

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0125 of 23 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Speer Injection system Vinyl-Pro for masonry

Injection system for use in masonry

Speer Fixings B. V. Jasmijnstraat 27 2982CK RIDDERKERK NIEDERLANDE

Speer Plant 1

17 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0125 English translation prepared by DIBt

Page 2 of 17 | 23 March 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 17 | 23 March 2015

European Technical Assessment ETA-15/0125 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Speer Injection mortar Vinyl-Pro for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar Vinyl-Pro, a perforated sleeve and an anchor rod with hexagon nut and washer in the range of M8 to M12. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1
Characteristic resistance for bending moments	See Annex C 2
Displacements under shear and tension loads	See Annex C 2
Reduction Factor for job site tests (β -Factor)	See Annex C 2
Edge distances and spacings	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	No performance determined (NPD)		

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 **Protection against noise (BWR 5)**

Not applicable.

European Technical Assessment

ETA-15/0125

Page 4 of 17 | 23 March 2015

English translation prepared by DIBt

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 17 February 1997 (97/177/EC) (OJ L 073 of 14.03.97 p. 24-25), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	_	1

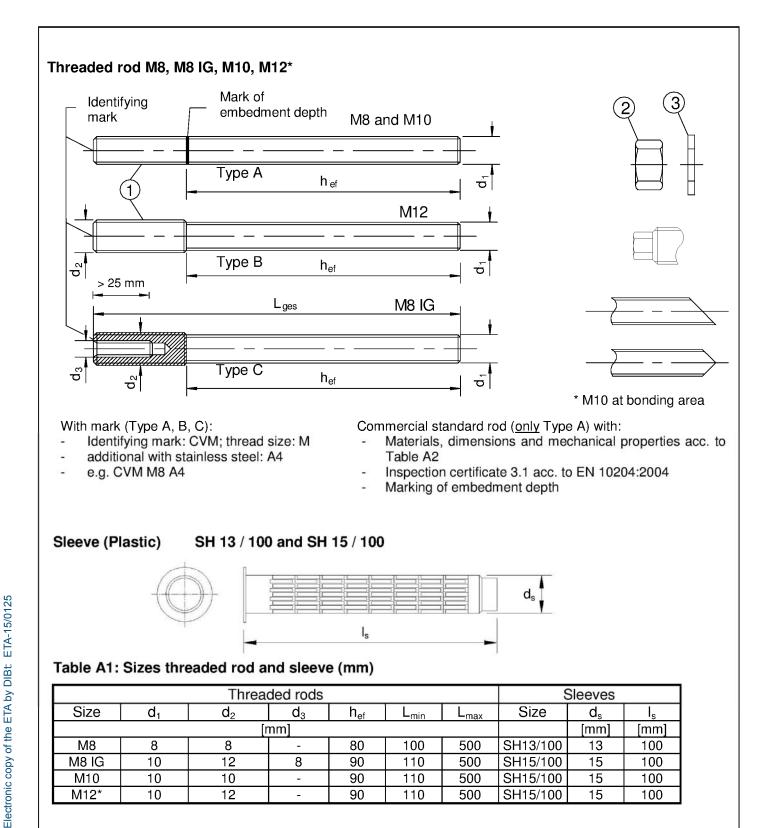
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 March 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 6 of European Technical Assessment ETA-15/0125 of 23 March 2015



Page 7 of European Technical Assessment ETA-15/0125 of 23 March 2015

English translation prepared by DIBt

 Speer injection system Vinyl-Pro for masonry

 Product description

 Annex A 3

Threaded rod and Sleeve

Part	Designation	Material						
Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1999 or Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009								
1	Anchor rod	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
2	Hexagon nut, EN ISO 4032:2012	Strength class 5 (for class 5.8 rod) EN ISO 898-2:2012 Strength class 8 (for class 8.8 rod) EN ISO 898-2:2012						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Stair	nless steel							
1	Anchor rod	$\begin{array}{l} \mbox{Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,} \\ \mbox{Strength class 70 EN ISO 3506-1:2009} \\ \mbox{A}_5 > 8\% \mbox{ fracture elongation} \\ \mbox{f}_{uk} = \mbox{R}_{m,min} \qquad \mbox{f}_{yk} = \mbox{R}_{p0,2,min} \end{array}$						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, Strength class 70 (for class 70 rod) EN ISO 3506-2:2009						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005						

Speer injection system Vinyl-Pro for masonry

Product description

Materials

Annex A 4

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

· Solid brick masonry (Use category b), according to Annex B 2.

