

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0130 vom 26. März 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem Chemfix 500 für Beton

Verbunddübel mit Ankerstange zur Verankerung im Beton

CHEMFIX PRODUCTS LTD
Mill Street East
DEWSBURY, West Yorkshire WF12 9BQ
GROSSBRITANNIEN

Chemfix Plant 2

27 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-15/0130

Seite 2 von 27 | 26. März 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0130

Seite 3 von 27 | 26. März 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem Chemfix 500 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Chemfix 500 und einem Stahlteil besteht. Das Stahlteil besteht aus einer handelsüblichen Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder aus einem gerippten Betonstahl mit Durchmesser 8 bis 32 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Bemessung nach TR 029 und TR 045	Siehe Anhang C 1 bis C6
Charakteristische Werte für Bemessung nach CEN/TS 1992-4:2009 und TR 045	Siehe Anhang C 7 bis C 12
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 13 / C 14

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1			
Feuerwiderstand	Keine Leistung festgestellt (KLF)			

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

Europäische Technische Bewertung ETA-15/0130

Seite 4 von 27 | 26. März 2015

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

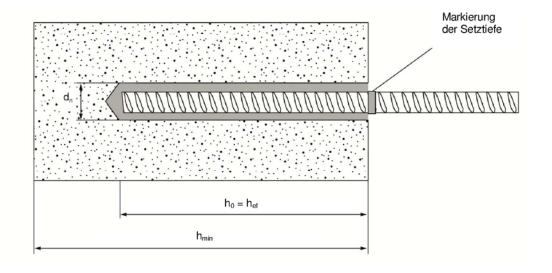
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 26. März 2015 vom Deutschen Institut für Bautechnik

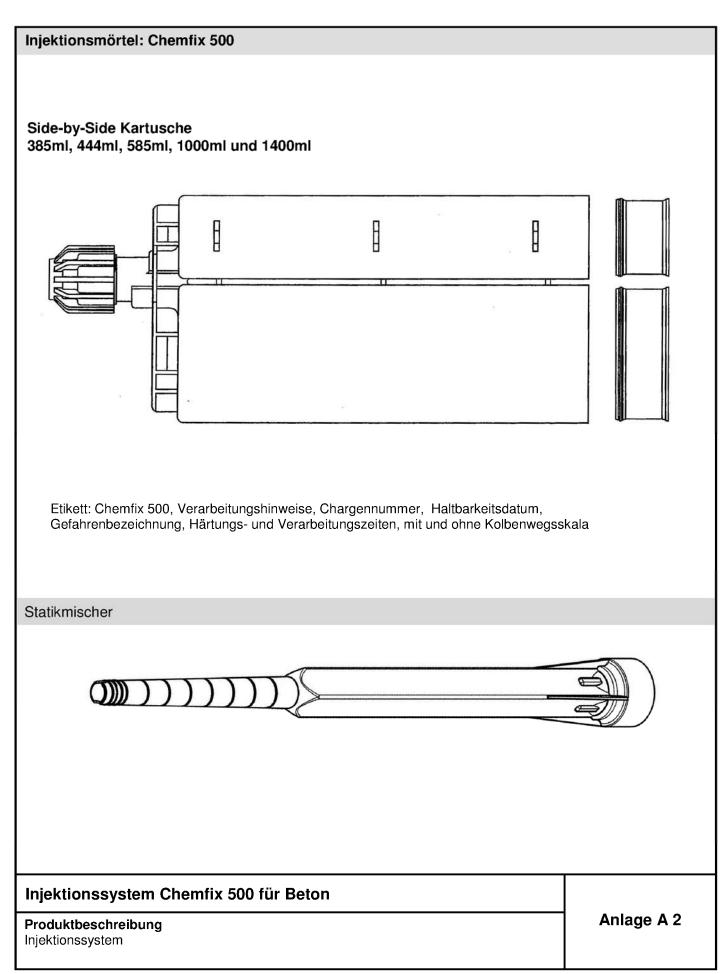
Andreas Kummerow i.V. Abteilungsleiter

Beglaubigt:

Einbauzustand Ankerstange Markierung der Setztiefe h₀ = h_{et} h_{min}

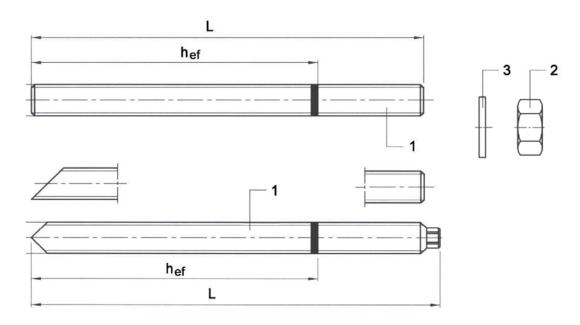
 d_0 = Bohrlochdurchmesser

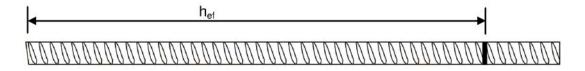
 t_{fix} = Dicke des Anbauteils


 h_{ef} = effektive Setztiefe

h₀ = Bohrlochtiefe

 $h_{min} \ = \ Mindestbauteildicke$


Injektionssystem Chemfix 500 für Beton Produktbeschreibung Einbauzustand Anlage A 1


