

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0162 of 10 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Novatech Injection system Anchor 7 for concrete

Bonded anchor for use in non-cracked concrete

Novatech International nv Industrielaan 5b 2250 OLEN BELGIEN

Novatech Plant 1

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0162 English translation prepared by DIBt

Page 2 of 23 | 10 April 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 23 | 10 April 2015

European Technical Assessment ETA-15/0162 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Novatech Injection system Anchor 7 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Anchor 7 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See Annex C 1 / C 3 / C 5 / C 7
Characteristic resistance for shear loads	See Annex C 2 / C 4 / C 6 / C 8
Displacements under tension and shear loads	See Annex C 9 / C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5) Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

European Technical Assessment ETA-15/0162

Page 4 of 23 | 10 April 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

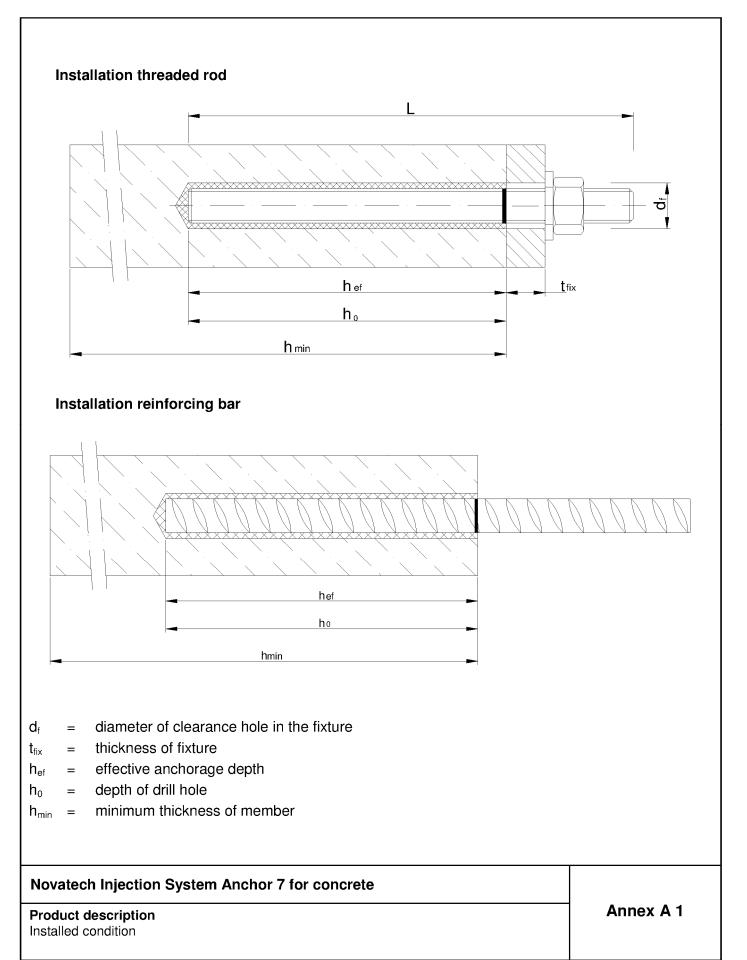
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

