

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1040 of 13 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Würth Injection system WIT-VM 250 for use in masonry

Injection system for use in masonry

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1 und Werk 3

38 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/1040

Page 2 of 38 | 13 January 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z4062.15 8.06.04-491/13

European Technical Assessment ETA-13/1040

Page 3 of 38 | 13 January 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Würth Injection system WIT-VM 250 for use in masonry is a bonded anchor (injection type) consisting of a mortar cartridge with Würth injection mortar, a perforated sieve sleeve and an anchor rod with hexagon nut and washer in the range of M6 to M12 or an internal threaded rod in the range of M6 and M8. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C1, C5 – C25
Characteristic resistance for bending moments	See Annex C1
Displacements under shear and tension loads	See Annex C26
Reduction Factor for job site tests (β-Factor)	See Annex C26
Edge distances and spacing	See Annex C4 – C25

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z4062.15 8.06.04-491/13

European Technical Assessment ETA-13/1040

Page 4 of 38 | 13 January 2015

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 17 February 1997 (97/177/EC) (OJ L 073 of 14.03.97 p. 24-25), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

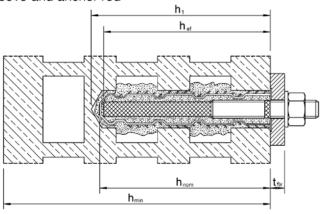
Product	Intended use	Level or class	System
Metal injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	_	1

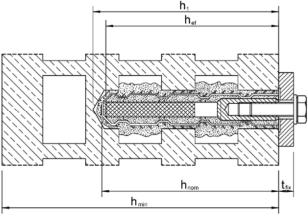
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 January 2015 by Deutsches Institut für Bautechnik

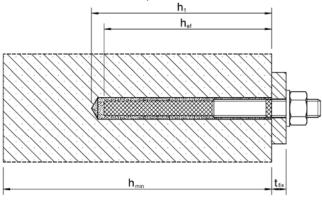
Uwe Benderbeglaubigt:Head of DepartmentWittstock


Z4062.15 8.06.04-491/13


Installation anchor

Installation in perforated and solid brick masonry

a) Installation with sieve sleeve and anchor rod



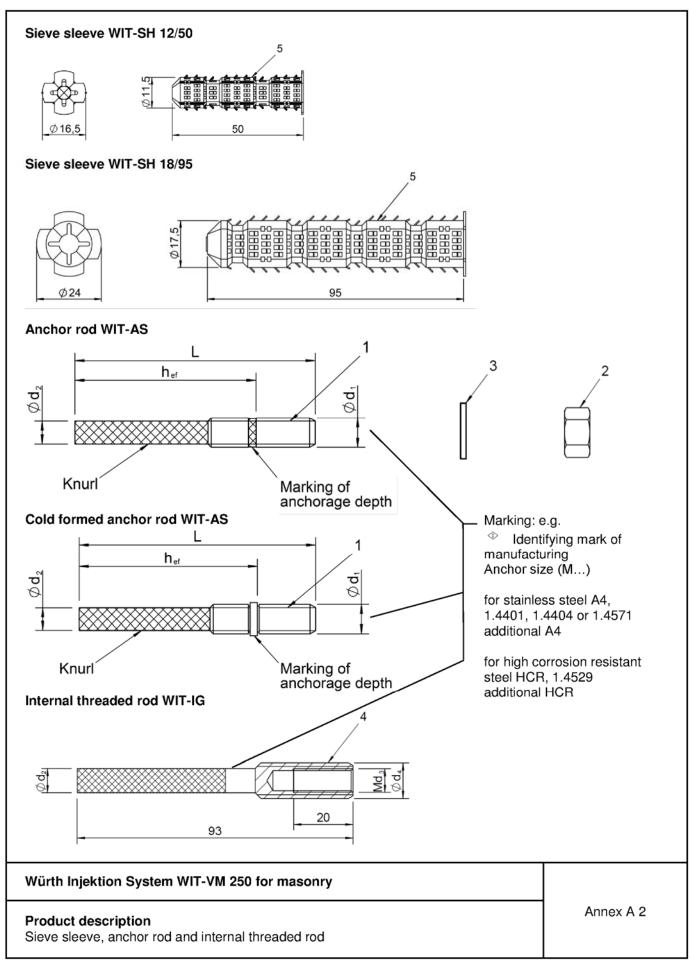
b) Installation with sieve sleeve and internal threaded rod

Installation in solid brick masonry without sieve sleeve

c) Installation without sieve sleeve and anchor rod (Installation with internal threaded rod: Not pictured)

 h_{nom} : Embedment depth of the sieve sleeve h_1 : Depth of drill hole to deepest point

 $\begin{array}{ll} h_{\text{min}} & \text{Thickness of member} \\ t_{\text{fix}} & \text{Thickness of fixture} \\ h_{\text{ef}} & \text{Effective anchorage depth} \end{array}$


Würth Injektion System WIT-VM 250 for masonry

Product description

Installed condition

Annex A 1

Table	A1: Materials		
Pari	Designation	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:2001 Steel, hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461:2009 or EN ISO 10684:2011	Stainless steel A4, High corrosion resistant steel HCR
1	Anchor rod	Steel property class 5.8 or 8.8, acc. to EN ISO 898-1:2013	EN 10 088:2012, 1.4401 / 1.4404 / 1.4571 EN ISO 3506:2010, A4-70, A4-80 or EN 10 088:2012, 1.4529 with $f_{uk} \ge 700 \text{ N/mm}^2$, $f_{yk} \ge 350 \text{ N/mm}^2$
2	Hexagon nut acc. to DIN 934, EN ISO 4032:2013	Steel, property class 5 or 8 acc. to EN ISO 898-2:2012	EN 10 088:2012, 1.4401 / 1.4404 / 1.4571 EN ISO 3506:2010, A4-70, A4-80 or EN 10 088:2012, 1.4529 with $f_{uk} \ge 700 \text{ N/mm}^2$, $f_{yk} \ge 350 \text{ N/mm}^2$
3	Washer acc. to EN ISO 7089:2000	Steel	EN 10 088:2012, 1.4401 / 1.4571 or 1.4529
4	Internal threaded rod	Steel, property class 5.8 or 8.8, acc. to EN ISO 898-1:2013	EN 10 088:2012, 1.4401 / 1.4404 / 1.4571 EN ISO 3506:2010, A4-70, A4-80 or EN 10 088:2012, 1.4529 with $f_{uk} \ge 700 \text{ N/mm}^2$, $f_{yk} \ge 350 \text{ N/mm}^2$
5	Sieve sleeve	Polypropylene	
6	Injection mortar	Vinylester resin, styrene free, mixing rat	io 1:10

Table A2: Anchor dimensions

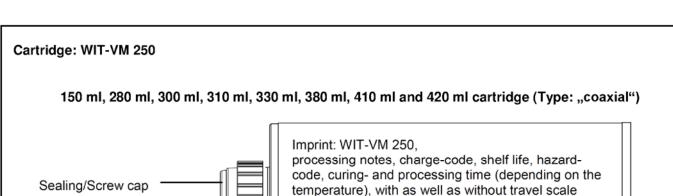
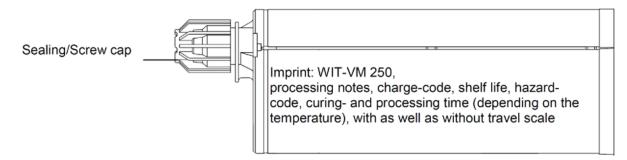
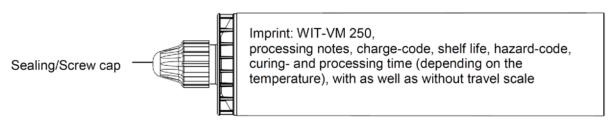
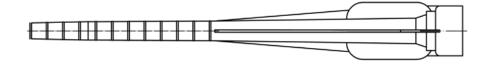

Anchor	Size	Sieve sleeve	Anchor rod					
rod			Ø d ₁ [mm]	Ø d ₂ [mm]	h _{ef} [mm]	L _{min} [mm]	L _{max} [mm]	
WIT-AS	M6/50	WIT-SH 12/50	6	6.2	49	65	500	
WIT-AS	M8/50	WIT-SH 12/50	8	6.2	49	65	500	
WIT-AS	M8	WIT-SH 18/95	8	8.2	93	110	500	
WIT-AS	M10	WIT-SH 18/95	10	8.2	93	120	500	
WIT-AS	M12	WIT-SH 18/95	12	8.2	93	125	500	

Table A3: Internal threaded rod dimensions

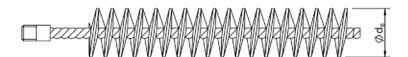

Internal threaded	Size	Sieve sleeve	Inte	ernal threaded	Minimum ar screw i	nd maximum n depth	
rod			Ø d ₂ [mm]	Ø d ₃ [mm]	min s [mm]	max s [mm]	
WIT-IG	M6	WIT-SH 18/95	8.2	6	12	8	20
WIT-IG	M8	WIT-SH 18/95	8.2	8	12	8	20

Würth Injektion System WIT-VM 250 for masonry	
Product description Materials, anchor dimensions	Annex A 3




235 ml, 345 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")



Cleaning brush

Mortar cartridge, static mixer, cleaning brush

Würth Injektion System WIT-VM 250 for masonry

Product description

Annex A 4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (Use category b) and autoclaved aerated concrete masonry (Use category d), according to Annex C 2.
 - Note: The characteristic resistance are also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow brick masonry (use category c), according to Annex C 3.
- · Mortar strength class of the masonry M2.5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C 26, Table C6.

Temperature Range:

Tb: - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment (stainless steel or high corrosion resistant steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to permanently damp internal condition or in other particular aggressive conditions (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with the ETAG 029, Annex C, Design method A or Design method B under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.

Installation:

Electronic copy of the ETA by DIBt: ETA-13/1040

- Dry or wet structures.
- Sieve sleeve WIT-SH 18/95: Use category c and d.
- · Sieve sleeve WIT-SH 12/50: Use category c.
- Hole drilling by rotary drill mode or hammer drill mode according to Annex C.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (including nut and washer) must comply with the appropriate material and property class of Würth internal threaded anchor WIT-IG.