Ankerstange M8, M10, M12, M16, M20, M24, M27, M30 mit Unterlegscheibe und Sechskantmutter

Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Mindestwerte der bezogenen Rippenfläche $f_{R,min}$ gemäß EN 1992-1-1:2004+AC:2010 Die Rippenhöhe muss $0,05d \le h \le 0,07d$ betragen

(d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Injektionssystem Chemfix 500 für Beton Produktbeschreibung Ankerstange und Betontahl Ankerstange und Betontahl

Та	belle A1: Werkstoffe						
Te	il Benennung	Material					
Stahlteile, galvanisch verzinkt ≥ 5 µm gemäß EN ISO 4042:1999 oder feuerverzinkt ≥ 40 µm gemäß EN ISO 1461:2009 und EN ISO 10684:2004+AC:2009							
1	Ankerstange	Stahl gemäß EN 10087:1998 oder EN 10263:2001 Festigkeitsklasse 4.6, 5.8, 8.8 gemäß EN 1993-1-8:2005+AC:2009 A ₅ > 8% Bruchdehnung					
2	Sechskantmutter, EN ISO 4032:2012	Stahl gemäß EN 10087:1998 oder EN 10263:2001 Festigkeitsklasse 4 (für Ankerstangen der Klasse 4.6) Festigkeitsklasse 5 (für Ankerstangen der Klasse 5.8) Festigkeitsklasse 8 (für Ankerstangen der Klasse 8.8) gemäß EN ISO 898-2:2012					
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Stahl, galvanisch verzinkt oder feuerverzinkt					
Sta	ahlteile aus nichtrostendem Stahl						
1	Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Festigkeitsklasse 50 EN ISO 3506-1:2009 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1:2009 A ₅ > 8% Bruchdehnung					
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Festigkeitsklasse 50 (für Ankerstangen der Klasse 50) ≤ M24: Festigkeitsklasse 70 (für Ankerstangen der Klasse 70) gemäß EN ISO 3506-2:2009					
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4401, 1.4404 oder 1.4571 gemäß EN 10088-1:2005					
Sta	ahlteile aus hochkorrosionsbeständigem St	ahl					
1	Ankerstange	Werkstoff 1.4529 / 1.4565, EN 10088-1:2005, > M24: Festigkeitsklasse 50 EN ISO 3506-1:2009 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1:2009 A ₅ > 8% Bruchdehnung					
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4529 / 1.4565 EN 10088-1:2005, > M24: Festigkeitsklasse 50 (für Ankerstangen der Klasse 50) ≤ M24: Festigkeitsklasse 70 (für Ankerstangen der Klasse 70) gemäß EN ISO 3506-2:2009					
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4529 / 1.4565 gemäß EN 10088-1:2005					
Ве	tonstahl						
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Injektionssystem Chemfix 500 für Beton	
Produktbeschreibung Werkstoffe	Anlage A 4

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- · Statische und quasi-statische Lasten: M8 bis M30, Rebar Ø8 bis Ø32.
- Seismische Einwirkung für Anforderungsstufe C1: M12 bis M30, Betonstahl Ø12 bis Ø32.
- Seismische Einwirkung f
 ür Anforderungsstufe C2: M12 und M16

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.
- · Gerissener Beton: M12 bis M30, Betonstahl Ø12 bis Ø32.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +60 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +60 °C)
- III: 40 °C bis +72 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +72 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und guasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009
- · Die Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) erfolgt nach:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Fassung Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt.

Einbau:

- Trockener oder nasser Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.
- Wassergefüllte Bohrlöcher (nicht Seewasser): M8 bis M30, Betonstahl Ø8 bis Ø32.
- Bohrlochherstellung durch Hammer- oder Pressluftbohren.
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Injektionssystem Chemfix 500 für Beton	
Verwendungszweck	Anlage B 1
Spezifikationen	

Tabelle B1: Montagekennwerte für Gewindestangen

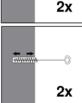
Dübelgröße		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Bohrernenndurchmesser	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effektive Verankerungstiefe	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effektive Verankerungstiefe	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Durchgangsloch im anzuschließenden Bauteil	d _f [mm] ≤	9	12	14	18	22	26	30	33
Bürstendurchmesser	d _b [mm] ≥	12	14	16	20	26	30	34	37
Drehmoment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Anbauteildicke	$t_{fix,min}$ [mm] >	0							
Aribautelluicke	t _{fix,max} [mm] <				15	00			
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm							
minimaler Achsabstand	s _{min} [mm]	40	50	60	80	100	120	135	150
minimaler Randabstand	c _{min} [mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Dübelgröße		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Bohrernenndurchmesser	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effektive	Effektive h _{ef,min} [mm] =		60	70	75	80	90	100	112	128
Verankerungstiefe	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Bürstendurchmesser	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Mindestbauteildicke	h _{min} [mm]		0 mm 0 mm	1 1 1 1 1 1 1 1 1 1						
minimaler Achsabstand	s _{min} [mm]	40	50	60	70	80	100	125	140	160
minimaler Randabstand	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Injektionssystem Chemfix 500 für Beton	
Verwendungszweck	Anlage B 2
Montagekennwerte	

Setzanweisung

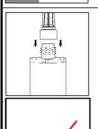

1. Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1 oder Tabelle B2) und gewählter Bohrlochtiefe erstellen.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

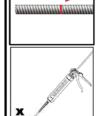
2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) oder Handpumpe (Anhang B5) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden. Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen werden.

