

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0457 of 10 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Injection system Hilti HIT-HY 170 Product family Bonded anchor for use in concrete to which the construction product belongs Manufacturer Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 18 pages including 3 annexes contains This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) No 305/2011, on the basis of anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-14/0457 English translation prepared by DIBt

Page 2 of 18 | 10 March 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 18 | 10 March 2015

European Technical Assessment ETA-14/0457 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 170 is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 170 and a steel element. The steel element consist of a threaded rod HIT-V or a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or an internal threaded sleeve in the range of M8 to M16.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029	See Annex C1 to C3
Displacements under tension and shear loads	See Annex C4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Page 4 of 18 | 10 March 2015

European Technical Assessment

ETA-14/0457

English translation prepared by DIBt

3.5 **Protection against noise (BWR 5)** Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 March 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-14/0457 of 10 March 2015

English translation prepared by DIBt

Installed condition Figure A1: Threaded rod and HIT-V-... Marking of the embedment depth f(t) = f(t) f(t) = f(t)

Figure A2: Internally threaded sleeve HIS-(R)N

Injection system Hilti HIT-HY 170

Product description Installed condition Annex A1

Designation	Material
Metal parts made of	zinc coated steel
Threaded rod HIT-V-5.8(F)	Strength class 5.8, f_{uk} = 500 N/mm ² ; f_{yk} = 400 N/mm ² Elongation at fracture (I_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m (F) Hot dip galvanized \geq 45 μ m
Threaded rod HIT-V-8.8(F)	Strength class 8.8 , f_{uk} = 800 N/mm ² , f_{yk} = 640 N/mm ² Elongation at fracture (I_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 µm (F) Hot dip galvanized \geq 45 µm
Internally threaded sleeve HIS-N	Electroplated zinc coated $\ge 5\mu m$
Washer	Electroplated zinc coated \ge 5 μ m Hot dip galvanized \ge 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μm Hot dip galvanized \geq 45 μm
Metal parts made of	stainless steel
Threaded rod HIT-V-R	Strength class 70, f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ² Elongation at fracture (I_0 =5d) > 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Metal parts made of	high corrosion resistant steel
Threaded rod HIT-V-HCR	For \leq M20: f_{uk} = 800 N/mm ² , f_{yk} = 640 N/mm ² Elongation at fracture (l_0 =5d) > 8% ductile For > M20: f_{uk} = 700 N/mm ² , f_{yk} = 400 N/mm ² Elongation at fracture (l_0 =5d) > 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Injection system Hilti HIT-HY 170

Product description Materials

Annex A3

Specifications of intended use

Anchorages subject to:

Static and quasi static loading: M8 to M24

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and non-cracked concrete according to Table B1.

Table B1: Specifications of intended use

Anchorages	subject to:		HIT-HY 1	70 with
Elements		Threaded rod,	ніт-∨ ┣	HIS-(R)N
Hammer drilling mode		\checkmark		✓
Static and quasi static loading in non-cracked concrete		M8 to M24 Table : C1, C2, C5, C6		M8 to M16 Table : C3, C4, C7, C8
Static and quasi static loading in cracked concrete		M10 to M16 Table : C1, C2, C5, C6		-
Temperature installation	in the base material at		-5° C to) +40° C
Temperature range I:		-40 °C to +40 °C		erm temperature +24 °C and erm temperature +40 °C)
temperature	Temperature range II:	-40 °C to +80 °C		erm temperature +50 °C and erm temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Injection system Hilti HIT-HY 170

Intended Use Specifications

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: "EOTA Technical Report TR 029, Edition September 2010".

Installation:

- · Use category: dry or wet concrete (not in flooded holes)
- Overhead installation is admissible
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 170

Intended Use Specifications

Deutsches Institut für Bautechnik

HIT-HY 170 with threaded rod, H	IT-V		M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Nominal diameter of drill bit	d _o	[mm]	10	12	14	18	22	28
Range of effective embedment depth and depth of drilled hole	h _{ef} = h ₀	[mm]	60 to 96	60 to 120	70 to 144	80 to 192	90 to 240	96 to 288
Maximum diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18	22	26
Minimum thickness of concrete member	h _{min}	[mm]		_{ef} + 30 m ≥ 100 mm			h _{ef} + 2⋅d₀	
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120

¹⁾ for larger clearance hole see "TR 029 section 1.1"

HIT-V-...

Injection system Hilti HIT-HY 170

Intended Use Installation parameters

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M16
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4
Nominal diameter of drill bit	d _o	[mm]	14	18	22	28
Effective embedment depth and drill hole depth	h_{ef} = h_0	[mm]	90	110	125	170
Maximum diameter of clearance hole in the fixture ¹⁾	d _f	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230
Maximum torque moment	T _{max}	[Nm]	10	20	40	80
Thread engagement length min-ma	ax h _s	[mm]	8-20	10-25	12-30	16-40
Minimum spacing	S _{min}	[mm]	60	75	90	115
Minimum edge distance	C _{min}	[mm]	40	45	55	65

¹⁾ for larger clearance hole see "TR 029 section 1.1"

Internally threaded sleeve HIS-(R)N...