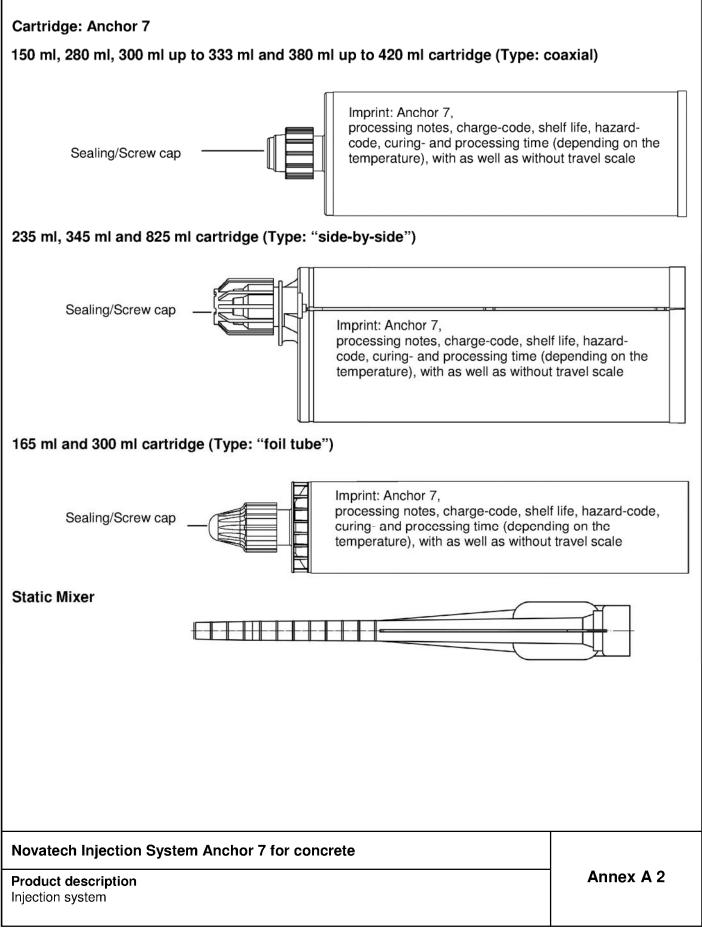
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

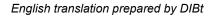
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 10 April 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-15/0162 of 10 April 2015