Note: The characteristic resistance are also valid for larger brick sizes and larger compressive strength of the masonry unit.

- Hollow brick masonry (use category c), according to Annex B 2.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C 2, Table C4.

Temperature Range:

- Ta: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- Tb: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use categories in respect of installation and use:

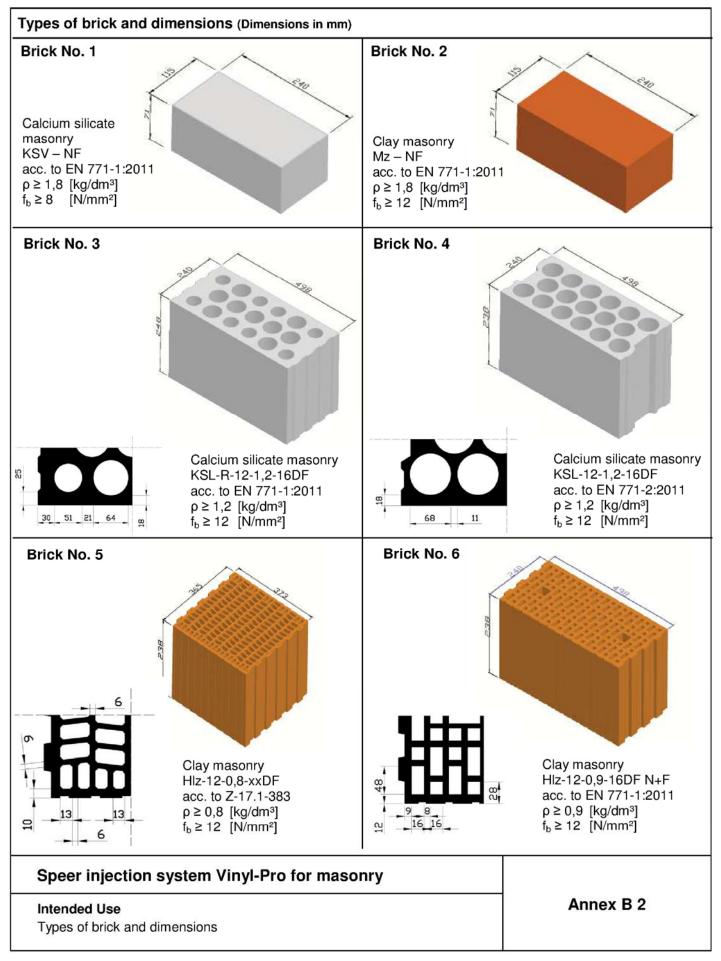
- Category d/d.
- · Category w/w.

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.

Installation:

- Dry or wet structures.
- · Hole drilling by rotary drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.


Speer injection system Vinyl-Pro for masonry

Intended Use

Specifications

Annex B 1

Installation

Cleaning Brush

Table B1: Installation parameters in solid masonry (without sleeve)

Threaded rod			M8	M8 IG	M10	M12	
Nominal drill hole diameter	d ₀	[mm]	10	12	12	12	
Embedment depth	h _{ef}	[mm]	80	90	90	90	
Bore hole depth	h ₀	[mm]	85	95	95	95	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	14			
Diameter of nylon brush	d _b ≥	[mm]	20				
Torque moment	T _{inst}	[Nm]	2				

Table B2: Installation parameters in solid and hollow masonry (with sleeve)

Threaded rod	Threaded rod				M10	M12		
Sleeve			SH 13x100	SH 15x100	SH 15x100	SH 15x100		
Nominal drill hole diameter	d ₀	[mm]	14	16	16	16		
Embedment depth sleeve	h _{nom}	[mm]	100	100	100	100		
Embedment depth rod	h _{ef}	[mm]	80	90	90	90		
Bore hole depth	h ₀	[mm]	105	105	105	105		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	14	12	14		
Diameter of nylon brush	d _b ≥	[mm]	20					
Torque moment	T _{inst}	[Nm]	2					