Würth Injektion System WIT-VM 250 for masonry	
Intended Use Specifications	Annex B 1

Page 10 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Table B1.1: Installation parameters WIT-SH 12/50

Injection system WIT-VM 250			WIT-S	H 12/50			
Anchor size An	chor rod W	/IT-AS	М6	M8	М6	M8	
Sieve sleeve WIT-SH			without WIT-SH 12/5			H 12/50	
Drill hole diameter	d ₀ =	[mm]	8	10	1	2	
Depth of drill hole to deepest point	h₁ ≥	[mm]	55				
Effective embedment depth	$h_{\text{ef}} \geq$	[mm]	4	.9	49		
Embedment depth of the sieve sleeve	h _{nom} =	[mm]		-	5	0	
Diameter of clearance hole in the fixture WIT-AS	$d_{f} \leq$	[mm]	7	9	7	9	
Diameter of steel brush	$d_{B}\geq$	[mm]	9 11 13			3	
Maximum torque moment	$T_{inst} \leq$	[Nm]			2		

Table B1.2: Installation parameters WIT-SH 18/95

Injection system WIT-VM 250			WIT-SH 18/95									
Anchor size, An	chor rod V	VIT-AS	М8	M10	M12	-	-	М8	M10	M12	-	-
Anchor size, Internal three	aded rod \	WIT-IG	-	•	•	М6	М8	•	-	-	М6	M8
Sieve sleeve WIT-SH					without	•			WIT	-SH 18	3/95	
Drill hole diameter	$d_0 =$	[mm]	10	12	14	14	14			18		
Depth of drill hole to deepest point	h ₁ ≥	[mm]					10)0 ¹⁾				
Effective embedment depth	h _{ef} ≥	[mm]					9	3				
Embedment depth of the sieve sleeve	h _{nom} =	[mm]	-	-	-	-	-			95		
Diameter of clearance hole in the fixture WIT-AS	$d_{f} \leq$	[mm]	9	12	14	-	-	9	12	14	-	-
Diameter of clearance hole in the fixture WIT-IG	$d_{f} \leq$	[mm]	ı	ı	1	7	9	-	-	-	7	9
Diameter of steel brush	$d_{B}\geq$	[mm]	11	13	15	15	15			19		
Maximum torque moment	$T_{inst} \leq$	[Nm]					2	2				

The remote face of the masonry member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length he shall be achieved and any potential loss of injection mortar shall be compensated.

Table B2: Maximum working time and minimum curing time

Temperature [°C] in the	Maximum working time	Minimum curing time ¹⁾					
drill hole	Maximum working time	Dry masonry	Wet masonry				
> +40°C	1.5 min	15 min	30 min				
> +35°C to +40°C	2 min	20 min	40 min				
> +30°C to +35°C	4 min	25 min	50 min				
> +20°C to +30°C	6 min	45 min	1:30 h				
> +10°C to +20°C	15 min	1:20 h	2:40 h				
> +5°C to +10°C	25 min	2 h	4 h				
> 0°C to +5°C ²⁾	45 min	7 h	14 h				
> -5°C to 0°C ²⁾	90 min	14 h	28 h				
-10°C to -5°C ²⁾³⁾	90 min	24 h	48 h				

The cartridge temperature must exceed ≥ + 5°C

The cartridge temperature must exceed ≥ + 15°C

Würth Injektion System WIT-VM 250 for masonry	
Intended Use Installation parameters, maximum working times and minimum curing times	Annex B 2

Not for autoclaved aerated concrete AAC. Minimum base ground temperature autoclaved aerated concrete AAC > +5°C.

uitab	le for: Hollow br	ick, sand-lime perforated brick, hollow brick lightweight concrete, autoclaved aerated conc I	rete.				
1		Drill the hole. For depth of drill hole h_1 and drill hole diameter d_0 see Table B1.1 and B1.2. Drill method according to Annex C 5 to C 25. In case of aborted drill hole, the drill hole shall be filled with mortar.					
2		Clean the drilled hole (2x blow out + 2x brushing + 2x blow out).					
3		Insert the sieve sleeve into the drilled hole - the collar of the sieve sleeve is located on the masonry surface to.					
4	Screw off the cap. Cartridge type "foil tube": Cut off the foil tube clip before use. Screw on the static mixer. Never use the static mixer, if the helix is not present! Place the cartridge (with the attached static mixer) in the Würth injection gun. For every working interruption longer than the recommended working time (Table B2) as well as for new cartridges, a new static-mixer shall be used.						
5	1000	Before use, press out a string of mortar about 10 cm long for cartridge type "coaxial" and "side-by-side" respectively 20 cm long for cartridge type "foil tube" until the mortar has a uniform grey colour. Do not use the first string of pressed out mortar!					
6		Sieve sleeve WIT-SH 18/95 Completely fill the sieve sleeve starting from the bottom with WIT-VM 250 mortar. Sieve sleeve WIT-SH 12/50 Completely fill the sieve sleeve starting from the beginning of the sieve sleeve with WIT-VM 250 mortar. For the correct quantity of mortar see manufacturer's specification.					
7	Insert the anchor rod by hand using light turning motions, until the effective anchorage depth is reached.						
8 Observe the required curing time of the mortar. For minimum curing times see Table B2. Do not move or load the anchor until it is fully cured.							
The fixture can be mounted after curing time. Installation torque T _{inst} according to Table B1.1 and B1.2 - T _{inst} must not be exceeded. Use a calibrated torque wrench.							
Würth Injektion System WIT-VM 250 for masonry							
Intended Use: Installation with sieve sleeve WIT-SH 12/50 and WIT-SH 18/95							

Installation instructions (Installation without sieve sleeve) Suitable for: Solid brick, sand-lime brick, concrete solid brick, lightweight concrete solid brick						
1		Drill the hole. For depth of drill hole h_1 and drill hole diameter d_0 see Table B1.1 and B1.2. Drill method according to Annex C 5 to C 25. In case of aborted drill hole, the drill hole shall be filled with mortar.				
2		Clean the drilled hole (2x blow out + 2x brushing + 2x blow out). For drill hole diameter ≤ 8 mm, use a reduce-attachment for the blow pump.				
3		Screw off the cap. Cartridge type "foil tube": Cut off the foil tube clip before use. Screw on the static mixer. Never use the static mixer , if the helix is not present! Place the cartridge (with the attached static mixer) in the Würth injection gun. For every working interruption longer than the recommended working time (Table B2) as well as for new cartridges, a new static-mixer shall be used.				
4	Before use, press out a string of mortar about 10 cm long for cartridge type "coaxial" and "side-by-side" respectively 20 cm long for cartridge type "foil tube" until the mortar has a uniform grey colour. Do not use the first string of pressed out mortar!					
5		Starting from the bottom, fill the drilled hole about 2/3 with WIT-VM 250 mortar.				
6.1	W	Insert the anchor rod by hand using light turning motions, until the effective anchorage depth is reached.				
6.2	The mortar must now be visible at the surface of the anchorage component. If no mortar appears at the surface, remove the anchoring element immediately.					
Observe the required curing time of the mortar. For minimum curing times see Table B2. Do not move or load the anchor until it is fully cured.						
The fixture can be mounted after curing time. Installation torque T _{inst} according to Table B1.1 and B1.2 - T _{inst} must not be exceeded. Use a calibrated torque wrench.						
	uale leaded to	System WIT-VM 250 for masonry				
Inte	rth Injektion Inded Use: allation withou	Annex B 4				

Page 13 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Table C1: Characteristic values for tension loads (Design method A)								
Anchor size Anchor roo	WIT-AS	М6	M8	М8	M10	M12	-	-
Anchor size Internal threaded ro	d WIT-IG	-	-	-	-	-	M6	М8
Sieve sleeve		WIT-S	H 12/50		WI	T-SH 18	/95	
Steel failure for anchor rods made of steel, strength 5.8	, 8.8							
Characteristic resistance N _{Rk,s}	[kN]	10.1	15.1	15.1	26.4	26.4	10.1	15.1
Steel failure for anchor rods made of stainless steel, st	rength cl	ass 70,	80					
Characteristic resistance N _{Rk,s}	[kN]	14.1	21.1	21.1	37.0	37.0	14.1	21.1
Steel failure for anchor rods made of high corrosion re	sistant st	steel, HCR						
Characteristic resistance N _{Rk,s}	[kN]	14.1	21.1	21.1	37.0	37.0	14.1	21.1
Pullout failure of the anchor in dry and wet masonry	$N_{Rk,p}$	see Annex C 5 to C 25						
Brick breakout failure in dry and wet masonry N _{Rk,b}			see Annex C 5 to C 25					
Pull out of one brick N _{Rk,pb}			see ETAG 029 Annex C					
Displacements under tension load	δ_{N}	see Annex C 26, Table C5				·		
Influence of joints	$N_{Rk,p}$	see E7	AG 029	Annex	С			

Table C2: Characteristic values for shear loads (Design method A)