English translation prepared by DIBt

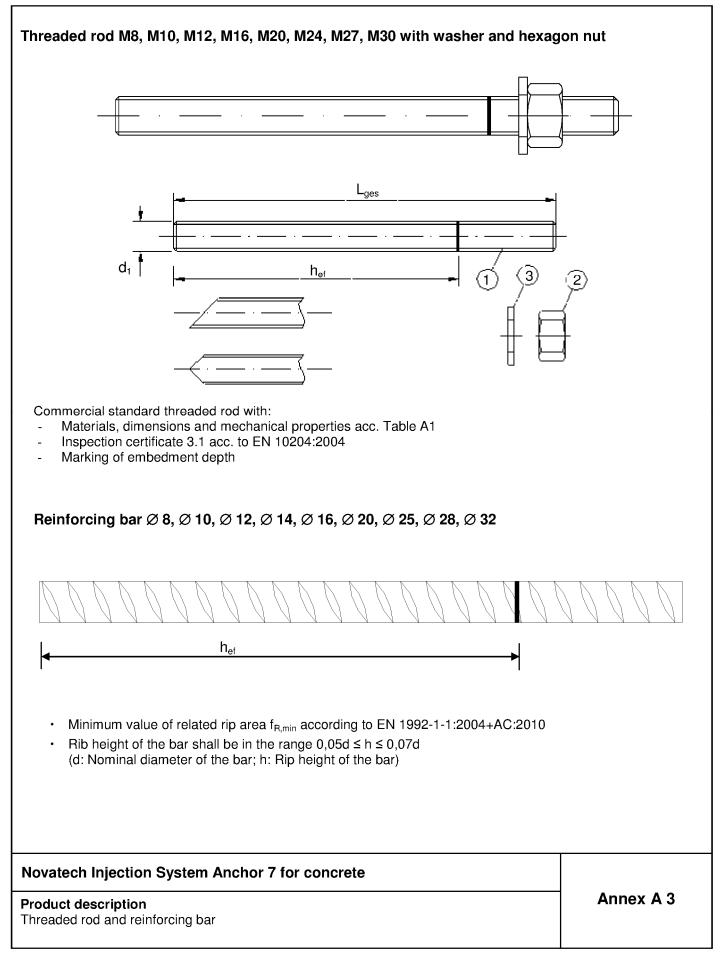


Table A1: Materials

	Designation	Material					
	, zinc plated \geq 5 µm acc. to EN ISO 4042:19						
Steel	, bot-dip galvanised \geq 40 µm acc. to EN ISO 4042.13		C:2009				
	,	Steel, EN 10087:1998 or EN 10263:200					
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8	3:2005+AC:2009				
		A5 > 8% fracture elongation					
		Steel acc. to EN 10087:1998 or EN 102					
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN IS					
-		Property class 5 (for class 5.8 rod) EN IS					
		Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012				
~	Washer, EN ISO 887:2006,	Steel, zinc plated or hot-dip galvanised					
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000						
stain	less steel						
		Material 1.4401 / 1.4404 / 1.4571, EN 10					
1	Anchor rod	> M24: Property class 50 EN ISO 3506-					
		\leq M24: Property class 70 EN ISO 3506- A5 > 8% fracture elongation	1:2009				
		088:2005,					
2	Hexagon nut, EN ISO 4032:2012	od) EN ISO 3506-2:2009					
2		d) EN ISO 3506-2:2009					
	Washer, EN ISO 887:2006,		d) EN 100 0000 2.2000				
3	EN ISO 7089:2000, EN ISO 7093:2000 or	Material 1.4401, 1.4404 or 1.4571, EN	0088-1:2005				
	EN ISO 7094:2000						
ligh	corrosion resistance steel						
		Material 1.4529 / 1.4565, EN 10088-1:20	005.				
		> M24: Property class 50 EN ISO 3506-					
1	Anchor rod	\leq M24: Property class 70 EN ISO 3506-1:2009					
		A5 > 8% fracture elongation					
		Material 1.4529 / 1.4565 EN 10088-1:20					
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rd					
		\leq M24: Property class 70 (for class 70 rc	d) EN ISO 3506-2:2009				
•	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000 or	Material 1.4529 / 1.4565, EN 10088-1:20	005				
	EN ISO 7094:2000						
Rein	forcing bars						
		Bars and de-coiled rods class B or C					
1	Rebar	f _{vk} and k according to NDP or NCL of EN	1992-1-1/NA:2013				
	EN 1992-1-1:2004+AC:2010, Annex C	$f_{uk} = f_{tk} = k \cdot f_{yk}$					
Nov	ratech Injection System Anchor 7 for c	oncrete					
		oncrete					
Proc	vatech Injection System Anchor 7 for c duct description	oncrete	Annex A 4				

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Novatech Injection System Anchor 7 for concrete

Intended Use

Specifications

Annex B 1

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160 180 2		200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀)			
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Novatech Injection System Anchor 7 for concrete

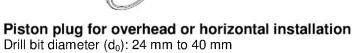
Intended Use Installation parameters Annex B 2

Steel brush									
Table B3: Parameter cleaning and setting tools									
Threaded Rod	Rebar	d₀ Drill bit - Ø	d _⊳ Brush - Ø	d _{b,min} min. Brush - ∅	Piston plug				
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)				
M8		10	12	10,5					
M10	8	12	14	12,5					
M12	10	14	16	14,5	No				
	12	16	18	16,5	piston plug required				
M16	14	18	20	18,5					
	16	20	22	20,5					
M20	20	24	26	24,5	# 24				
M24		28	30	28,5	# 28				
M27	25	32	34	32,5	# 32				
M30	28	35	37	35,5	# 35				

41,5

40

32



40,5

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Novatech Injection System Anchor 7 for concrete