Bohrlöcher ab Durchmesser 20 mm oder tiefer 240 mm <u>müssen</u> mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

2b. Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.


Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.

2c. Anschließend das Bohrloch gem. Anhang B 5 erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) oder Handpumpe (Anhang B 5) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden. Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen werden. Bohrlöcher ab Durchmesser 20 mm oder tiefer 240 mm müssen mit min. 6 bar ölfreier Druckluft ausgeblasen werden.



Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit

(Tabelle B3) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

- Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.
- 5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

Injektionssystem Chemfix 500 für Beton Verwendungszweck Setzanweisung Anlage B 3

712472 15 8 06 01-31/15

Setzanweisung (Fortsetzung)

6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Für Verankerungstiefen > 190 mm passende Mischerverlängerung verwenden. Für die Horizontal- oder Überkopfmontage von Ankern > Ø 20 mm sind Verfüllstutzen gemäß Anhang B 5 zu verwenden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B3) sind zu beachten.

7. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen. Die Ankerstange sollte schmutz-, fett-, und ölfrei sein.

8. Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).

9. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (s. Tabelle B3).

10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment (Tabelle B1) montiert werden. Die Mutter muss mit einem geeignetem Drehmomentschlüssel festgezogen werden.

Tabelle B3: Mindest-Aushärtezeiten

Beton Temperatur	Seton Temperatur Verarbeitungszeit		Mindest-Aushärtezeit in feuchtem Beton		
+5°C bis +9°C	120 min	50 h	100 h		
+10°C bis +19°C	90 min	30 h	60 h		
+20°C bis +29°C	30 min	10 h	20 h		
+30°C bis +39°C	20 min	6 h	12 h		
+40 °C	12 min	4 h	8 h		

Injektionssystem Chemfix 500 für Beton	
Verwendungszweck	Anlage B 4
Setzanweisung (Fortsetzung) Aushärtezeit	

Tabelle B4: Parameter für Reinigungs- und Setzzubehör

Dübel	Größe (mm)	Nominaler Bohrer- Durchmesser d _o (mm)	Stahlbürste Stahlbürste (min Bürsten durchmesser) d _{b,min} (mm)		Verfüllstutzen
		8			
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Nicht notwendig
Gewindestange	M12	14,0	16,0	14,5	Nicht hotwerlaig
	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Nicht notwendig
Betonstahl	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
9999999999999999	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Handpumpe (Volumen 750 ml)

Bohrerdurchmesser (d₀): 10 mm bis 20 mm

Empfohlene Druckluftpistole (min 6 bar) Bohrerdurchmesser (d₀): 10 mm bis 40 mm

Injektionssystem Chemfix 500 für Beton	
Verwendungszweck Reinigungs- und Installationszubehör	Anlage B 5

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)

Dübelgröße Gewindestan	gen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen											
Charakteristische Zugtragfä Stahl, Festigkeitsklasse 4.6	S .	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Charakteristische Zugtragfä Stahl, Festigkeitsklasse 5.8	3	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Charakteristische Zugtragfä Stahl, Festigkeitsklasse 8.8	ähigkeit, }	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Charakteristische Zugtragfä Nichtrostender Stahl A4 und Festigkeitsklasse 50 (>M24	d HCR	N _{Flk,s}	[kN]	26	41	59	110	171	247	230	281
Kombiniertes Versagen d	urch Herausziehen	und Betona	ausbruch								
Charakteristische Verbundt	tragfähigkeit im unger	issenen Bet	ton C20/25								
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperaturbereich III:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
51.00		C30/37		1,04							
Erhöhungsfaktor für Beton Ψ _c		C40/50		1,08							
		C50/60		1,10							
Spalten											
		ŀ	h / h _{ef} ≥ 2,0	1	,0 h _{ef}		h _{ef} } ,0 -				
Randabstand -		2,0 > l	n / h _{et} > 1,3	4,6 h	_{lel} - 1,8 h	1	,3 -				
		h / h _{ef} ≤ 1,3		2,26 h _{ef}			-	1,0·h	ef 2,2	26·h _{ef}	C _{cr,sp}
Achsabstand $s_{cr,sp}$ [mm]				2 C _{α,sp}							
Montagesicherheitsbeiwert (trockener und feuchter Bet	ton)	γ ₂		1,2 1,4							
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)	γ ₂		1,4								

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anlage C 1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)