Anchor size	Anchor rod	WIT-AS	М6	М8	М8	M10	M12	-	-
Anchor size	Internal threaded rod WIT-IG		-	-	-	-	-	M6	M8
Sieve sleeve	Sieve sleeve			WIT-SH 12/50 WIT-SH 18/95					
Steel failure without lever arm, for	r anchor rods made of	steel, st	rength	5.8, 8.8					
Characteristic resistance	$V_{Rk,s}$	[kN]	5.0	7.5	9.2	14.5	21.1	5.0	9.2
Steel failure without lever arm, for	r anchor rods made of	stainles	s steel,	strengtl	n class	70, 80			
Characteristic resistance	$V_{Rk,s}$	[kN]	7.0	10.6	12.8	20.3	29.5	7.0	12.8
Steel failure without lever arm, for anchor rods made of high col				resistan	t steel,	HCR			
Characteristic resistance	$V_{Rk,s}$	[kN]	7.0	10.6	12.8	20.3	29.5	7.0	12.8
Steel failure with lever arm, for an	chor rods made of ste	el, stren	gth 5.8,	8.8					
Characteristic resistance	$M_{Rk,s}$	[Nm]	7.6	14.0	18.7	32.5	32.5	7.6	18.7
Steel failure with lever arm, for an	chor rods made of sta	inless st	eel, str	ength cl	ass 70,	80			
Characteristic resistance	$M_{Rk,s}$	[Nm]	10.7	18.7	26.2	45.5	45.5	10.7	26.2
Steel failure with lever arm, for an	chor rods made of hig	h corros	ion res	istant st	eel, HC	R			
Characteristic resistance	$M_{Rk,s}$	[Nm]	10.7	18.7	26.2	45.5	45.5	10.7	26.2
Local brick failure	Local brick failure V _{Rk,b} see Annex C 5 to C 25								
Brick edge failure V _{Rk,c} see ETAG 029 Annex C									
Push out of one brick		V _{Rk,pb} see ETAG 029 Annex C							
Displacements under shear load		δν	see Ar	nnex C 20	3, Table	C5			
Influence of joints	·	$V_{Rk,p}$	see E	ΓAG 029	Annex (С			

Würth Injektion System WIT-VM 250 for masonry	
Performances Characteristic values for tension and shear loads (Design method A)	Annex C 1

acc. to DIN 4165

EN 771-1

Base material	Format	Measurement [mm]	Minimum - compressive- strength [N/mm ²]	Bulk- density- class [kg/dm³]	Annex
Solid masonry (use category "b", "d")					
Solid brick Mz acc. to DIN 105-1 DIN V 105-1:2002-06 DIN V 105-100:2005-10 EN 771-1	≥NF	≥ 240x115x71	10 20 28 36	≥ 1.8	Annex C 5 AX 771-1-0
Sand-lime solid brick Silka XL Basic, Silka XL Plus acc. to EN 771-2		≥ 498x200x498	10 20	≥ 2.0	Annex C 12
Concrete solid block Vn and Vbn acc. to DIN 18153 EN 771-3	≥NF	≥ 240x115x71	10 20 28	≥ 2.0	Annex C 14
Lightweight concrete solid brick V acc. to DIN V 18152-100 EN 771-3 e.g. Bisoclassic V Bisotherm GmbH	≥ NF	≥ 240x115x71	2 4	≥ 0.9	Annex C 15
Lightweight concrete solid brick acc. to DIN V 18152-100 EN 771-3 e.g. BisoBims V Bisotherm GmbH	≥ NF	≥ 240x115x71	2 4	≥ 1.0	Annex C 10
Lightweight concrete solid block – Vbl acc. to DIN 18152, EN 771-3 e.g. Liapor Massive Wall Liapor GmbH & Co. KG	≥ 24DF	≥ 500x365x238	2	≥ 0.6	Annex C 2
Concrete solid block – Vbn acc. to DIN 18153, EN 771-3 e.g. Liapor Element Wall	≥ 12DF	≥ 500x175x238	12 16	≥ 1.4	Annex C 22
Liapor GmbH & Co. KG Autoclaved aerated concrete		≥ 499x175x249	1.6 - 7	≥ 0.35	Annex

Würth Injektion System WIT-VM 250 for masonry

Base material: Concrete and Solid masonry (use category "b" and "d") Format, measurement, minimum compressive strength, annex

Annex C 2

C 23 - C 25

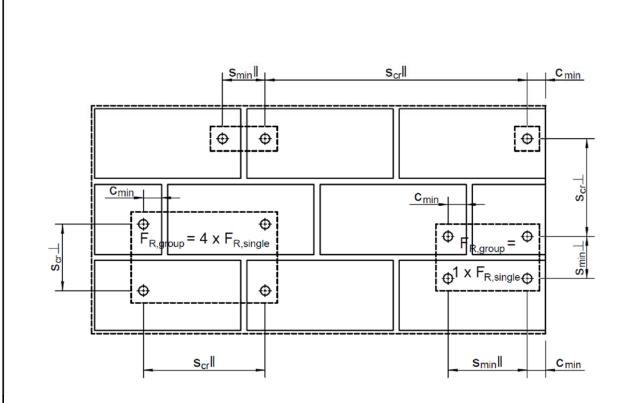


Table C3.2: Base material: Hollow or perforated masonry

Base material	Format	Measurement [mm]	Minimum - compressive- strength [N/mm ²]	Bulk- density- class [kg/dm³]	Annex
Hollow or perforated masonry (use category	"c")			-	
Hollow brick HLz	2DF	240x115x113	8	≥ 1.2	Annex C 6
acc. to DIN 105-1			12		
EN 771-1			20		AY 771-1-021
e.g. Wienerberger Ziegelindustrie GmbH	12DF	373x240x238	6	≥ 1.2	Annex C 7
e.g. Schlagmann Baustoffwerke GmbH & Co. KG			8		AB 771-1-010
Hollow brick UNIPOR WS14	10DF	247x300x249	10	≥ 0.8	Annex C 8
Hollow brick UNIPOR WS12 CORISO			12		
acc. to EN 771-1					
Z-17.1-883					
Unipor-Ziegel, Marketing GmbH	1655	040.000.046			AM 771-1-016
Hollow brick POROTON Plan-T14	10DF	248x300x249	6	≥ 0.7	Annex C 9
acc. to EN 771-1 Z-17.1-651					
Wienerberger Ziegelindustrie GmbH					
Schlagmann Baustoffwerke GmbH & Co. KG					AT 771-1-019
Hollow brick for ceiling-DIN 4160-BN 0,8-530-		530x250x210	4	0.8	Annex C 10
250-210 (system Filigran)		OOOXEOOXETO		0.0	Aimex 0 10
acc. to DIN 4160					
e.g. Wienerberger Ziegelindustrie GmbH					W16 771-1-031
Hollow brick Blocchi Leggeri		250x120x330	6	≥ 0.6	Annex C 11
acc. to EN 771-1					
Wienerberger Brunori s.r.l.; Italien					AD 771-1-012
Sand-lime perforated brick KS L	8DF	248x240x238	10	≥ 1.4	Annex C 13
acc. to DIN 106-1			12		
EN 771-2			16		
e.g. Xella Deutschland GmbH					AK 771-2-005
Hollow brick lightweight concrete 3K Hbl	16DF	498x240x238	2	≥ 0.7	Annex C 17
acc. to DIN 18151			4		
EN 771-3					
e.g. Heinzmann Baustoffe GmbH, Liapor GmbH & Co. KG					R3K 771-3-005
Hollow brick lightweight concrete	16DF	495x240x238	2	≥ 0.8	Annex C 18
Liapor-Super-K	IODE	49082408230	4	≥ 0.6	Ailliex C 10
acc. to EN 771-3			4		
Z-17.1-501					
Liapor GmbH & Co. KG					S 771-3-006
Hollow brick lightweight concrete	†	498x300x248	2	≥ 0.45	Annex C 19
Gisoton Thermo Schall					
acc. to Z-15.2-18					
Gisoton Wandsysteme,					
e.g. Baustoffwerke Gebhart & Söhne GmbH & Co.					AP 771-3-010
Hollow brick lightweight concrete 1K Hbl	12DF	490x175x238	2	≥ 1.2	Annex C 20
acc. to DIN 18151			4		
EN 771-3					
e.g. Stark Betonwerk GmbH & Co. KG					AU 771-3-002

Würth Injektion System WIT-VM 250 for masonry	
Base material: Hollow masonry (use category "c") Format, measurement, minimum compressive strength, annex	Annex C 3

Minimum spacing anchor group parallel to bed joint $S_{min,II} =$

Minimum spacing anchor group vertical to bed joint $s_{\text{min},\perp} =$

Characteristic spacing anchor group parallel to bed joint $S_{cr,II} =$ Characteristic spacing anchor group vertical to bed joint $s_{\text{cr},\perp} =$

Minimum edge distance $C_{min} =$

Characteristic edge distance $\mathbf{c}_{cr} =$

N_{Rk,p} / N_{Rk,b} / V_{Rk,b} according to Annex C5 to C25 for design method A, respectively F_{Rd} for design method B

Würth Injektion System WIT-VM 250 for masonry Annex C 4 Edge distances, spacing and anchor groups

Electronic copy of the ETA by DIBt: ETA-13/1040

Page 17 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, solid brick Mz, NF

Table C4.1.1: Brick data

Description of brick		AX 771-1-020	Mz
Type of brick			Solid brick Mz
Bulk density	ρ≥	[kg/dm³]	1.8
Standard, approval			DIN 105, EN 771-1
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ NF (≥ 240x115x71)
Minimum thickness of member	h _{min} =	[mm]	115

Table C4.1.2: Installation parameters, Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	50	90	
Anchor size	Anchor ro	d WIT-AS	M6, M8	M8, M10, M12	
Anchor size Int	ernal threaded ro	od WIT-IG	-	M6, M8	
Sieve sleeve			without	without	
Drill method			Hammer drilling	Hammer drilling	
Drill hole diameter	d₀	[mm]	M6 = 8 mm M8 = 10 mm	M8 = 10 mm M10 = 12 mm M12, IGM6, IGM8 = 14 mm	
Depth of drill hole to deepest point	h₁ ≥	[mm]	55	100	
Minimum spacing II & \perp for tension load	$d egin{array}{c} S_{min,II,N} \ S_{min,\perp,N} \end{array}$	[mm]	150	200	
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	75	100	
Characteristic spacing II & \perp	S _{cr,Ⅱ} S _{cr,⊥}	[mm]	150	270	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250	250	
Design method A: Tension load - Pu	ll out and brick b	reakout fa	ilure in dry and wet maso	nry	
_	f _b ≥ 10 N/mm ²	[kN]	0.75	1.5	
Solid brick Mz,	f _b ≥ 20 N/mm ²	[kN]	0.9	2.0	
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 28 N/mm ²	[kN]	1.2	2.5	
	f _b ≥ 36 N/mm ²	[kN]	1.5	2.5	
Design method A: Shear load - Loca	l brick failure in d	iry and we	t masonry		
_	f _b ≥ 10 N/mm ²	[kN]	2.5	4.0	
Solid brick Mz,	f _b ≥ 20 N/mm ²	[kN]	3.5	5.5	
Characteristic shear resistance V _{Rk,b}	f _b ≥ 28 N/mm²	[kN]	4.0	6.5	
	f _b ≥ 36 N/mm ²	[kN]	5.0	7.5	
Design method B: All load directions	s - All failure mod	les in dry a	and wet masonry		
Solid brick Mz, Design value of resistance $F_{Rd}^{1)}$ $(c \ge c_{cr,N}$ and $c_{cr,V}$; $s \ge s_{cr})$	f _b ≥ 36 N/mm²	[kN]	0.5	0.75	