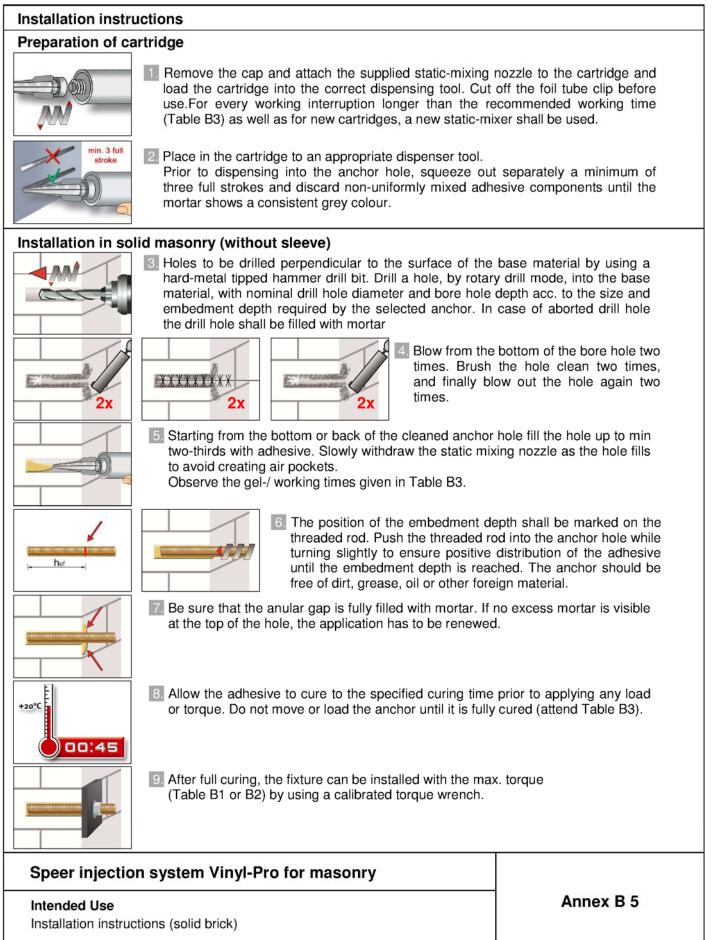
Table B3: Minimum curing time

Base material temperature	Gelling- / working time	Minimum curing time in dry base material ¹⁾
+ 5 °C to +9 °C	25 min	2 h
+ 10 °C to +19 °C	15 min	80 min
+ 20 °C to +29 °C	6 min	45 min
+ 30 °C to +34 °C	4 min	25 min
+ 35 °C to +40 °C	2 min	20 min

¹⁾ In wet base material the curing time <u>must</u> be doubled

Speer injection system Vinyl-Pro for masonry

Intended Use Installation parameters and cleaning brush


Gelling and Curing times

Annex B 3

Table B4: Allocation of anchor rods ¹⁾ , sleeves ¹⁾ and bricks							
Bricks	Valid anchor rods and sleeves	* M10 at bonding area					
No		M8; M8IG; M10; M12*					
		SH 15x100					
No	2	M8; M8IG; M10; M12*					
		SH 13x100 SH 15x100					
No	3						
T		SH 13x100					
No	4						
ater -		SH 13x100 SH 15x100					
No	5						
		SH 13x100 SH 15x100					
No	6						
		SH 13x100					
 Other combination can be use after job side test acc. to ETAG 029, Annex B. The β-factors for this job side test are given in Table C4 							
Speer injection system Vinyl-Pro for masonry							
Intended Use	Annex B 4						
Allocation of anchor rods, slee	ves and bricks						