Marking:

Identifying mark - HILTI and embossing "HIS-N" (for C-steel) embossing "HIS-RN" (for stainless steel)

Injection system Hilti HIT-HY 170

Intended Use Installation parameters

Temperature in the base material T			orking time	Maximum curing time t _{cure}		
-5°C	to	0°C	10	min	12 h	
> 0°C	to	5°C	10	min	5 h	
> 5°C	to	10°C	8	min	2,5 h	
> 10°C	to	20°C	5	min	1,5 h	
> 20°C	to	30°C	3	min	45 min	
> 30°C	to	40°C	2	min	30 min	

¹⁾ The curing time data are valid for dry base material only.

In wet base material the curing times must be doubled.

Table B5: Parameters of cleaning and setting tools

Elem	ents	Drill and	d clean	Installation
HIT-V	HIS-(R)N	Hammer drilling	Brush	Piston plug
			·····	
size	size	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	10	10	-
M10	-	12	12	12
M12	M8	14	14	14
M16	M10	18	18	18
M20	M12	22	22	22
M24	M16	28	28	28

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10 \cdot d$

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Injection system Hilti HIT-HY 170

Intended Use Minimum working and curing time Cleaning and setting tools

Installation		
Hole drilling		
Hammer drilling		
Connection	Drill hole to the required embedment depth with a hammer drill se mode using an appropriately sized carbide drill bit.	et in rotation-hammer
Drill hole cleaning	Just before setting an anchor, the drill hole must be free of dust a Inadequate hole cleaning = poor load values.	and debris.
Manual Cleaning (MC)	Non-cracked concrete only for drill hole diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10 \cdot d_0$	I
5° 4x	The Hilti manual pump may be used for blowing out drill holes up $d_0 \le 18$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$. Blow out at least 4 times from the back of the drill hole until return noticeable dust	
4x	Brush 4 times with the specified brush (see Table B5) by inserting HIT-RB to the back of the hole (if needed with extension) in a twis removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replaced with t diameter.	sting motion and ole (brush \emptyset ≥ drill
4x	Blow out again with manual pump at least 4 times until return air noticeable dust.	stream is free of
Compressed air clean	ing (CAC) for all drill hole diameters d_0 and all drill hole depths h_0	
2x 33x	Blow 2 times from the back of the hole (if needed with nozzle ext length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until retu of noticeable dust.	
2x	Brush 2 times with the specified brush (see Table B5) by inserting HIT-RB to the back of the hole (if needed with extension) in a twi removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replaced with t diameter.	sting motion and ole (brush Ø ≥ drill
24	Blow again with compressed air 2 times until return air stream is	free of noticeable dust.
njection system Hilti	НІТ-НҮ 170	
ntended Use Installation instructions		Annex B6

Injection preparation		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack mani modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged f Insert foil pack into foil pack holder and put holder into HIT-dispen	oil packs / holders.
Inject adhesive from the	ne back of the drill hole without forming air voids.	
	Inject the adhesive starting at the back of the hole, slowly withdra each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the the anchor and the concrete is completely filled with adhesive alc length.	annular gap between
	After injection is completed, depressurize the dispenser by press This will prevent further adhesive discharge from the mixer.	ing the release trigger.
	Overhead installation and/or installation with embedment depth h For overhead installation the injection is only possible with the aid piston plugs. Assemble HIT-RE-M mixer, extension(s) and appro- plug HIT-SZ (see Table B5). Insert piston plug to back of the hole During injection the piston plug will be naturally extruded out of the adhesive pressure	d of extensions and priately sized piston and inject adhesive.
Setting the element		
twork	Before use, verify that the element is dry and free of oil and other Mark and set element to the required embedment depth until wor elapsed. The working time t_{work} is given in Table B4	
	For overhead installation use piston plugs and fix embedded part (HIT-OHW).	s with e.g. wedges
	Loading the anchor: After required curing time t_{cure} (see Table B4 loaded. The applied installation torque shall not exceed the values T_{max} g Table B3.	
njection system Hilti	HIT-HY 170	
ntended Use nstallation instructions		Annex B7

HIT-HY 170 with threaded rod, HIT-V			M8	M10	M12	M16	M20	M24
Installation safety factor	γ2	[-]			1	,0		
Steel failure								
Characteristic steel resistance	$N_{Rk,s}$	[kN]			A_s	• f _{uk}		
Combined pullout and concrete con	e failure							
Characteristic bond resistance in non-c	racked cor	ncrete C20/	25					
Temperature range I: 40 °C/24 °C	$\tau_{Rk,ucr}$	[N/mm ²]	10,0					
Temperature range II: 80 °C/50 °C	$ au_{Rk,ucr}$	[N/mm ²]			7	,5		
Characteristic bond resistance in crack	ed concret	e C20/25						
Temperature range I: 40 °C/24 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]	- 5,5 -			-		
Temperature range II: 80 °C/50 °C	$ au_{Rk,cr}$	[N/mm ²]	-		4,0			-
		C30/37			1,	04		
Increasing factors for τ_{Rk} in concrete	Ψc	C40/50		1,07				
		C50/60		1,09				
Splitting failure					-			
	h / h _e	_{ef} ≥ 2,0	1,0	• h _{ef}	h/h _{ef} 2,0			
Edge distance c _{cr,sp} [mm] for	2,0 > h	/ h _{ef} > 1,3	4,6 h _{et}	- 1,8 h	1,3			
	h/h	_{ef} ≤ 1,3	2,2	6 h _{ef}		1,0 h _{et}	2,26 h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp}	[mm]			2.0	cr,sp		