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Solid brick Mz, NF Brick data, installation parameters, characteristic and design values of resistance	Annex C 5

Page 18 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick HLz, 2DF

Table C4.2.1: Brick data

Description of brick		AY 771-1-021	HLz
Type of brick			Hollow brick
Bulk density	ρ≥	[kg/dm³]	1.2
Standard, approval			DIN 105, EN 771-1
Producer of brick			e.g. Wienerberger Ziegelindustrie GmbH
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	2DF (240x115x113)
Minimum thickness of member	h _{min=}	[mm]	115

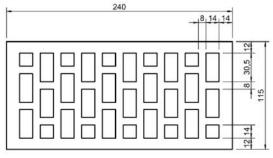


Table C4.2.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M6, M8	M8, M	10, M12	
Anchor size Int	nternal threaded rod WIT-IG		-	M6	, M8	
Sieve sleeve			WIT-SH 12/50	WIT-S	H 18/95	
Drill method			Rotary drilling	Rotary	drilling	
Drill hole diameter	d ₀	[mm]	12	1	8	
Depth of drill hole to deepest point	h₁≥	[mm]	55	1	00	
Minimum spacing II for tension load	S _{min,II,N}	[mm]	200	170	200	
Minimum spacing \perp for tension load	S _{min,⊥,N}	[mm]	113	113	113	
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	100	85	100	
Characteristic spacing II	S _{cr,II}	[mm]	240	2	240	
Characteristic spacing ⊥	S _{cr,⊥}	[mm]	113	1	113	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250	100	250	
Design method A: Tension load - Pu	III out and brick b	reakout fa	ilure in dry and wet maso	onry	•	
Hollow brick HLz,	f _b ≥ 8 N/mm²	[kN]	0.5	1.5	1.5	
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 12 N/mm ²	[kN]	0.5	2.0	2.0	
Characteristic resistance NRk,p/NRk,b	f _b ≥ 20 N/mm ²	[kN]	0.75	2.5	2.5	
Design method A: Shear load - Loca	ıl brick failure in (dry and we	et masonry			
Halland bride III =	f _b ≥ 8 N/mm²	[kN]	0.5	0.5	3.5	
Hollow brick HLz,	f _b ≥ 12 N/mm ²	[kN]	0.5	0.75	4.0	
Characteristic shear resistance V _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	0.9	0.9	5.5	
Design method B: All load direction	s - All failure mod	des in dry	and wet masonry			
Hollow brick HLz, Design value of resistance $F_{Rd}^{1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 20 N/mm ²	[kN]	0.25	0.3	0.75	

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Hollow brick HLz, 2DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 6

Page 19 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick HLz, 12DF

Table C4.3.1: Brick data

Description of brick		AB 771-1-010	HLz
Type of brick			Hollow brick
Bulk density	ρ≥	[kg/dm³]	1.2
Standard, approval			DIN 105, EN 771-1
Producer of brick			e.g. Schlagmann Baustoffwerke GmbH & Co. KG
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	12DF (373x240x238)
Minimum thickness of member	h _{min=}	[mm]	240

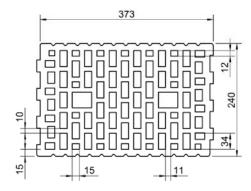


Table C4.3.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	od WIT-AS	M8, M10), M12
Anchor size Inte	Internal threaded rod WIT-IG		M6, M8	
Sieve sleeve			WIT-SH	18/95
Drill method			Rotary o	drilling
Drill hole diameter	d ₀	[mm]	18	}
Depth of drill hole to deepest point	h₁ ≥	[mm]	10	0
Minimum spacing II $\& \perp$ for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	22	0
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	11	0
Characteristic spacing II	S _{cr,II}	[mm]	37	3
Characteristic spacing ot	$s_{cr,\perp}$	[mm]	23	8
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250	373
Design method A: Tension load - Pul			ilure in dry and wet masor	nry
Hollow brick HLz,	f _b ≥ 6 N/mm ²		0.9	
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 8 N/mm ²		1.2	2
Design method A: Shear load - Local				
Hollow brick HLz,	f _b ≥ 6 N/mm ²		2.5	4.0
Characteristic shear resistance V _{Rk,b}	f _b ≥ 8 N/mm ²	[kN]	2.5	4.5
Design method B: All load directions	- All failure mod	des in dry a	and wet masonry	
Hollow brick HLz, Design value of resistance $F_{Rd}^{(1)}$ $f_b \ge 8 \text{ N/mm}^2$ [kN] $(c \ge c_{cr,N} \text{ and } c_{cr,V}; s \ge s_{cr})$			0.4	1

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Hollow brick HLz, 12DF Brick data, installation parameters, characteristic and design values of resistance	Annex C 7

Base material masonry, hollow brick UNIPOR WS14 and UNIPOR WS12 CORISO

Table C4.4.1: Brick data

Description of brick		AM 771-1-016	UNIPOR WS14 and UNIPOR WS12 CORISO
Type of brick			Hollow brick
Bulk density	ρ≥	[kg/dm³]	0.8
Standard, approval			EN 771-1, Z-17.1-883, DIN V 105-2
Producer of brick			UNIPOR Ziegel, Marketing GmbH,
Floducer of blick			Landsberger Straße 392, D-81241 München
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	10DF (247x300x249)
Minimum thickness of member	h _{min=}	[mm]	300

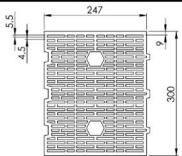


Table C4.4.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor roo	d WIT-AS	M8, M	10, M12
Anchor size Inte	ternal threaded ro	d WIT-IG	M6, M8	
Sieve sleeve		WIT-S	H 18/95	
Drill method			Rotary	drilling
Drill hole diameter	d_0	[mm]	1	18
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	1	00
Minimum spacing II & \perp for tension load	d S _{min,II,N} S _{min,⊥,N}	[mm]	200	220
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	100	110
Characteristic spacing II	S _{cr,II}	[mm]	2	47
Characteristic spacing 1	$\mathbf{s}_{cr,\perp}$	[mm]	2	49
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100 250	
Design method A: Tension load - Pul	Il out and brick b	reakout fa	ilure in dry and wet maso	nry
Hollow brick UNIPOR WS 14 and UNIPOR WS 12 CORISO.	f _b ≥ 10 N/mm ²	[kN]	1.2	1.2
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 12 N/mm ²	[kN]	1.2	1.2
Design method A: Shear load - Local	l brick failure in d	Iry and we	et masonry	
Hollow brick UNIPOR WS 14 and	f _b ≥ 10 N/mm ²	[kN]	0.75	2.5
UNIPOR WS 12 CORISO, Characteristic shear resistance V _{Rk,b}	f _b ≥ 12 N/mm ²	[kN]	0.9	2.5
Design method B: All load directions	- All failure mod	es in dry	and wet masonry	
Hollow brick UNIPOR WS 14 and UNIPOR WS 12 CORISO, Design value of resistance $F_{Rd}^{(1)}$ ($c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr}$)	f _b ≥ 12 N/mm²	[kN]	0.3	0.4

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Hollow brick UNIPOR WS14, 10DF and UNIPOR WS12 CORISO, 10DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 8

Z86861.14

Page 21 of European Technical Assessment ETA-13/1040 of 13 January 2015

Deutsches Institut für **Bautechnik**

English translation prepared by DIBt

Base material masonry, hollow brick POROTON Plan-T14, 10DF

Table C4.5.1: Brick data

Description of brick		AT 771-1-019	Hollow brick POROTON Plan-T14
Type of brick			Hollow brick
Bulk density	ρ≥	[kg/dm³]	0.7
Standard, approval			EN 771-1, Z-17.1-625
Producer of brick			Schlagmann Baustoffwerke GmbH & Co. KG
Floducei of blick			Ziegeleistraße 1, D-84367 Zeilarn
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	10DF (248x300x249)
Minimum thickness of member	h _{min=}	[mm]	298

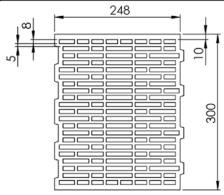


Table C4.5.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor rod WIT-AS		M8, M10, M12		
Anchor size In	Internal threaded rod WIT-IG		M6, M8		
Sieve sleeve				WIT-SH 18/95	
Drill method				Rotary drilling	
Drill hole diameter	d ₀	[mm]		18	
Depth of drill hole to deepest point	h₁ ≥	[mm]		100	
Minimum spacing II & \perp for tension load	S _{min,II} ,N S _{min,⊥,N}	[mm]	160	200	220
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	80	100	110
Characteristic spacing II	S _{cr,II}	[mm]	248		
Characteristic spacing 1	S _{cr,⊥}	[mm]		249	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	-	100	250
Design method A: Tension load - Pull ou	t and brick break	out failure	in dry and wet i	nasonry	
Hollow brick POROTON Planziegel T14, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 6 N/mm²	[kN]		1.2	
Design method A: Shear load - Local brid	ck failure in dry a	nd wet mas	sonry		
Hollow brick POROTON Planziegel T14, Characteristic shear resistance V _{Rk,b}	f _b ≥ 6 N/mm²	[kN]	-	0.9	2.5
Design method B: All load directions - A	II failure modes i	n dry and w	vet masonry		
Hollow brick POROTON Planziegel T14, Design value of resistance F_{Rd}^{1} ($c \ge c_{or,N}$ and $c_{or,V}$; $s \ge s_{cr}$)	f _b ≥ 6 N/mm²	[kN]	-	0.3	0.3