Dübelgröße Gewindestar	ngen			M 12	M 16	M 20	M24	M 27	M 30	
Stahlversagen										
Charakteristische Zugtragf Stahl, Festigkeitsklasse 4.6	6	$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	34	63	98	141	184	224	
Charakteristische Zugtragfähigkeit, Stahl, Festigkeitsklasse 5.8		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280	
Charakteristische Zugtragfähigkeit, Stahl, Festigkeitsklasse 8.8		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449	
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 und HCR Festigkeitsklasse 50 (>M24) und 70 (≤ M24)		$N_{\text{Rk},s} = N_{\text{Rk},s,seis}$	[kN]	59	110	171	247	230	281	
Kombiniertes Versagen o	durch Herausziehen	und Betonausbru	ch							
Charakteristische Verbund	tragfähigkeit im geris	senen Beton C20/2	25							
		$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	trockener und feuchter Beton	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperaturbereich I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	Keine Leistung bestimmt (NPD)				
40°C/24°C		$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0	
	wassergefülltes Bohrloch	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,seis,C2}	[N/mm ²]	2,4	2,1	Kein	e Leistung	bestimmt (I	NPD)	
		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	trockener und feuchter Beton	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperaturbereich II:		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	Keine Leistung bestimmt (NPD)				
60°C/43°C		$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	wassergefülltes Bohrloch	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	Kein	Keine Leistung bestimmt (NPD)			
		$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0	
	trockener und feuchter Beton	τ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperaturbereich III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	Kein	e Leistung	bestimmt (I	NPD)	
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	wassergefülltes Bohrloch	τ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
		τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	Kein	e Leistung	bestimmt (I	NPD)	
Erhöhungsfaktor für Beton						1,0)4			
(Nur statische oder quasi-s Beanspruchung)	olaliSCHE					1,0				
Ψ _° Montagesicherheitsbeiwert	•	γ ₂	No.		_	1,10				
(trockener und feuchter Be Montagesicherheitsbeiwert	ton)	12	1,2 1,4							
Montagesicherheitsbeiwen (wassergefülltes Bohrloch)		γ2	γ2			1,	4			

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)	Anlage C 2

Tabelle C3: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen ohne Hebelarm										
	V _{Rk.s}	[kN]	7	12	17	31	49	71	92	112
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 4.6	V _{Rk,s,seis,C1}	[kN]	Keine L	eistung.	14	27	42	56	72	88
	V _{Rk,s,seis,C2}	[kN]	bestimn	nt (NPD)	13	25	Keine	Leistung	bestimmt	(NPD)
	$V_{\text{Rk,s}}$	[kN]	9	15	21	39	61	88	115	140
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	V _{Rk,s,seis,C1}	[kN]		.eistung	18	34	53	70	91	111
<u>-</u>	V _{Rk,s,seis,C2}	[kN]	bestimn	nt (NPD)	17	31	Keine Leistung bestimmt (NPD)			
	$V_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141	184	224
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	V _{Rk,s,seis,C1}	[kN]		.eistung	30	55	85	111	145	177
	V _{Rk,s,seis,C2}	[kN]	bestimmt (NPD)		27	50	Keine Leistung bestimmt (NP			(NPD)
Charakteristische Quertragfähigkeit,	$V_{\text{Rk,s}}$	[kN]	13	20	30	55	86	124	115	140
Nichtrostender Stahl A4 und HCR Festigkeitskl. 50 (>M24) und 70 (≤ M24)	V _{Rk,s,seis,C1}	[kN]		Keine Leistung		48	75	98	91	111
V _{Rk,s,seis,C2}			bestimmt (NPD)		24	44	Keine Leistung bestimmt (NP			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 4.6	M ^o _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	M ⁰ _{Rk,s,seis,C1}	[Nm]			Keine I	eistuna	bestimm	nt (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]			11011101					
Ohanda isinda Birana	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]		Keine Leistung bestimmt (NPD)						
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Charaktariatiaahaa Riagamamant	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			Keine I	_eistuna	bestimm	it (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]					, bootimine (NI b)			
Charakteristische Biegemoment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Nichtrostender Stahl A4 und HCR Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]		Keine Leistung bestimmt (NPD)						
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Betonausbruch auf der lastabgewandten Se	ite									
Faktor k in Gleichung (5.7) des Technical Repo TR 029 für die Bemessung von Verbunddübelr	ort		2,0							
Montagesicherheitsbeiwert	γ2	1,0								
Betonkantenbruch										
Siehe Abschnitt 5.2.3.4 des Technical Report 7	R 029 für die	Bemessi	ıng von V	erbunddü	bel					
Montagesicherheitsbeiwert (γ ₂					1,	,0			

Injektionssystem Chemfix 500 für Beton

Leistungen

Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)

Anlage C 3

Tabelle C4: Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)

