

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0163 of 10 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Novatech Injection system Novatio Q-Fix for concrete

Bonded anchor for use in non-cracked concrete

Novatech International nv Industrielaan 5b 2250 OLEN BELGIEN

Novatech Plant 1

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0163

Page 2 of 23 | 10 April 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 23 | 10 April 2015

European Technical Assessment ETA-15/0163 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Novatech Injection system Novatio Q-Fix for concrete" is a bonded anchor consisting of a cartridge with injection mortar Novatio Q-Fix and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See Annex C 1 / C 3 / C 5 / C 7
Characteristic resistance for shear loads	See Annex C 2 / C 4 / C 6 / C 8
Displacements under tension and shear loads	See Annex C 9 / C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5) Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

European Technical Assessment ETA-15/0163

Page 4 of 23 | 10 April 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

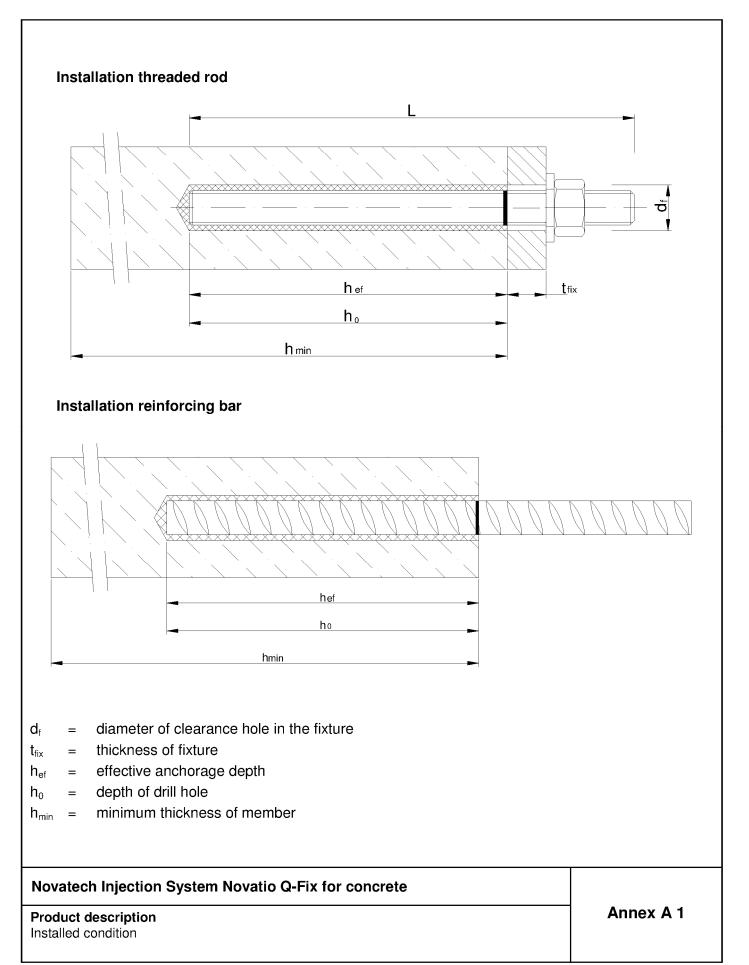
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

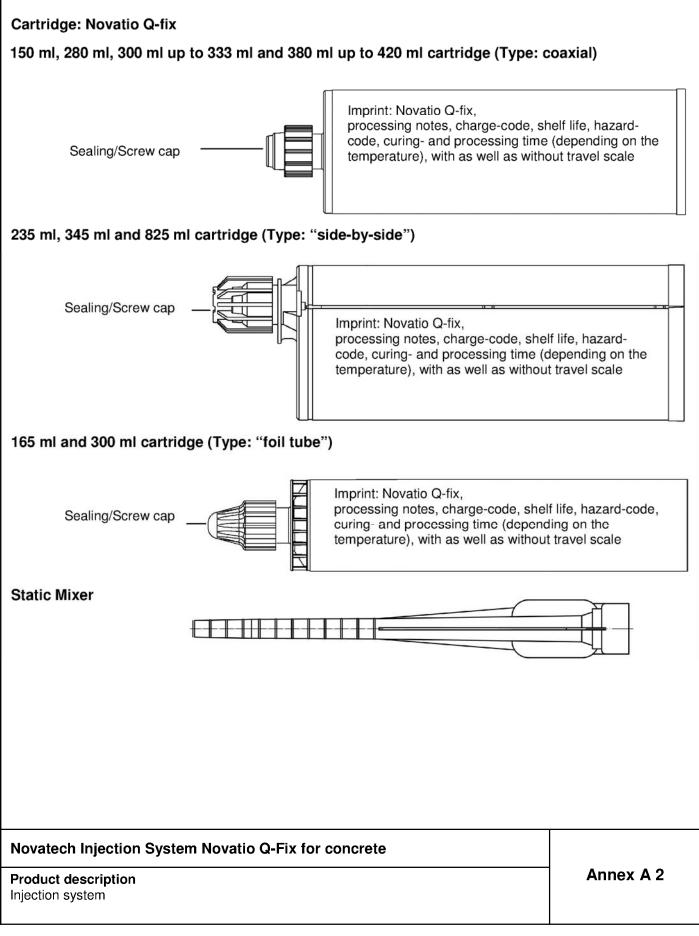
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

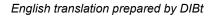
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 10 April 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-15/0163 of 10 April 2015