Electronic copy of the ETA by DIBt: ETA-15/0125

Installation in solid and hollow masonry (with sleeve) 3. Holes to be drilled perpendicular to the surface of the base material by using a hardmetal tipped hammer drill bit. Drill a hole, by rotary drill mode, into the base material, with nominal drill hole diameter and bore hole depth acc. to the size and embedment depth required by the selected anchor. In case of aborted drill hole the drill hole shall be filled with mortar Blow from the bottom of the bore hole two times. Brush the hole clean two times, and **YYYYY** finally blow out the hole again two times. 5. Insert the perforated sleeve into the bore hole. Make sure that the sleeve fits well into the hole. Never cut the sleeve! Only use sleeves that have the right length. 6. Starting from the bottom or back fill the sleeve completely with adhesive. For quantity of mortar attend cartridge label. Observe the gel-/ working times given in Table B3. 7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while foil-an foilan turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material. 8. Allow the adhesive to cure to the specified curing time prior to applying any load or +20°C torgue. Do not move or load the anchor until it is fully cured (attend Table B3). 00:45 9. After full curing, the fixture can be installed with the max. torque (Table B2) by using a calibrated torque wrench. Speer injection system Vinyl-Pro for masonry Annex B 6 Intended Use

Electronic copy of the ETA by DIBt: ETA-15/0125

Installation instructions (hollow brick)

Table	C1: Char	acteristic va	alues of	resistan	ce for t	tension	and sl	near loa	ads			
							Cha	aracteristi		nce		
	Desity ρ [kg/dm³]			Effective			(1) ()	Use ca	tegory		- 1. (
	Com-			Embed-		dry / d	ry (d/d)			wet / we	et (w/w) I	
Brick	pressive strength f _b		Anchor	ment depth h _{ef}	Ta: 24°	C/40°C		C/80°C		C/40°C	Tb: 50°	
No.	[N/mm ²]	Sleeve	size	[mm]	N _{Rk} ¹⁾	V_{Rk} ^{2,3)}	N _{Rk} ¹⁾	$V_{Rk}^{2,3)}$	N _{Rk} ¹⁾	$V_{Rk}^{2,3)}$	N _{Rk} ¹⁾	V _{Rk} ^{2,3}
					[k	N]	[k	N]	[k	N]	[k	N]
		without	M8	80	4,0	4,0	3,0	3,0	3,0	3,0	2,5	2,5
1	ρ≥1,8	without	M8 IG; M10; M12	90	5,0	5,0	4,5	4,5	4,0	4,0	3,5	3,5
I	f _b ≥8	SH 13x100	M8	80	5,0	5,0	4,5	4,5	4,5	4,5	3,5	3,5
		SH 15x100	M8 IG; M10; M12	90	7,0	7,0	6,0	6,0	5,0	5,0	4,5	4,5
		without	M8	80	4,0	4,0	3,0	3,0	3,5	3,5	3,0	3,0
0	ρ≥1,8	without	M8 IG; M10; M12	90	5,0	5,0	4,5	4,5	5,0	5,0	4,0	4,0
2	f _b ≥ 12	SH 13x100	M8	80	3,5	3,5	3,0	3,0	3,5	3,5	2,5	2,5
		SH 15x100	M8 IG; M10; M12	90	4,5	4,5	3,5	3,5	4,5	4,5	3,5	3,5
3	ρ≥1,2 f _b ≥12	SH 13x100	M8	80	3,5	2,5	3,5	2,5	3,0	2,0	3,0	2,0
		SH 13x100	M8	80	2,5	2,0	2,5	2,0	2,0	1,5	2,0	1,5
4	ρ≥1,2 f _b ≥12	SH 15x100	M8 IG; M10; M12	90	3,0	2,5	3,0	2,5	2,0	2,0	2,0	2,0
		SH 13x100	M8	80	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
5	ρ≥0,8 f _b ≥12	SH 15x100	M8 IG; M10; M12	90	2,0	2,5	2,0	2,5	2,0	2,5	2,0	2,5
6	ρ≥0,9 f _b ≥12	SH 13x100	M8	80	3,0	2,0	3,0	2,0	2,5	2,0	2,5	2,0

For design according to ETAG 029, Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$ For design according to ETAG 029, Annex C: $V_{Rk} = V_{Rk,b} = V_{Rk,s}$ $V_{Rk,c}$ according to ETAG 029, Annex C 1)

2)

3)