Intended Use

Cleaning and setting tools

Annex B 3

38

Installation inst	ructions	
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar	
	Attention! Standing water in the bore hole must be removed	d before cleaning.
4x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini the bore hole ground is not reached an extension shall be used.	mum of four times. If
or	The hand-pump can be used for anchor sizes up to bore hole di	ameter 20 mm.
4x)	For bore holes larger than 20 mm or deeper 240 mm, compress must be used.	ed air (min. 6 bar)
	2b. Check brush diameter (Table B3) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size	
**************************************	> $d_{b,min}$ (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush esshall be used (Table B3).	
	 2c. Finally blow the hole clean again with compressed air (min. 6 ba (Annex B 3) a minimum of four times. If the bore hole ground is extension shall be used. The hand-pump can be used for anchor sizes up to bore hole distribution. 	not reached an ameter 20 mm.
or	For bore holes larger than 20 mm or deeper 240 mm, compress must be used.	ed air (min. 6 bar)
Ax)	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again.	hole. If necessary, the mortar.
	3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended we (Table B4) as well as for new cartridges, a new static-mixer sha	orking time
her el	4. Prior to inserting the anchor rod into the filled bore hole, the pose mbedment depth shall be marked on the anchor rods.	ition of the
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive componer shows a consistent grey colour. For foil tube cartridges is must b minimum of six full strokes.	nts until the mortar
Novatech Injection	n System Anchor 7 for concrete	
		Anney B 4

Intended Use Installation instructions Annex B

Installation inst	ructions (continuation)
	6 Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4.
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
Tinst.	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
\geq -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
2° 0 ≤	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ + 10 °C	15 min	80 min
≥ + 20 °C	6 min	45 min
≥ + 30 °C	4 min	25 min
≥ + 35 °C	2 min	20 min
≥ + 40 °C	1,5 min	15 min

¹⁾ Cartridge temperature <u>must</u> be at min. +15°C ²⁾ In wet concrete the curing time <u>must</u> be doubled

Novatech Injection System Anchor 7 for concrete

Intended Use Installation instructions (continuation) Curing time

Annex B 5

Steel failure Characteristic tension resis Steel, property class 4.6 Characteristic tension resis Steel, property class 5.8 Characteristic tension resis Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a Combined pull-out and co Characteristic bond resistan Temperature range I: 40°C/24°C Temperature range II: 80°C/50°C	stance, stance, stance, R, und 70 (≤ M24) oncrete cone failure	N _{Rk,s} N _{Rk,s} N _{Rk,s} N _{Rk,s} Crete C20/3 τ _{Rk,ucr}		15 18 29 26	23 29 46 41	34 42 67 59	63 78 125 110	98 122 196 171	141 176 282 247	184 230 368 230	224 280 449
Steel, property class 4.6 Characteristic tension resis Steel, property class 5.8 Characteristic tension resis Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a Combined pull-out and co Characteristic bond resistan Characteristic bond resistan Temperature range I: 40°C/24°C	stance, stance, stance, R, und 70 (≤ M24) oncrete cone failure ince in non-cracked cone dry and wet concrete flooded bore hole	N _{Fik,s} N _{Fik,s} N _{Fik,s}	[KN] [KN] [KN] 25	18 29	29 46	42 67	78 125	122 196	176 282	230 368	280
Characteristic tension resis Steel, property class 5.8 Characteristic tension resis Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a Combined pull-out and co Characteristic bond resistan Characteristic bond resistan Temperature range I: 40°C/24°C	stance, stance, R, und 70 (≤ M24) oncrete cone failure ince in non-cracked cone dry and wet concrete flooded bore hole	N _{Rk,s} N _{Rk,s}	[KN] [KN] 25	29	46	67	125	196	282	368	
Characteristic tension resis Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a Combined pull-out and co Characteristic bond resistan Temperature range I: 40°C/24°C	stance, R, und 70 (≤ M24) oncrete cone failure nce in non-cracked cone dry and wet concrete flooded bore hole	N _{Rk,s}	[KN] 25								449
Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a Combined pull-out and co Characteristic bond resista Characteristic bond resista Temperature range I: 10°C/24°C	R, ind 70 (≤ M24) oncrete cone failure ince in non-cracked cone dry and wet concrete flooded bore hole	N _{Rk,s}	[KN] 25	26	41	59	110	171	247	230	ļ
Combined pull-out and co Characteristic bond resistan Temperature range I: 40°C/24°C Temperature range II:	oncrete cone failure nce in non-cracked cone dry and wet concrete flooded bore hole									200	281
Temperature range I: 40°C/24°C Temperature range II:	dry and wet concrete flooded bore hole										
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N]/mm2]								
40°C/24°C	flooded bore hole	1 11,00	[N/mm ²]	10	12	12	12	12	11	10	9
		$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5		not adr	nissible	i
	I uly anu wel concrete		[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
	flooded bore hole	τ _{Rk,ucr}				-	_	5		nissible	0,5
		τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	0.5			5.0
Temperature range III: 120°C/72°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0 5,0 5,0 5,0 not admissible					nissible		
ncreasing factors for concrete		C30/37 1,04									
$\Psi_{\rm c}$		C40/50					,	08			
		C50/60		1,10							
Splitting failure							(<u>\</u>		
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$							
Axial distance		S _{cr,sp}	[mm]	2 c _{αr,sp}							
nstall safety factor (dry and	d wet concrete)	γ2		1,0				1,2			
nstall safety factor (flooded	d bore hole)	γ2		1,4				not admissible			
Novatech Injectio	n System Ancho	or 7 for	concrete								

