h _{nom} [mm]			50	60	70	55	75	85	65	85	115	
Cracked or	Shear Load	٧	[kN]	8,1			13,3			21,4		
non-cracked	Displacement	δ_{V0}	[mm]	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4
concrete C20/25 to		$\delta_{V^{\infty}}$	[mm]	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5
C50/60		$\delta_{\text{V,seis}}$	[mm]	-	-	5,3	-	-	4,3	-	-	5,5

Hilti Screw anchor HUS3	
Performances	Annex C 4
Displacements	