Dübelgröße Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen													
Charakteristische Zugtragfähigkeit N _{Rk,s} [kN]					$A_s \cdot f_{uk}$								
Kombiniertes Versagen d	urch Herausziehen	usbruch											
Charakteristische Verbundt	tragfähigkeit im unger	issenen Bet	on C20/25										
Temperaturbereich I:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11	
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0	
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	$\tau_{Rk,uor}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5	
	wassergefülltes Bohrloch	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0	
Temperaturbereich III: 72°C/43°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0	
	wassergefülltes Bohrloch	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5	
		C30/37		1,04									
Erhöhungsfaktor für Beton ψ_c		C40/50		1,08									
		C50/60		1,10									
Spalten													
		h	/ h _{ef} ≥ 2,0		1,0 h _{et}		h/h _{ef} -						
Randabstand		2,0 > h	/ h _{ef} > 1,3	4,6	h _{el} - 1,8	h	1,3						
		h	/ h _{ef} ≤ 1,3	2	2,26 h _{et}		_		1,0·h _{ef}	2,26	·h _{ef}	C _{cr,sp}	
Achsabstand		S _{cr,sp}	[mm]					2 c _{cr,sp}					
Montagesicherheitsbeiwert (trockener und feuchter Bet	ton)	γ2				1,2				1,	,4		
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)		γ2						1,4					

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anlage C 4

Tabelle C5: Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)

Dübelgröße Betonstahl				Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen										
Charakteristische Zugtragfä	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]		$A_{s} \cdot f_{uk}$						
Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25										
	trockener und feuchter	τ _{Rk,cr}	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperaturbereich I:	Beton	τ _{Hk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
		τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
		τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
		τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	trockener und feuchter	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperaturbereich III:	Beton	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	wassergefülltes	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	Bohrloch	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
		C30/37					1,04			
Erhöhungsfaktor für Beton (Nur statische oder quasi-s	tatische Beanspruchung)	C40/50		1,08						
Ψο		C50/60		1,10						
Montagesicherheitsbeiwert (trockener und feuchter Bet	ton)	γ2		1,2 1,4						
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)		γ ₂				1,4				

Injektionssystem Chemfix 500 für Beton	_
Leistungen Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)	Anlage C 5

Tabelle C6: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen ohne Hebelarm													
Charaltariationha Quartra of Shirykait	V _{Rk,s}	[kN]		0,50 • A _s • f _{uk}									
Charakteristische Quertragfähigkeit	V _{Rk,s,seis,C1}	[kN]		eistung nt (NPD)	0,44 • A _s • f _{uk}								
Stahlversagen mit Hebelarm													
M ⁰ _{Rk,s} [Nm]				1.2 ⋅W _{el} ⋅ f _{uk}									
Charakteristische Biegemoment	M ⁰ _{Rk,s,seis,C1}	[Nm]		Keine Leistung bestimmt (NPD)									
Betonausbruch auf der lastabgewandte	n Seite	•											
Faktor k in Gleichung (5.7) des Technical f TR 029 für die Bemessung von Verbunddü			2,0										
Montagesicherheitsbeiwert	γ2						1,0						
Betonkantenbruch													
Siehe Abschnitt 5.2.3.4 des Technical Rep	ort TR 029 für	die Bem	essung v	on Verbu	ınddübel								
Montagesicherheitsbeiwert	γ2						1,0						

Injektionssystem Chemfix 500 für Beton	_
Leistungen Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 und TR 045)	Anlage C 6

Tabelle C7: Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)

					,			,				
Dübelgröße Gewindes	tangen			М8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Stahlversagen												
Charakteristische Zugtragfähigkeit, Stahl, Festigkeitsklasse 4.6 Charakteristische Zugtragfähigkeit, NRk,s [kN] 15 23 34 63 98 141 184 Charakteristische Zugtragfähigkeit, NRk,s [kN] 18 29 42 78 122 176 230									184	224		
	agfähigkeit,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Charakteristische Zugtra Stahl, Festigkeitsklasse	agfähigkeit,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
	agfähigkeit, Nichtrostender	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281	
Kombiniertes Versage	n durch Herausziehen und Be	etonausbru	ıch									
Charakteristische Verbu	ındtragfähigkeit im ungerissene	n Beton C2	0/25									
Temperaturbereich I: trockener und feuchter Beton τ _{Rk,ucr} [N/mm²] 15 15 15 14									12	12	12	
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperaturbereich II: trockener und feuchter Beton $\tau_{\text{Fik}, ucr}$ [N/mm²] 9,5 9,5 9,0 8,5 8,0							8,0	7,5	7,5	7,5		
60°C/43°C			[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
Erhöhungsfaktor für Bet	ton	C30/37		1,04								
ψ_c		C40/50 C50/60						10				
Faktor gemäß CEN/TS 1992-4-5 Kapit	el 6.2.2.3	k ₈	[-]	10,1								
Betonausbruch												
Faktor gemäß CEN/TS 1992-4-5 Kapit	el 6.2.3.1	k _{ucr}	[-]				10),1				
Randabstand		C _{cr,N}	[mm]					h _{el}				
Achsabstand		S _{cr,N}	[mm]				3,0) h _{et}				
Spalten												
		h,	/ h _{ef} ≥ 2,0	1,	0 h _{ef}		1,0 -					
Randabstand	2,0 > h	/ h _{et} > 1,3	4,6 h _{et} - 1,8 h		1.3							
	_	h / h _{el} ≤ 1,3 2,26 h _{el} c _{cr,sp}										
Achsabstand		S _{cr,sp}	[mm]			•	2 0	cr,sp		·ei		
	Montagesicherheitsbeiwert trockener und feuchter Beton)				1,2		1,2 1,4					
Montagesicherheitsbeiw (wassergefülltes Bohrlo	vert ch)	γinst					1	,4				