 F_{Rd} includes all failure modes and the influence of joints

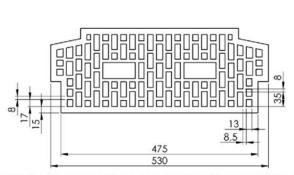
Würth Injektion System WIT-VM 250 for masonry

Hollow brick POROTON Plan-T14, 10DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 9

Electronic copy of the ETA by DIBt: ETA-13/1040


English translation prepared by DIBt

Base material ceiling, hollow brick for ceiling-DIN 4160-BN 0.8-530-250-210 (System Filigran)

Table C4.6.1: Brick data

Description of brick		W16 771-1-031	Brick for ceiling (system Filigran)
Type of brick			Brick for ceiling
Bulk density	ρ≥	[kg/dm³]	0.8
Standard, approval			DIN 4160
Producer of brick			Wienerberger Ziegelindustrie GmbH
1 Todasor of Short			Oldenburger Allee 26, 30659 Hannover
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	530x250x210
Minimum thickness of member	h _{min=}	[mm]	210

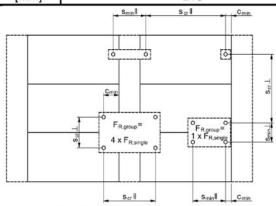


Table C4.6.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor rod WIT-AS			M6, M8	
Anchor size Internal threaded rod WIT-IG				-	
Sieve sleeve			WIT-SH 12/50		
Drill method			Rotary	drilling	
Drill hole diameter	d ₀	[mm]	1	2	
Depth of drill hole to deepest point	h₁ ≥	[mm]	5	5	
Minimum spacing II & ⊥ for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	80	200	
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	40	100	
Characteristic spacing II	S _{cr,II}	[mm]	50	30	
Characteristic spacing ot	$s_{cr,\perp}$	[mm]	25	50	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100		
Design method A: Tension load - Pull out	and brick break	out failure	in dry and wet masonry	1	
Brick for ceiling (system Filigran), Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm²	[kN]	0.6	0.6	
Design method A: Shear load - Local bric	k failure in dry a	ind wet mas	sonry		
Brick for ceiling (system Filigran), Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm ²⁾	[kN]	-	1.5	
Design method B: All load directions - All	Design method B: All load directions - All failure modes in dry and				
Brick for ceiling (system Filigran), Design value of resistance $F_{Rd}^{(1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 4 N/mm²	[kN]	-	0.2	

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Brick for ceiling (system Filigran)

Brick data, installation parameters, characteristic and design values of resistance

Annex C 10

Page 23 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick Blocchi Leggeri

Table C4.7.1: Brick data

Description of brick		AD 771-1-012	Blocchi Leggeri
Type of brick			Hollow brick
Bulk density	ρ≥	[kg/dm³]	0.6
Standard, approval			EN 771-1
Producer of brick			Wienerberger Brunori s.r.lVia Ringhiera 1
Floducer of blick			I-40020 Mordano (Bologna) fraz. Bubano, Italy
Format (measurement)	(Ibrick/ bbrick/ hbrick)	[mm]	250x120x330
Minimum thickness of member	h _{min=}	[mm]	120

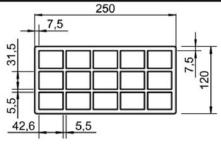


Table C4.7.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor re	od WIT-AS	M6, M8	M8, M10, M12
Anchor size In	ternal threaded	rod WIT-IG	-	M6, M8
Sieve sleeve			WIT-SH 12/50	WIT-SH 18/95
Drill method			Rotary	drilling
Drill hole diameter	d_0	[mm]	12	18
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	55	100
Minimum spacing II for tension load	S _{min,II,N}	[mm]	200	200
Minimum spacing \perp for tension load	$s_{min,\perp,N}$	[mm]	330	330
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	100	100
Characteristic spacing II	S _{cr,II}	[mm]	250	250
Characteristic spacing ⊥	$\textbf{S}_{\text{cr},\perp}$	[mm]	330	330
Minimum and characteristic edge distance for shear load	$c_{\text{min},V} = c_{\text{cr},V}$	[mm]	250	250
Design method A: Tension load - Pull out	and brick break	out failure	in dry and wet masonry	1
Hollow brick Blocchi Leggeri, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 6 N/mm²	[kN]	0.3	0.3
Design method A: Shear load - Local brid	k failure in dry a	ind wet mas	sonry	
Hollow brick Blocchi Leggeri, Characteristic shear resistance V _{Rk,b}	f _b ≥ 6 N/mm ²	[kN]	1.2	0.9
Design method B: All load directions - Al	n dry and w	et masonry		
Hollow brick Blocchi Leggeri, Design value of resistance $F_{Rd}^{(1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 6 N/mm²	[kN]	0.1	0.1

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Hollow brick Blocchi Leggeri Brick data, installation parameters, characteristic and design values of resistance	Annex C 11

Electronic copy of the ETA by DIBt: ETA-13/1040

Base material masonry, sand-lime solid brick Silka XL Basic and Silka XL Plus

Table C4.8.1: Brick data

Description of brick		KS	
Type of brick			Sand-lime solid brick
Bulk density	ρ≥	[kg/dm³]	2.0
Standard, approval			DIN 106, EN 771-2
Producer of brick	traducer of brick		Xella International GmbH
Froducer of brick			Dr. Hammacher-Straße 49, 47119 Duisburg
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ 498x200x498
Minimum thickness of member	h _{min} =	[mm]	200

Table C4.8.2: Installation parameters, Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	50	90		
Anchor size	Anchor ro	d WIT-AS	M6, M8	M8, M10, M12		
Anchor size In	ternal threaded re	od WIT-IG	-	M6, M8		
Sieve sleeve			without	without		
Drill method			Hammer drilling	Hammer drilling		
Drill hole diameter	d _o	[mm]	M6 = 8 mm M8 = 10 mm	M8 = 10 mm M10 = 12 mm M12, IGM6, IGM8 = 14 mm		
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	55	100		
Minimum spacing II $\& \perp$ for tension loa	$\begin{array}{c} s_{\text{min,II,N}} \\ s_{\text{min,\perp,N}} \end{array}$	[mm]	150	270		
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	75	135		
Characteristic spacing II & ⊥	S _{cr,II} S _{cr,⊥}	[mm]	150	270		
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	100		
	esign method A: Tension load - Pull out and brick breakout failure in wet masonry					
Sand-lime solid brick Silka XL	f _b ≥ 10 N/mm ²	[kN]	0.75	0.9		
Basic, Silka XL Plus, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	0.9	1.2		
Design method A: Tension load - Pเ	III out and brick b	reakout fa	ilure in dry masonry			
Sand-lime solid brick Silka XL	f _b ≥ 10 N/mm ²	[kN]	2.0	2.5		
Basic, Silka XL Plus, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	3.0	3.5		
Design method A: Shear load - Local brick failure in dry and wet masonry						
Sand-lime solid brick Silka XL Basic, Silka XL Plus,	f _b ≥ 10 N/mm ²	[kN]	1.2	1.2		
Characteristic shear resistance V _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	1.2	1.2		
Design method B: All load direction	thod B: All load directions - All failure modes in dry					
Sand-lime solid brick Silka XL Basic, Silka XL Plus, Design value of resistance $F_{Rd}^{(1)}$ $(c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr})$	f _b ≥ 20 N/mm²	[kN]	0.3	0.3		

 $[\]ensuremath{\textsc{F}_{\textsc{Rd}}}$ includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Sand-lime solid brick Silka XL Basic and Silka XL Plus Brick data, installation parameters, characteristic and design values of resistance	Annex C 12

Page 25 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, sand-lime perforated brick KS L, 8DF

Table: C4.9.1: Brick data

Description of brick		AK 771-2-005	KS L
Type of brick			Sand-lime perforated brick
Bulk density	ρ≥	[kg/dm³]	1.4
Standard, approval			DIN 106, EN 771-2
Producer of brick			e.g. Xella International GmbH
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	8DF (248x240x238)
Minimum thickness of member	h _{min} =	[mm]	240

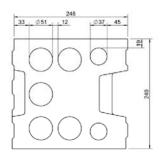


Table C4.9.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M8, M10, M12
Anchor size	Internal threaded ro	d WIT-IG	M6, M8
Sieve sleeve			WIT-SH 18/95
Drill method			Rotary drilling
Drill hole diameter	d ₀	[mm]	18
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	100
Minimum spacing II & ⊥ for tension load	S _{min,} Ⅱ₅N S _{min,⊥,} N	[mm]	220
Minimum and characteristic edge distance for tension load	$\mathbf{c}_{min,N} = \mathbf{c}_{cr,N}$	[mm]	110
Characteristic spacing II	S _{cr,II}	[mm]	248
Characteristic spacing ⊥	S _{cr,⊥}	[mm]	238
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250
Design method A: Tension load - Pull	out and brick breakou	ıt failure ir	n wet masonry
One difference of surface distributions (CO)	f _b ≥ 10 N/mm ²	[kN]	0.9
Sand-lime perforated brick KS L,	f _b ≥ 12 N/mm ²	[kN]	0.9
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 16 N/mm ²	[kN]	1.2
Design method A: Tension load - Pull	out and brick breakou	ıt failure ir	n dry masonry
Cand lines residented brief ICC	f _b ≥ 10 N/mm ²	[kN]	1.2
Sand-lime perforated brick KS L, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 12 N/mm ²	[kN]	1.2
Characteristic resistance mak,p/mak,b	f _b ≥ 16 N/mm ²	[kN]	1.5
Design method A: Shear load - Local I	brick failure in dry and	wet masc	onry
Sand-lime perforated brick KS L,	f _b ≥ 10 N/mm ²	[kN]	4.0
Characteristic shear resistance V _{Rk,b}	f _b ≥ 12 N/mm ²	[kN]	4.5
Characteristic shear resistance V _{RK,b}	f _b ≥ 16 N/mm ²	[kN]	5.5
Design method B: All load directions	- All failure modes i	n dry and	wet masonry
Sand-lime perforated brick KS L, Design value of resistance $F_{Rd}^{(1)}$ ($c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr}$)	f _b ≥ 16 N/mm²	[kN]	0.4