Table C2: Characteristic values of resistance for threaded rod, HIT-V-... under shear loads in concrete

HIT-HY 170 with threaded rod, HIT-V	M8	M10	M12	M16	M20	M24		
Steel failure without lever arm		•		•	•	•		
Characteristic steel resistance	[kN]	0,5 · A _s · f _{uk}						
Steel failure with lever arm								
Characteristic bending moment	${\sf M}^0_{\sf Rk,s}$	[Nm] 1,2 · W _{el} · f _{uk}						
Concrete pry-out failure		•						
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]			2	,0		

Injection system Hilti HIT-HY 170	
Performances Characteristic values of resistance under tension and shear loads in concrete Design according to "EOTA Technical Report TR 029, Edition September 2010"	Annex C1

Table C3: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under tension loads in non-cracked concrete

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M	16	
Installation safety factor	γ2	[-]] 1,0					
Steel failure								
HIS-N with screw grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	1	25	
Partial safety factor	Ŷ M s,N	[-]		1	,50			
HIS-RN with screw grade 70	N _{Rk,s}	[kN]	26	41	59	1	10	
Partial safety factor	Ŷ M s,N	[-]	[-] 1,87					
Combined pullout and concrete cone	e failure							
Characteristic bond resistance in non-c	racked co	ncrete C20	/25					
Temperature range I: 40 °C/24 °C	24 °C τ _{Rk,ucr} [N/mm ²] 10,0							
Temperature range II: 80 °C/50 °C	$\tau_{Rk,ucr}$	[N/mm ²]	m ²] 7,5					
		C30/37	1,04					
Increasing factors for $\tau_{\text{Rk},\text{ucr}}$ in concrete	$\psi_{c,ucr}$	C40/50	1,07					
		C50/60	1,09					
Splitting failure								
	h / h _e	_f ≥ 2,0	1,0 · h,	ef 2.0				
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1			<u> </u>		
	h / h _e	_f ≤ 1,3	2,26 h	ef	1,0 h _{et}	2,26 h _{ef}	→ C _{cr,s}	
Spacing	S _{cr,sp}	[mm]		2.	C _{cr,sp}			

Injection system Hilti HIT-HY 170

Performances Characteristic values of resistance under tension loads in non-cracked concrete Design according to "EOTA Technical Report TR 029, Edition September 2010" Annex C2

Table C4: Characteristic values of resistance for internally threaded sleeve HIS-(R)N under shear loads in non-cracked concrete

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M16	
Steel failure without lever arm		ľ			•	L	
HIS-N with screw grade 8.8	V _{Rk,s}	[kN]	13	23	34	63	
Partial safety factor	γ̂Ms,V	[-]		1,	25		
HIS-RN with screw grade 70	V _{Rk,s}	[kN]	13	20	30	55	
Partial safety factor	ŶMs,V	[-]	1,56				
Steel failure with lever arm		·					
HIS-N with screw grade 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	
Partial safety factor	γ́мs,∨	[-]	1,25				
HIS-RN with screw grade 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	
Partial safety factor	γ̂Ms,∨	[-]	1,56				
Concrete pry-out failure		L					
Factor in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]		2	,0		

Injection system Hilti HIT-HY 170

Performances Characteristic values of resistance under shear loads in non-cracked concrete Design according to "EOTA Technical Report TR 029, Edition September 2010" Annex C3

Table C5: Displacement under tension load										
HIT-HY 170 with threaded rod, HIT-V			M8	M10	M12	M16	M20	M24		
Non-cracked concrete										
Displacement	δ _{N0}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09		
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09		
Cracked concrete	•	· · · · ·		•						
Displacement	δ _{N0}	[mm/(N/mm²)]	-	0,07	0,07	0,06	-	-		
Displacement	δ_{N^∞}	[mm/(N/mm²)]	-	0,11	0,11	0,11	-	-		

Table C6: Displacement under shear load

HIT-HY 170 with threaded rod, HIT-V		M8	M10	M12	M16	M20	M24	
Displacement	δ_{V0}	[mm/(N/mm²)]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\!\infty}$	[mm/(N/mm²)]	0,09	0,08	0,08	0,06	0,06	0,05

Table C7: Displacement under tension load

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M16
Non-cracked con	crete					
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,06	0,07	0,08	0,09
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,06	0,07	0,08	0,09

Table C8: Displacement under shear load

HIT-HY 170 with HIS-(R)N			M8	M10	M12	M16
Displacement	δ_{V0}	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
Displacement	$\delta_{V\infty}$	[mm/(N/mm²)]	0,15	0,15	0,15	0,15

Injection system Hilti HIT-HY 170

Performances Displacements Annex C4