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anlage C 7

Tabelle C8: Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

Dübelgröße Gewindes	stangen			M 12	M 16	M 20	M24	M27	M30
Stahlversagen									•
Charakteristische Zugtr Stahl, Festigkeitsklasse		N _{Rk,s} = N _{Rk,s,seis}	[kN]	34	63	98	141	184	224
Charakteristische Zugtr Stahl, Festigkeitsklasse	agfähigkeit,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280
Charakteristische Zugtr Stahl, Festigkeitsklasse	agfähigkeit,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449
Charakteristische Zugtr Nichtrostender Stahl A4 Festigkeitsklasse 50 (>I	agfähigkeit, und HCR	$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	59	110	171	247	230	281
Kombiniertes Versage	en durch Herausziehen un	d Betonausbruch							
Charakteristische Verbu	undtragfähigkeit im gerissen	en Beton C20/25							
		τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	trockener und feuchter Beton	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperaturbereich I:		τ _{Rk,seis,C2}	[N/mm ²]	2,4	2,2	Keine	Leistung	bestimmt ((NPD)
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,5	6,0	5,0	4,5	4,0	4,0
	wassergefülltes Bohrloch	τ _{Rk,seis,C1}	[N/mm ²]	7,1	5,8	4,8	4,5	4,0	4,0
		τ _{Rk,seis,C2}	[N/mm ²]	2,4	2,1	Keine Leistung bestimmt (NPD			(NPD)
		τ _{Rk,cr}	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	Keine	Leistung	bestimmt ((NPD)
		τ _{Rk,cr}	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	wassergefülltes Bohrloch	τ _{Rk,seis,} C1	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	Keine Leistung bestimmt (N			(NPD)
		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0
	trockener und feuchter Beton	τ _{Rk,sels,C} ι	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperaturbereich III:		τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	Keine	Leistung	bestimmt ((NPD)
72°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0
	wassergefülltes Bohrloch	τ _{Rk,seis,} C1	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	Keine	Leistung	bestimmt ((NPD)
Erhöhungsfaktor für Bet Nur statische oder qua	ton	C30/37				1,	04		
(Nur statische oder qua Beanspruchung)	si-statische	C40/50				1,	08		
Ψα		C50/60					10		
	1992-4-5 Kapitel 6.2.2.3	k ₈	[-]			7.	,2		
Betonausbruch	1000 1 5 1/2 1 2 2 2 2	lr.	7.			_			
Faktor gemäß CEN/TS 1992-4-5 Kapitel 6.2.3.1 k _{cr} [-] 7,2 Randabstand c _{cr.N} [mm] 1,5 h _{ef}									
Montagesicherheitsbeiwert (trockener und									
feuchter Beton) Montagesicherheitsbeiv	vert (wassergefülltes	γinst γinst	1,4						

Injektionssystem Chemfix 500 für Beton

Leistungen

Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

Anlage C 8

Tabelle C9: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

1h 045)										
Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen ohne Hebelarm										
	$V_{\Pi k,s}$	[kN]	7	12	17	31	49	71	92	112
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 4.6	V _{Rk,s,seis,C1}	[kN]	Keine L	eistung	14	27	42	56	72	88
Claim, Footigrionomicoo no	V _{Rk,s,seis,C2}	[kN]	bestimr	nt (NPD)	13	25	Keine	Leistung	bestimmt	(NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	V _{Rk,s,seis,C1}	[kN]	Keine L	eistung	18	34	53	70	91	111
	V _{Rk,s,seis,C2}	[kN]	bestimr	nt (NPD)	17	31	Keine	Leistung	bestimmt	(NPD)
	$V_{Rk,s}$	[kN]	15	15 23		63	98	141	184	224
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	V _{Rk,s,seis,C1}	[kN]		eistung	30	55	85	111	145	177
3	V _{Rk,s,seis,C2}	[kN]	bestimr	nt (NPD)	27	50	Keine	Leistung	bestimmt	(NPD)
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Nichtrostender Stahl A4 und HCR	V _{Rk,s,seis,C1}	[kN]		eistung	26	48	75	98	91	111
Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	$V_{Rk,s,seis,C2}$	s,seis,C2 [kN] bestimmt (NPD) 24 44 Keine Leistung bestim						bestimmt	(NPD)	
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1					0,	,8				
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	M ⁰ _{Rk,s,seis,C1}	[Nm]	Koino Loistung bostimmt (NRD)							
otain, rootagnotomacoo no	M ⁰ _{Rk,s,seis,C2}	[Nm]	Keine Leistung bestimmt (NPD)							
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	Keine Leistung bestimmt (NPD)							
,	M ⁰ _{Rk,s,seis,C2}	[Nm]			Keirie L	eisturig	Destimi	it (NPD)		
	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			Keine L	.eistung	bestimm	nt (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Charakteristische Biegemoment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Nichtrostender Stahl Å4 und HCR Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	$M^0_{Rk,s,seis,C1}$	[Nm]			Keine I	eistung	hestimm	nt (NPD)		
restigneitsniasse 50 (>IMZ4) und 70 (\$ IMZ4)	M ⁰ _{Rk,s,seis,C2}	[Nm]			1101110 E	-ciotarig		IC (IVI D)		
Betonausbruch auf der lastabgewandten Sei	te									
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	k ₃					2,	,0			
Montagesicherheitsbeiwert	γinst					1,	,0			
Betonausbruch										
Effektive Ankerlänge	l _t	[mm]				l _t = min(h	ef; 8 d _{nom})			
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagesicherheitsbeiwert	γ̃inst					1,	,0			