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Sand-lime perforated brick KS L, 8DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 13

Page 26 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, concrete solid block Vbn, NF (Bisophon V12)

Table C4.10.1: Brick data

Description of brick	O 771-3-004		Vbn	
Type of brick	Type of brick		Concrete solid block Vbn	
Bulk density	$ \alpha \text{ density} \qquad \qquad \rho \geq $		2.0	
Standard, approval			DIN 18153, EN 771-3	
Producer of brick			e.g. Bisotherm Bisotherm GmbH, Eisenbahnstraße 12, D-56218 Mühlheim-Klärlich	
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ NF (≥ 240x115x71)	
Minimum thickness of member	h _{min} =	[mm]	115	

Table C4.10.2: Installation parameters. Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	50	90	
Anchor size	Anchor rod WIT-AS		M6, M8	M8, M10, M12	
Anchor size Inte	ernal threaded ro	od WIT-IG	-	М6, М8	
Sieve sleeve			without	without	
Drill method			Hammer drilling	Hammer drilling	
Drill hole diameter d_0		[mm]	M6 = 8 mm M8 = 10 mm	M8 = 10 mm M10 = 12 mm M12, IGM6, IGM8 = 14 mm	
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	55	100	
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	150	270	
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	75	135	
Characteristic spacing II & \perp	S _{cr,II} S _{cr,⊥}	[mm]	150	270	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	135	
Design method A: Tension load - Pull	out and brick bi	eakout fai	ure in wet and dry maso	nry	
Conservate solid blook View NC	f _b ≥ 10 N/mm ²	[kN]	0.75	3.0	
Concrete solid block Vbn, NF, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	1.2	4.5	
Characteristic resistance (VRK,p/14RK,b	f _b ≥ 28 N/mm ²	[kN]	1.5	5.5	
Design method A: Shear load - Local I	brick failure in d	ry and wet	masonry		
Concrete solid block Vbn, NF,	f _b ≥ 10 N/mm ²	[kN]	0.75	5.0	
Characteristic shear resistance V _{Rk,b}	f _b ≥ 20 N/mm ²	[kN]	0.75	5.0	
The determine of the first resistance V RK,D	f _b ≥ 28 N/mm ²	[kN]	0.75	5.0	
Design method B: All load directions	- All failure mod	es in dry a	nd wet masonry		
Concrete solid block Vbn, NF, Design value of resistance F_{Rd}^{1} $(c \ge c_{cr,N}$ and $c_{cr,V}$; $s \ge s_{cr})$	f _b ≥ 28 N/mm ²	[kN]	0.4	1.2	

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Concrete solid block Vbn, NF Brick data, installation parameters, characteristic and design values of resistance	Annex C 14

Page 27 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, lightweight concrete solid brick V, NF

Table C4.11.1: Brick data

Description of brick		AI 771-3-008	V
Type of brick			Lightweight concrete solid brick
Bulk density	ρ≥	[kg/dm³]	0.9
Standard, approval			EN 771-3, DIN V 18152-100
Producer of brick			e.g. Bisoclassic Bisotherm GmbH, Eisenbahnstraße 12, D-56218 Mühlheim-Kärlich
Format (measurement)	(l _{brick} / b _{brick} / h _{brick})	[mm]	≥ NF (≥ 240x115x71)
Minimum thickness of member	h _{min} =	[mm]	115

Table C4.11.2: Installation parameters, Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	50	ç	90
Anchor size	Anchor ro	d WIT-AS	M6, M8	M8, M1	0, M12
Anchor size Inte	Anchor size Internal threaded rod		-	М6,	M8
Sieve sleeve			without	without	
Drill method			Hammer drilling	Hamme	r drilling
Drill hole diameter	d _o	[mm]	M6 = 8 mm M8 = 10 mm	M10 = M12,	10 mm 12 mm IGM6, 14 mm
Depth of drill hole to deepest point	h ₁ ≥	[mm]	55	1(00
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	150	160	270
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	75	80	135
Characteristic spacing II & ⊥	S _{cr,II} S _{cr,⊥}	[mm]	150	27	70
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	100	250
Design method A: Tension load - Pull	out and brick b	reakout fa	ailure in wet and dry masonry		
Lightweight concrete solid block V,	f _b ≥ 2 N/mm ²	[kN]	0.75	0.9	0.9
NF Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	0.9	1.5	1.5
Design method A: Shear load - Local I	orick failure in d	dry and we	t masonry		
Lightweight concrete solid block V,	f _b ≥ 2 N/mm ²	[kN]	0.6	0.75	1.5
Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	0.75	0.9	2.5
Design method B: All load directions, all failure modes in dry a			nd wet masonry		
Lightweight concrete solid block V, NF Design value of resistance $F_{Rd}^{(1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 4 N/mm ²	[kN]	0.25	0.3	0.4

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Lightweight concrete solid block V, NF Brick data, installation parameters, characteristic and design values of resistance	Annex C 15

Page 28 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, lightweight concrete solid brick V, NF

Table C4.12.1: Brick data

Description of brick		AH 771-3-007	V
Type of brick			Lightweight concrete solid brick
Bulk density	Bulk density $\rho \ge [l]$		1.0
Standard, approval			EN 771-3, DIN V 18152-100
			e.g. BisoBims,
Producer of brick	Producer of brick		Bisotherm GmbH, Eisenbahnstraße 12,
			D-56218 Mühlheim-Klärlich
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ NF (≥ 240x115x71)
Minimum thickness of member	h _{min} =	[mm]	115

Table C4.12.2: Installation parameters. Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	50	90	
Anchor size,	Anchor ro	d WIT-AS	M6, M8	M8, M	10, M12
Anchor size, Inte	rnal threaded ro	od WIT-IG	-	M6, M8	
Sieve sleeve WIT-SH			without	witl	nout
Drill method			Hammer drilling	Hamme	er drilling
Drill hole diameter	d ₀	[mm]	M6 = 8 mm M8 = 10 mm	M10 = M12,	10 mm 12 mm IGM6, = 14 mm
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	55	1	00
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	150	160	270
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	75	80	135
Characteristic spacing II & \perp	S _{cr,∐} S _{cr,⊥}	[mm]	150	2	70
Minimum and characteristic edge distance for shear load	$C_{\text{min,V}} = C_{\text{cr,V}}$	[mm]	100	100	250
Design method A: Tension load - Pull	out and brick b	reakout fa	ilure in wet and dry masc	nry	
Lightweight concrete solid block V,	f _b ≥ 2 N/mm ²	[kN]	0.6	1.2	1.2
NF, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	0.9	1.5	2.0
Design method A: Shear load - Local I	brick failure in d	dry and we	t masonry		
Lightweight concrete solid block V, NF,	f _b ≥ 2 N/mm ²	[kN]	0.6	1.2	1.5
Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm²	[kN]	0.9	2.0	2.5
Design method B: All load directions	- All failure mod	les in dry a	and wet masonry		
Lightweight concrete solid block V, NF, Design value of resistance $F_{Rd}^{(1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 4 N/mm²	[kN]	0.25	0.5	0.5

 $^{^{1)}}$ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Lightweight concrete solid block V, NF Brick data, installation parameters, characteristic and design values of resistance	Annex C 16

Page 29 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick lightweight concrete 3K Hbl, 16DF

Table C4.13.1: Brick data

Description of brick	n of brick R771-3-005		3K Hbl
Type of brick			Hollow brick lightweight concrete 3K Hbl
Bulk density	ρ≥	[kg/dm³]	0.7
Standard, approval			DIN 18151, EN 771-3
Producer of brick			e.g. Heinzmann Baustoffe GmbH,
			Liapor GmbH & Co. KG
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	16DF (498x240x238)
Minimum thickness of member	h _{min} =	[mm]	240

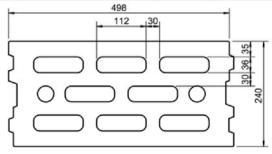


Table C4.13.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor rod WIT-AS		M6, M8
Anchor size Inte	rnal threaded ro	d WIT-IG	-
Sieve sleeve			WIT-SH 12/50
Drill method			Rotary drilling
Drill hole diameter	d_0	[mm]	12
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	55
Minimum spacing II & \perp for tension load	S _{min,} II,N S _{min,⊥,N}	[mm]	200
Minimum and characteristic edge distance for tension load	Minimum and characteristic		100
Characteristic spacing II	S _{cr,II}	[mm]	498
Characteristic spacing ot	S _{cr,⊥}	[mm]	238
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100
Design method A: Tension load - Pull out a	nd brick breako	ut failure i	n dry and wet masonry
Hollow brick lightweight concrete 3K Hbl,	f _b ≥ 2 N/mm ²	[kN]	0.6
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm²	[kN]	0.75
Design method A: Shear load - Local brick t	failure in dry an	d wet mas	onry
Hollow brick lightweight concrete 3K Hbl,	f _b ≥ 2 N/mm ²	[kN]	0.9
Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm²	[kN]	1.5
Design method B: All load directions - All fa	ailure modes in	dry and w	et masonry
Hollow brick lightweight concrete 3K Hbl, Design value of resistance F_{Rd}^{1} (c $\geq c_{cr,N}$ and $c_{cr,v}$; s $\geq s_{cr}$)	f _b ≥ 4 N/mm²	[kN]	0.25

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Hollow brick lightweight concrete 3K Hbl, 16DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 17

Electronic copy of the ETA by DIBt: ETA-13/1040

Page 30 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick lightweight concrete Liapor-Super-K, 16DF

Table C4.14.1: Brick data

Description of brick	S 771-3-006		Liapor-Super-K
Type of brick			Hollow brick lightweight concrete 7K
Bulk density	ρ≥	[kg/dm³]	0.8
Standard, approval			EN 771-3, Z-17.1-501
Producer of brick			Liapor GmbH & Co. KG, D-91352 Hallerndorf
Format (measurement)	(l _{brick} / b _{brick} / h _{brick})	[mm]	16DF 495x240x238)
Minimum thickness of member	h _{min} =	[mm]	240