Speer injection system Vinyl-Pro for masonry

Performances

Characteristic values of resistance for tension load and shear load values

Annex C 1

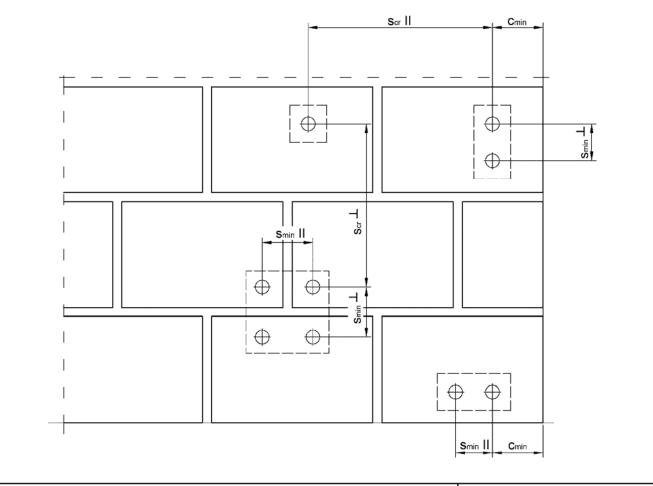
Table C2: Characteristic values of resistance for bending moments							
			M8	M8 IG ¹⁾	M10	M12 ¹⁾	
Characteristic bending moment, Steel, property class 5.8	M _{Rk,s}	[Nm]	19	37	37	37	
Characteristic bending moment, Steel, property class 8.8	M _{Rk,s}	[Nm]	30	60	60	60	
Characteristic bending moment, Stainless steel A4, property class 70	M _{Rk,s}	[Nm]	26	52	52	52	

¹⁾ M10 at bonding area

Table C3: Displacement under shear and tension load

Brick-No.	N [kN]	δ _{νο} [mm]	δ _{N∞} [mm]	V [kN]	δ _{vo} [mm]	δ _{v∞} [mm]
1					V _{Rk} [kN]	1 5 5
2				N/	2,0 [kN/mm]	1,5 δ _{vo}
3		0.1	0.0	 1,4 x γ _Μ		
4		0,1	0,2	, + ∧ ∦ M	0.7	1 1
5	1,4 x γ _M				0,7	1,1
6						

Table C4: β -factors for job site tests according to ETAG 029, Annex B


Brick-No.	Installation & use	β-factor					
		Ta: 24°C / 40°C	Tb: 50°C / 80°C				
1-2	d/d	0,66	0,53				
3-6	u/u	0,92					
1		0,53	0,42				
2		0,61	0,49				
3	w/w (incl. w/d)	0,74					
4	w/w (incl. w/d)	0,74					
5		0,86					
6		0,86					

Speer injection system Vinyl-Pro for masonry	
Performances	Annex C 2
Characteristic values of resistance for bending moments,	
Displacements, β-factors for job site tests	

	Anchor size						
	M8			M8 IG, M10, M12			
Brick No.	C _{min} = C _{cr} [mm]	S _{min,II} = S _{cr,II} ¹⁾ [mm]	S _{min,} ⊥= S _{cr,} ⊥ ²⁾ [mm]	C _{min} = C _{cr} [mm]	$S_{min,II} = S_{cr,II}^{1}$ [mm]	S _{min,} ⊥ = S _{cr,} ⊥ ²⁾ [mm]	
1	120 (150) ³⁾	240 (300) ³⁾	240 (300) ³⁾	135 (150) ³⁾	270 (300) ³⁾	270 (300) ³⁾	
2	120 (150) ³⁾	240 (300) ³⁾	240 (300) ³⁾	135 (150) ³⁾	270 (300) ³⁾	270 (300) ³⁾	
3	100	498	248	100	498	248	
4	100	498	238	100	498	238	
5	100	373	238	100	373	238	
6	100	498	238	100	498	238	

 $^{1)}$ s $_{\rm II}$: Spacing parallel to the bearing joint $^{2)}$ s $_{\rm L}$: Spacing perpendicular to the bearing joint $^{3)}$ with perforated sleeve

Speer injection system Vinyl-Pro for masonry

Performances

Edge distances and spacings

Annex C 3