Injektionssystem Chemfix 500 für Beton

Leistungen

Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

Anlage C 9

Tabelle C10: Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)

`	g	,	9				'					
Dübelgröße Betonstal							Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen												
Charakteristische Zugtr	agfähigkeit	N _{Rk,s}	[kN]					$A_s \boldsymbol{\cdot} f_{uk}$				
Kombiniertes Versage	en durch Herausziehen und	Betona	usbruch									
Charakteristische Verbu	undtragfähigkeit im ungerisse	enen Beto	on C20/25									
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	wassergefülltes Bohrloch	$\tau_{Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperaturbereich II:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	wassergefülltes Bohrloch	$\tau_{Rk,ucr}$	k,ucr [N/mm²] 8,5		8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperaturbereich III:	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C			[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
- L.T		C30/37						1,04				
Ernonungstaktor für Bei ψ_c	Erhöhungsfaktor für Beton Vo			1,08								
F-lt		C50/60		1,10								
Faktor gemäß CEN/TS 1992-4-5 Kapit	rel 6.2.2.3	k ₈	[-]	10,1								
Betonausbruch												
Faktor gemäß CEN/TS 1992-4-5 Kapit	tel 6.2.3.1	k _{ucr}	[-]	10,1								
Randabstand		C _{cr,N}	[mm]	1,5 h _{et}								
Achsabstand		S _{cr,N}	[mm]	3,0 h _{ef}								
Spalten												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 3					
Randabstand		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
h / h _{et} ≤ 1					2,26 h _{ef} 2,26 ·h _{ef} c _{cr,s}							C _{cr,sp}
Achsabstand	[mm]	·										
Montagesicherheitsbeiv (trockener und feuchter	Beton)	γinst				1,2				1	,4	
Montagesicherheitsbeiv (wassergefülltes Bohrlo		γinst						1,4				

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anlage C 10

Tabelle C11: Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

								1		
Dübelgröße Betonstal		Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen										
Charakteristische Zugtr	agfähigkeit	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_s \cdot f_{uk}$			
Kombiniertes Versage	en durch Herausziehen und	d Betonausbru	ich							
Charakteristische Verbu	undtragfähigkeit im gerissen	en Beton C20/2	25							
	trockener und feuchter	$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperaturbereich I:	Beton	τ _{Rk,seis,C1}	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	wassergefülltes Bohrloch	$ au_{\text{Fik,cr}}$	[N/mm ²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	wassergeruntes bornioch	τ _{Rk,seis,C1}	[N/mm ²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	trockener und feuchter		[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperaturbereich II:	Beton	τ _{Rik,seis,C1}	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	wassergefülltes Bohrloch	$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	wassergerantes bornoon	τ _{Rk,seis,C1}	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
Temperaturbereich III:	trockener und feuchter Beton	$ au_{\text{Fik,cr}}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
		τ _{Rk,seis,C1}	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	wassergefülltes Bohrloch	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	wassergeruntes bornioci			3,0						
Erhöhungsfaktor für Bet		C30/37					1,04			
(Nur statische oder qua Beanspruchung)	si-statische	C40/50					1,08			
Ψ _c		C50/60					1,10			
Faktor gemäß CEN/TS 1992-4-5 Kapit	tel 6.2.2.3	k ₈	[-]				7,2			
Betonausbruch										
Faktor gemäß CEN/TS 1992-4-5 Kapit	tel 6.2.3.1	k _{cr}	[-]			_	7,2		_	
Randabstand		C _{cr,N}	[mm]	1,5 h _{ef}						
Achsabstand		S _{cr,N}	[mm]	3,0 h _{ef}						
Montagesicherheitsbeiv (trockener und feuchter	Beton)	Yinst		1,2 1,4			,4			
Montagesicherheitsbeiv (wassergefülltes Bohrlo		γinst					1,4			

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)	Anlage C 11

Tabelle C12: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)

In 043)											
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]				0,5	50 • A _s •	f _{uk}			
Charakteristische Quertragianigkeit	V _{Rk,s,seis,C1}	[kN]		Leistunç ımt (NPD			0.	,44 • A _s	• f _{uk}		
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂		0,8								
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Charaktenstische biegemoment	M ⁰ Rk,s,seis,C1	[Nm]	Keine Leistung bestimmt (NPD)								
Betonausbruch auf der lastabgewandten Seite											
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	k ₃						2,0				
Montagesicherheitsbeiwert	γinst						1,0				
Betonausbruch											
Effektive Ankerlänge	l _f	[mm]	$I_{t} = min(h_{ef}; 8 d_{nom})$								
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Montagesicherheitsbeiwert	γinst						1,0				