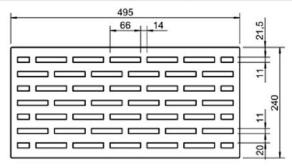


Table C4.14.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS		M8, M10, M12		
Anchor size Inte	nternal threaded rod WIT-IG		M6, M8			
Sieve sleeve				WIT-SH 18/95		
Drill method				Rotary drilling		
Drill hole diameter	d ₀	[mm]		18		
Depth of drill hole to deepest point	h₁ ≥	[mm]		100		
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	160	200	22	20
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	80	100	1	10
Characteristic spacing II	S _{cr,II}	[mm]		495		
Characteristic spacing ot	S _{cr,⊥}	[mm]		238		
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	100	250	495
Design method A: Tension load - Pull	out and brick b	reakout fa	ilure in dry and w	et masonry		
Hollow brick lightweight concrete	f _b ≥ 2 N/mm²	[kN]	1.2	1.5	1.	.5
Liapor-Super-K , Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	1.5	2.5	2	.5
Design method A: Shear load - Local	brick failure in c	Iry and we	t masonry		-	
Hollow brick lightweight concrete	f _b ≥ 2 N/mm²	[kN]	-	0.75	2.5	3.0
Liapor-Super-K , Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	=	0.9	2.5	4.0
Design method B: All load directions	- All failure mod	les in dry a	and wet masonry			
Hollow brick lightweight concrete Liapor-Super-K, Design value of resistance $F_{Rd}^{1)}$ (c $\geq c_{cr,N}$ and $c_{cr,v}$; $s \geq s_{cr}$)	f _b ≥ 4 N/mm²	[kN]	-	0.3	0	.6

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry Hollow brick lightweight concrete Liapor-Super-K, 16DF Brick data, installation parameters, characteristic and design values of resistance

Page 31 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, hollow brick lightweight concrete Gisoton Thermo Schall

Table C4.15.1: Brick data

Description of brick AP 771-3-010		Gisoton Thermo Schall	
Type of brick	Type of brick		Hollow brick lightweight concrete
Bulk density	$\rho \ge [kg/dm^3]$		0.45
Standard, approval			Z-15.2-18
Producer of brick			Gisoton Wandsysteme, Baustoffwerke
			Gebhart & Söhne GmbH & Co, Hochstraße 2,
			D-88317 Aichstetten
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	498x300x248
Minimum thickness of member	h _{min=}	[mm]	300

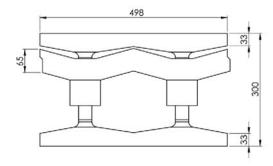


Table C4.15.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor rod WIT-AS		M8, M10, M12		
Anchor size Inte	nternal threaded rod WIT-IG		M6, M8		
Sieve sleeve			WIT-SI	H 18/95	
Drill method			Rotary	drilling	
Drill hole diameter	d_0	[mm]	1	8	
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	10	00	
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	160	22	20
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	80	1	10
Characteristic spacing II	S _{cr,II}	[mm]	498		
Characteristic spacing \(\perp \)	$s_{\text{cr},\perp}$	[mm]	24	4 8	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	250	498
Design method A: Tension load - Pull	out and brick b	reakout fa	ilure in dry and wet masor	nry	
Gisoton Thermo Schall, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	0.9	1	.2
Design method A: Shear load - Local	brick failure in c	dry and we	t masonry		
Gisoton Thermo Schall, Characteristic shear resistance V _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	0.9	2.5	3.5
Design method B: All load directions	- All failure mod	les in dry a	and wet masonry		
Gisoton Thermo Schall, Design value of resistance F_{Rd}^{1} (c $\geq c_{cr,N}$ and $c_{cr,V}$; $s \geq s_{cr}$)	f _b ≥ 2 N/mm ²	[kN]	0.3	0	.3

 F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Gisoton Thermo Schall Brick data, installation parameters, characteristic and design values of resistance	Annex C 19

Base material masonry, hollow brick lightweight concrete 1K Hbl, 12DF

Table C4.16.1: Brick data

Description of brick		AU	1K Hbl
Type of brick			Hollow brick lightweight concrete 1K Hbl
Bulk density	ρ≥	[kg/dm³]	1.2
Standard, approval			DIN 18151, EN 771-3
Producer of brick			e.g. Stark Betonwerk GmbH & Co. KG
			D-74547 Untermünkheim-Kupfer
Format (measurement)	(I _{brick} / b _{brick} / h _{brick)}	[mm]	12DF (490x175x238)
Minimum thickness of member	h _{min=}	[mm]	175

Table C4.16.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M8, M1	0, M12	
Anchor size Int	ternal threaded rod WIT-IG		M6, M8		
Sieve sleeve			WIT-SH 18/95		
Drill method			Rotary	drilling	
Drill hole diameter	d ₀	[mm]	1	8	
Depth of drill hole to deepest point	h ₁ ≥	[mm]	10	00	
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	200	23	38
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	100	24	! 5
Characteristic spacing II	S _{cr,II}	[mm]	49	90	
Characteristic spacing ot	$\textbf{S}_{\text{cr},\perp}$	[mm]	23	238	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	100	250	490
Design method A: Tension load - Pul	l out and brick b	reakout fa	ilure in dry and wet masor	nry	
Hollow brick lightweight concrete	f _b ≥ 2 N/mm ²	[kN]	0.9	1.	2
1K Hbl, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	1.2	1.	5
Design method A: Shear load - Local	brick failure in c	Iry and we	t masonry		
Hollow brick lightweight concrete	f _b ≥ 2 N/mm²	[kN]	0.75	2.5	4.0
1K Hbl, Characteristic shear resistance V _{Rk,b}	f _b ≥ 4 N/mm ²	[kN]	0.9	2.5	5.5
Design method B: All load directions - All failure modes in dry a			and wet masonry		
Hollow brick lightweight concrete 1K Hbl, Design value of resistance $F_{Rd}^{(1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 4 N/mm²	[kN]	0.3	0.	4

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Hollow brick lightweight concrete 1K Hbl, 12DF

Brick data, installation parameters, characteristic and design values of resistance

Annex C 20

Electronic copy of the ETA by DIBt: ETA-13/1040

Page 33 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, lightweight concrete solid block Vbl

Table C4.17.1: Brick data

Description of brick			Vbl 2-0.6-24DF
Type of brick			Lightweight Aggregate Concrete
Bulk density	ρ≥	[kg/dm³]	0.6
Standard, approval			DIN 18152
Producer of brick			e.g. Liapor Massivwand LAC2 by: Liapor GmbH & Co. KG D-91352 Hallerndorf
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ 24DF
Minimum thickness of member	h _{min=}	[mm]	365

Table C4.17.2: Installation parameters. Characteristic and design values of resistance

able C4.17.2: Installation parameters, Characteristic and design values of resistance				
Effective embedment depth	h _{ef} ≥	[mm]	90	
Anchor size	Anchor rod WIT-AS		M8, M10, M12	
Anchor size Inter	nal threaded ro	M6, M8		
Sieve sleeve			without	
Drill method			Hammer drilling	
Drill hole diameter	d ₀	[mm]	M8 = 10 mm M10 = 12 mm M12, IGM6, IGM8 = 14 mm	
Depth of drill hole to deepest point	$h_1\geq$	[mm]	100	
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	140	
Minimum and characteristic edge distance for tension load	$c_{\text{min},N} = c_{\text{cr},N}$	[mm]	70	
Characteristic spacing II & \perp	S _{cr,Ⅱ} S _{cr,⊥}	[mm]	270	
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250	
Design method A: Tension load - Pull	out and brick b	reakout fa	ilure in wet and dry masonry	
Lightweight Aggregate Concrete Vbl, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	1.5	
Design method A: Shear load - Local b	rick failure in d	dry and we	et masonry	
Lightweight Aggregate Concrete Vbl, Characteristic shear resistance V _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	2.5	
Design method B: All load directions -	All failure mod	les in dry a	and wet masonry	
Lightweight Aggregate Concrete VbI, Design value of resistance $F_{Rd}^{1)}$ (c $\geq c_{cr,N}$ and $c_{cr,V}$; s $\geq s_{cr}$)	f _b ≥ 2 N/mm ²	[kN]	0.5	

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Lightweight concrete solid block Vbl Brick data, installation parameters, characteristic and design values of resistance	Annex C 21

Page 34 of European Technical Assessment ETA-13/1040 of 13 January 2015

English translation prepared by DIBt

Base material masonry, concrete solid block Vbn

Table C4.18.1: Brick data

Description of brick			Vbn 12-1,4-12DF
Type of brick			Concrete
Bulk density	ρ≥	[kg/dm³]	1.4
Standard, approval			DIN 18153
Producer of brick			e.g. Liapor Elementwand LC16/18 by: Liapor GmbH & Co. KG D-91352 Hallerndorf
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ 12DF
Minimum thickness of member	h _{min=}	[mm]	175

Table C4.18.2: Installation parameters, Characteristic and design values of resistance

Effective embedment depth	h _{ef} ≥	[mm]	90
Anchor size	Anchor rod WIT-AS		M8, M10, M12
Anchor size Int	ernal threaded rod WIT-IG		M6, M8
Sieve sleeve			without
Drill method			Hammer drilling
Drill hole diameter	d ₀	[mm]	M8 = 10 mm M10 = 12 mm M12, IGM6, IGM8 = 14 mm
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	100
Minimum spacing II & \perp for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	140
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	70
Characteristic spacing II & \perp	$oldsymbol{S_{cr,II}}{oldsymbol{S_{cr,\perp}}}$	[mm]	270
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250
Design method A: Tension load - Pul	I out and brick b	reakout fa	ilure in wet and dry masonry
Concrete solid block Vbn,	f _b ≥ 12 N/mm ²	[kN]	3.5
Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 16 N/mm ²	[kN]	4.0
Design method A: Shear load - Local	brick failure in	dry and we	t masonry
Concrete solid block Vbn,	f _b ≥ 12 N/mm ²	[kN]	8.0
Characteristic shear resistance V _{Rk,b}	f _b ≥ 16 N/mm ²	[kN]	9.5
Design method B: All load directions	- All failure mod	les in dry a	and wet masonry
Concrete solid block Vbn, Design value of resistance $F_{Rd}^{1)}$ ($c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr}$)	f _b ≥ 16 N/mm ²	[kN]	0.75