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

Table C2:Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to TR 029)										
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 4.6	$V_{\text{Rk,s}}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Steel failure with lever arm	•									
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]	-			2	,0			
Installation safety factor	γ2		1,0							
Concrete edge failure										
Installation safety factor	γ2					1	,0			

Novatech Injection System Anchor 7 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

	aracteristic val n-cracked conc							nsion	load	s in		
Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure									-			
Characteristic tension res	istance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out and	concrete cone failure											
Characteristic bond resist	ance in uncracked conc	rete C20/25										
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
		C30/37						1,04				
Increasing factors for con ψ_c	crete	C40/50						1,08				
		C50/60						1,10				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]		1,	,0 ∙ h _{ef}	≤2 · h _e	f (2,5 -	$\left(\frac{h}{h_{ef}}\right) \le$	2,4 · h _e	f	
Axial distance		S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation safety factor (dry and wet concrete)	γ2		1,0				1	,2			
Installation safety factor (flooded bore hole)	γ2				1,4				not adr	nissible	

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)

Table C4: Characte	eristic value	es of I	resista	ance f	or rel	oar un	ider s	hear I	oads		
in non-c	racked con	crete	(Desi	ign ac	cordi	ng to	TR 02	29)			
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,	50 • A _s •	f _{uk}			
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.	2 ∙ W _{el} ∙	f _{uk}			
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]					2,0				
Installation safety factor	γ2						1,0				
Concrete edge failure											
Installation safety factor	γ2						1,0				

Novatech Injection System Anchor 7 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to TR 029)

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	tance,			29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resis	tance	N _{Rk,s}	[kN]	29	40	07	120	190	202	300	449
Stainless steel A4 and HCF	۲,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
property class 50 (>M24) a Combined pull-out and co											
Characteristic bond resista		0.00/05									
			[h]/mama2]	10	10	10	10	12	11	10	
Temperature range I: 40°C/24°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12		10 nissible	9
		τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5				<u>с </u>
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5			nissible	
Temperature range III: 120°C/72°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
Increasing factors for concr	ete	C30/37						04			
Ψc		C40/50						08			
Factor according to		C50/60					,	10			
CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				10),1			
Concrete cone failure											
Factor according to CEN/TS 1992-4-5 Section (6.2.3.1	$k_{\rm ucr}$	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{et}			
Axial distance		S _{cr,N}	[mm]				3,0	l h _{ef}			
Splitting failure											
Edge distance		C.	[mm]		1	0.h.<	2.h.(2	5_ <u>h</u>)	< 24.h		
Luge distance		C _{cr,sp}	[[1111]			,oner =		h _{ef}	- - ,+ · · · _e	ef	
Axial distance		S _{cr,sp}	[mm]		1		2 c	cr,sp			
Installation safety factor (dr	y and wet concrete)	γinst		1,0				1,2			
Installation safety factor (flo	oded bore hole)	γinst			1	,4			not adr	nissible	