Injektionssystem Chemfix 500 für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 und TR 045)	Anlage C 12

Tabelle C13:	abelle C13: Verschiebung unter Zugbeanspruchung ¹⁾ (Ankerstange)												
Dübelgröße Gew	indestangen		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Ungerissener Be	eton C20/25 u	nter statischer, qua	si-statis	cher Eir	wirkun	g							
40°C/24°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035			
40 0/24 0	δ_{N_∞} - Faktor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140			
60°C/43°C	δ_{N0} - Faktor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043			
60 0/43 0	$\delta_{N\infty}$ - Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161			
7200/4200	δ_{N0} - Faktor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043			
72.0/43.0	72°C/43°C $\delta_{N_{\infty}}$ - Faktor [mm/(N/mm²)] 0,050 0,060 0,070 0,091 0,111 0,131 0,							0,146	0,161				
Gerissener Beton C20/25 unter statischer, quasi-statischer und seismischer Einwirkung C1													
40°C/24°C	δ_{N0} - Faktor	[mm/(N/mm²)]			0,032	0,037	0,042	0,053	0,058				
40-0/24-0	$\delta_{N\infty}$ - Faktor	[mm/(N/mm²)]	 				0,21	0,21	0,21				
60°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]	Keine L		0,037	0,043	0,049	0,055	0,061	0,06			
00 0/43 0	δ_{N_∞} - Faktor	[mm/(N/mm²)]	bestimm	it (NPD)	0,24	0,24	0,24	0,24	0,24	0,24			
72°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,06			
72-0/43-0	δ_{N_∞} - Faktor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24			
Gerissener Beto	n C20/25 unte	er seismischer Einw	irkung C	2									
40°C/24°C	$\delta_{\text{N,seis}(\text{DLS})}$	[mm/(N/mm²)]			0,03	0,05							
40°0/24°0	$\delta_{\text{N,seis}(\text{ULS})}$	[mm/(N/mm²)]			0,06	0,09							
60°C/43°C	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]	Keine L	eistung	0,03	0,05	Koino	+ (NIDD					
00 O/43 C	$\delta_{\text{N,seis}(\text{ULS})}$	[mm/(N/mm²)]	bestimm	it (NPD)						t (NPD)			
72°C/43°C	$\delta_{\text{N,seis}(\text{DLS})}$	[mm/(N/mm²)]	bestimmt (NPD) 0,06 0,09 0,03 0,05										
12-0/43-0	δ _{N,seis(ULS)}	[mm/(N/mm²)]			0,06	0,09			0,131 0,146 0,1 C1 0,048 0,053 0,0 0,21 0,21 0,3 0,055 0,061 0,0 0,24 0,24 0,3 0,055 0,061 0,0				

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \ \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor }\cdot\tau;$

Tabelle C14: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Dübelgröße Gewindestangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Beton C20/25 unte	Beton C20/25 unter statischer, quasi-statischer und seismischer Einwirkung C1									
Allo Tomporaturon δ_{V0} - Faktor $[mm/(kN)]$			0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Alle Temperaturen δ _{V∞} - Faktor		[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton	C20/25 unte	r seismischer Einwi	rkung C	2						
$\delta_{V,seis(DLS)}$ [mm/kN]		[mm/kN]	Keine L	Keine Leistung		0,1	Keine Leistung bestimmt			+ (NIDD)
Alle Temperaturen	$\delta_{\text{V,seis}(\text{ULS})}$	[mm/kN]	bestimn	nt (NPD)	0,2	0,1	Reille	Leisturig	t (NPD)	

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V;$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor }\cdot V;$

Injektionssystem Chemfix 500 für Beton

Leistungen

Verschiebungen (Ankerstange)

Anlage C 13

Tabelle C15: Verschiebung unter Zugbeanspruchung ¹⁾ (Betonstahl)											
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer, quasi-statischer Einwirkung											
40°C/24°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N_{\infty}}$ - Faktor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N_{\infty}}$ - Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ - Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Gerissener Beton C20/25 unter statischer, quasi-statischer und seismischer Einwirkung C1											
40°C/24°C	δ_{N0} - Faktor	[mm/(N/mm²)]	Keine Leistung bestimmt (NPD)		0,032	0,035	0,037	0,042	0,049	0,055	0,061
	$\delta_{N\infty}$ - Faktor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N_{\infty}}$ - Faktor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	δ_{N0} - Faktor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N_{\infty}}$ - Faktor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24

 $[\]begin{array}{l} ^{1)} \mbox{ Berechnung der Verschiebung} \\ \delta_{N0} = \delta_{N0} \mbox{-Faktor} \quad \cdot \ \tau; \\ \delta_{N\infty} = \delta_{N\infty} \mbox{-Faktor} \quad \cdot \ \tau; \end{array}$

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Beton C20/25 unter statischer, quasi-statischer und seismischer Einwirkung C1											
Alle Temperaturen	δ_{V0} - Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ - Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-Faktor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-Faktor} \ \cdot \ V; \end{split}$$

Injektionssystem Chemfix 500 für Beton	
Leistungen Verschiebungen (Betonstahl)	Anlage C 14