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry	
Concrete solid block Vbn Brick data, installation parameters, characteristic and design values of resistance	Annex C 22

Base material masonry, Autoclaved Aerated Concrete AAC

Table C4.19.1: Brick data

Description of brick			AAC
Type of brick			Autoclaved Aerated Concrete
Bulk density	ρ≥	[kg/dm³]	0.35
Standard, approval			DIN 4165, EN 771-4
Format (measurement)	(l _{brick} / b _{brick} / h _{brick})	[mm]	≥ 499x175x249
Minimum thickness of member	h _{min} =	[mm]	175

Table C4.19.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M8, M10, M12
Anchor size In	ternal threaded rod WIT-IG		M6, M8
Sieve sleeve			WIT-SH 18/95
Drill method			Rotary drilling
Drill hole diameter	d ₀	[mm]	18
Depth of drill hole to deepest point	h ₁ ≥	[mm]	100
Minimum spacing II & ⊥ for tension loa	d $s_{min,II,N} \atop s_{min,\perp,N}$	[mm]	270
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	135
Characteristic spacing II & \perp	S _{cr,II} S _{cr,⊥}	[mm]	270
Minimum and characteristic edge distance for shear load	$c_{\text{min,V}} = c_{\text{cr,V}}$	[mm]	250
Design method A: Tension load - Pull out and brick breakout f			ilure in wet and dry masonry
Autoclaved Aerated Concrete AAC, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 1.6 N/mm ²	[kN]	0.9
Design method A: Shear load - Loca	l brick failure in o	dry and we	t masonry
Autoclaved Aerated Concrete AAC, Characteristic shear resistance V _{Rk,b}	f _b ≥ 1.6 N/mm ²	[kN]	2.0
Design method B: All load directions - All failure modes in dry			and wet masonry
Autoclaved Aerated Concrete AAC, Design value of resistance F_{Rd}^{1} ($c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr}$)	f _b ≥ 1.6 N/mm ²	[kN]	0.3

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Autoclaved Aerated Concrete
Brick data, installation parameters, characteristic and design values of resistance

Annex C 23

Base material masonry, Autoclaved Aerated Concrete AAC

Table C4.20.1: Brick data

Description of brick			AAC
Type of brick			Autoclaved Aerated Concrete
Bulk density	ρ≥	[kg/dm³]	0.4
Standard, approval			DIN 4165, EN 771-4
Format (measurement)	(I _{brick} / b _{brick} / h _{brick})	[mm]	≥ 499x175x249
Minimum thickness of member	h _{min} =	[mm]	175

Table C4.20.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M8, M10, M12
Anchor size Int	ernal threaded rod WIT-IG		M6, M8
Sieve sleeve			WIT-SH 18/95
Drill method			Rotary drilling
Drill hole diameter	d ₀	[mm]	18
Depth of drill hole to deepest point	$h_1 \geq$	[mm]	100
Minimum spacing II & \perp for tension load	d S _{min,II,N} S _{min,⊥,N}	[mm]	270
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	135
Characteristic spacing II & \perp	S _{cr,II} S _{cr,⊥}	[mm]	270
Minimum and characteristic edge distance for shear load	$\mathbf{c}_{min,V} = \mathbf{c}_{cr,V}$	[mm]	250
Design method A: Tension load - Pu	ll out and brick b	reakout fa	ilure in wet and dry masonry
Autoclaved Aerated Concrete AAC, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	0.9
Design method A: Shear load - Loca	l brick failure in d	dry and we	t masonry
Autoclaved Aerated Concrete AAC, Characteristic shear resistance V _{Rk,b}	f _b ≥ 2 N/mm ²	[kN]	2.5
Design method B: All load directions	s - All failure mod	les in dry a	and wet masonry
Autoclaved Aerated Concrete AAC, Design value of resistance $F_{Rd}^{(1)}$ ($c \ge c_{cr,N}$ and $c_{cr,v}$; $s \ge s_{cr}$)	f _b ≥ 2 N/mm²	[kN]	0.4

F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Autoclaved Aerated Concrete
Brick data, installation parameters, characteristic and design values of resistance

Annex C 24

Base material masonry, Autoclaved Aerated Concrete AAC

Table C4.21.1: Brick data

Description of brick			AAC
Type of brick			Autoclaved Aerated Concrete
Bulk density	ρ≥	[kg/dm³]	0.6
Standard, approval			DIN 4165, EN 771-4
Format (measurement)	(l _{brick} / b _{brick} / h _{brick})	[mm]	≥ 499x175x249
Minimum thickness of member	h _{min} =	[mm]	175

Table C4.21.2: Installation parameters, Characteristic and design values of resistance

Anchor size	Anchor ro	d WIT-AS	M8, M10, M12
Anchor size Inte	ernal threaded rod WIT-IG		M6, M8
Sieve sleeve			WIT-SH 18/95
Drill method			Rotary drilling
Drill hole diameter	d ₀	[mm]	18
Depth of drill hole to deepest point	h₁ ≥	[mm]	100
Minimum spacing II & ⊥ for tension load	S _{min,II,N} S _{min,⊥,N}	[mm]	270
Minimum and characteristic edge distance for tension load	$c_{\text{min,N}} = c_{\text{cr,N}}$	[mm]	135
Characteristic spacing II & \perp	S _{cr,II} S _{cr,⊥}	[mm]	270
Minimum and characteristic edge distance for shear load	$\mathbf{c}_{min,V} = \mathbf{c}_{cr,V}$	[mm]	250
Design method A: Tension load: Pull	out and brick bi	eakout fai	lure in wet and dry masonry
Autoclaved Aerated Concrete AAC, Characteristic resistance N _{Rk,p} /N _{Rk,b}	f _b ≥ 7 N/mm ²	[kN]	2.0
Design method A: Shear load: Local k	rick failure in d	ry and wet	t masonry
Autoclaved Aerated Concrete AAC, Characteristic shear resistance V _{Rk,b}	f _b ≥ 7 N/mm ²	[kN]	5.0
Design method B: All load directions,	all failure mode	es in dry ar	nd wet masonry
Autoclaved Aerated Concrete AAC, Design value of resistance $F_{Rd}^{1)}$ ($c \ge c_{cr,N}$ and $c_{cr,V}$; $s \ge s_{cr}$)	f _b ≥ 7 N/mm²	[kN]	0.75

¹⁾ F_{Rd} includes all failure modes and the influence of joints

Würth Injektion System WIT-VM 250 for masonry

Autoclaved Aerated Concrete
Brick data, installation parameters, characteristic and design values of resistance

Annex C 25

	Anchor size: M6, M8, M10, M12 with and without sieve sleeve								
	Displacements	s under tensio	n load	Displacements under shear load					
Sieve sleeve	max N [kN]	Displacement		may V [kN]	Displacement				
		δ_{N0} [mm]	$\delta_{N_{\infty}}$ [mm]	max V [kN]	δ_{V0} [mm]	$\delta_{V_{\infty}}$ [mm]			
WIT-SH 12/50	$N = \frac{N_{Rk}}{1.4 \times \gamma_{M}}$	0.2	0.4	$V = \frac{V_{Rk}}{1.4 \times \gamma_{M}}$	2.0	3.0			
WIT-SH 18/95	1.4 ^ γ _M	1.5	3.0	1. 4 ^ γ _M	0.9	1.2			

Table C6: β- factors, reduction factors for tests at the construction site

Masonry	Solid			Hollow		
	Mz, Vn, Vbn, V, Vbl, LC, LAC	KS	AAC	Hbl	HLz	KSL
Drill method	Hamme	r drilling	Rotary drilling Rotary drilling		g	
β for dry masonry and h _{ef} ≥ 49 mm	0.35	0.35	0.3	0.35	0.35	0.35
β for dry masonry and h _{ef} ≥ 93 mm	0.43	0.43	0.37	0.43	0.43	0.43
β for wet masonry and h _{ef} ≥ 49 mm	0.35	0.12	0.3	0.35	0.35	0.28
β for wet masonry and h _{ef} ≥ 93 mm	0.43	0.15	0.37	0.43	0.43	0.34

Design method A: To convert the characteristic resistances $N_{Rk,b}$, $V_{Rk,b}$ of a masonry unit given in Annex C 5 to Annex C 25 related to the strength $f_{b,nom}^{Table}$ to a lower nominal strength $f_{b,nom}$ the following equation can be used:

$$\boldsymbol{N_{Rk,b}}(f_{b,nom}) = \boldsymbol{N_{Rk,b}^{Table}} \boldsymbol{\times} \; \big(\frac{f_{b,nom}}{f_{b,nom}^{Table}}\big)^{\alpha}$$

$$V_{Rk,b}(f_{b,nom}) = V_{Rk,b}^{Table} \times \left(\frac{f_{b,nom}}{f_{b,nom}^{Table}}\right)^{\alpha}$$

Electronic copy of the ETA by DIBt: ETA-13/1040

with $N_{Rk,b}$ = Characteristic resistance in masonry with a strength $f_{b,nom} < f_{b,nom}^{Table}$ as given in Annex C 5 to C 25

 $N_{Rk,b}^{Table}$ = Characteristic resistance in masonry with a strength $f_{b,nom}^{Table}$ as given in Annex C 5 to C 25

 $V_{Rk,b}$ = Characteristic resistance in masonry with a strength $f_{b,nom} < f_{b,nom}^{Table}$ as given in Annex C 5 to C 25

 $V_{Rk,b}^{Table}$ = Characteristic resistance in masonry with a strength $f_{b,nom}^{Table}$ as given in Annex C 5 to C 25

 α = 0,5 for masonry units of clay, concrete, lightweight concrete and solid units of calcium silicate

 α = 0,75 for masonry units of perforated calcium silicate bricks

Würth Injektion System WIT-VM 250 for masonry		
Displacements, β-factors	Annex C 26	