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm				•	•					
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,8				
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,0				
Installation safety factor	γinst					1,0				
Concrete edge failure ³⁾	·									
Effective length of anchor	l _t	[mm]			$I_{f} =$	min(h _{ef} ; 8	3 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,0	-			-

Novatech Injection System Anchor 7 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

		acteristic value cracked concre									ls in		
Anchor size reinfore	cing ba	r			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					•								
Characteristic tensior	n resista	nce	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out a	and con	crete failure		·									
Characteristic bond r	esistanc	e in non-cracked concre	te C20/25	5									
Temperature range I:	:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C		flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II	l:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C		flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range II	11:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C		flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
		1	C30/37	1					1,04				
Increasing factors for Ψ_{c}	r concret	e	C40/50						1,08				
			C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Se	ection 6.2	2.2.3	k ₈	[-]					10,1				
Concrete cone failu				-									
Factor according to CEN/TS 1992-4-5 Se	ection 6.2	2.3.1	k _{ucr}	[-]					10,1				
Edge distance			C _{cr,N}	[mm]					1,5 h _{et}				
Axial distance			S _{cr,N}	[mm]					3,0 h _{et}				
Splitting failure													
Edge distance			C _{cr,sp}	[mm]			1,0 · h _e	_{ef} ≤2 · h	ef (2,5-	<u>h</u> n _{ef})≤2	,4 ⋅ h _{ef}		
Axial distance			S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation safety fac	tor (dry	and wet concrete)	γinst		1.0				1,	2			
Installation safety fac	tor (floo	ded bore hole)	γinst				1,4				not adr	nissible	
Performances		System Anchor			n non-c	cracked	concre	te			Anne	x C 7	,

Electronic copy of the ETA by DIBt: ETA-15/0162

(Design according to CEN/TS 1992-4)

Table C8: Characteristic value cracked concrete (D								ads ir	n non	-	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s}	[kN]				0,5	50 • A _s •	f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.:	2 ∙ W _{el} ∙	f _{uk}			
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	l _f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γinst						1,0				

Novatech Injection System Anchor 7 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Annex C 8

Electronic copy of the ETA by DIBt: ETA-15/0162

Table C9: Di	splaceme	nts under tensio	n Ioad ¹⁾	(threa	ided ro	od)				
Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25		·				•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \ \cdot \ \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \ \tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	d concrete C2	0/25	· ·		•	•				
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Novatech Injection System Anchor 7 for concrete

Performances Displacements (threaded rods)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	δ_{N_∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	δ_{N_∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	ιsplacen		hear lo	ad ¹⁾ (r	ebar)						T
$\delta_{N_{eo}} = \delta_{N_{eo}}$ -factor Table C12: Di Anchor size reinfo	·τ; isplacen prcing bar	nent under s	hear lo Ø 8	⊘ad ¹⁾ (ro Ø 10	ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\delta_{N_{eo}} = \delta_{N_{eo}}$ -factor Table C12: Di Anchor size reinfo Non-cracked conc	· τ; isplacen prcing bar crete C20/2	nent under s	Ø8	Ø 10	Ø 12						
$\delta_{N_{eo}} = \delta_{N_{eo}}$ -factor Table C12: Di Anchor size reinfo	• τ; isplacen prcing bar crete C20/2 δ_{V0} -factor $\delta_{V\infty}$ -factor e displacen	nent under s 25 [mm/(kN)] [mm/(kN)]	1		-	Ø 14 0,04 0,06	Ø 16 0,04 0,06	Ø 20 0,04 0,05	Ø 25 0,03 0,05	Ø 28 0,03 0,04	Ø 32 0,03 0,04

Novatech Injection System Anchor 7 for concrete

Performances Displacements (rebar)