English translation prepared by DIBt

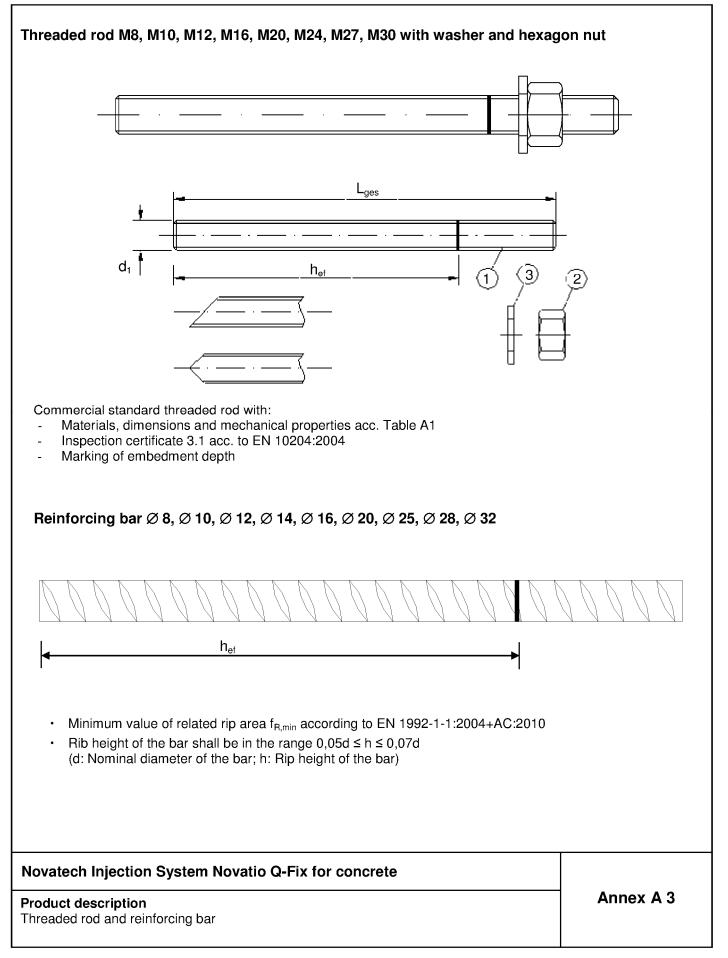


Table A1: Materials

Dart	Designation	Matorial						
Part		Material						
	zinc plated ≥ 5 μm acc. to EN ISO 4042:19 hot-dip galvanised ≥ 40 μm acc. to EN ISO		C:2009					
		Steel, EN 10087:1998 or EN 10263:200						
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8						
		A5 > 8% fracture elongation						
		Steel acc. to EN 10087:1998 or EN 102	63:2001					
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN IS	SO 898-2:2012,					
2	Tiexagon nut, EN 130 4032.2012	Property class 5 (for class 5.8 rod) EN IS						
		Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000 Steel, zinc plated or hot-dip galvanised							
Stain	less steel							
		Material 1.4401 / 1.4404 / 1.4571, EN 10	0088-1.2005					
		> M24: Property class 50 EN ISO 3506-						
1	Anchor rod	\leq M24: Property class 70 EN ISO 3506-						
		A5 > 8% fracture elongation						
		088:2005,						
2	Hexagon nut, EN ISO 4032:2012	od) EN ISO 3506-2:2009						
		d) EN ISO 3506-2:2009						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	0088-1:2005					
High	corrosion resistance steel							
		Material 1.4529 / 1.4565, EN 10088-1:20)05.					
		> M24: Property class 50 EN ISO 3506-1:2009						
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:2009						
		A5 > 8% fracture elongation						
		Material 1.4529 / 1.4565 EN 10088-1:20						
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rd						
		≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005					
Reinf	orcing bars							
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013					
		$\int_{Uk} f_{tk} = f_{tk} = k \cdot f_{yk}$						
Nova	atech Injection System Novatio Q-Fix	for concrete						
Prod Mate	uct description rials	Annex A 4						

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or guasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Novatech Injection System Novatio Q-Fix for concrete

Intended Use

Specifications

Annex B 1

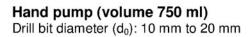
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9 12 14 18 22 26 30				33			
Diameter of steel brush	$d_{b} [mm] \ge 12 \ 14 \ 16 \ 20 \ 26 \ 30$		30	34	37				
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thiskness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

· · · · · · · · · · · · · · · · · · ·											
Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40	
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128	
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640	
Diameter of steel brush	d _b [mm] ≥	14 16		18	20	22	26	34	37	41,5	
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160	
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160	

Novatech Injection System Novatio Q-Fix for concrete

Intended Use Installation parameters Annex B 2


Steel brush					
Table B3: Pa	arameter clean	ing and setting	tools	d _b	
Threaded Rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - ∅	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No
	12	16	18	16,5	 piston plug required
M16	14	18	20	18,5	
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35

41,5

40

32

40,5

Recommended compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Novatech Injection System Novatio Q-Fix for concrete

Intended Use

Cleaning and setting tools

Annex B 3

38

Intended Use Installation instructions Annex B 4

Installation inst	ructions (continuation)
	6 Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4.
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
Tinst.	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
≥ -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
≥ 0 °C	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ + 10 °C	15 min	80 min
≥ + 20 °C	6 min	45 min
≥ + 30 °C	4 min	25 min
≥ + 35 °C	2 min	20 min
≥ + 40 °C	1,5 min	15 min

¹⁾ Cartridge temperature <u>must</u> be at min. +15°C ²⁾ In wet concrete the curing time <u>must</u> be doubled

Novatech Injection System Novatio Q-Fix for concrete

Intended Use Installation instructions (continuation)

Curing time

Annex B 5

Steel failure Characteristic tension resistance, Steel, property class 4.6 No.4 [kN] 15 23 34 63 98 141 184 Characteristic tension resistance, Steel, property class 5.8 No.4 [kN] 18 29 42 78 122 176 230 Characteristic tension resistance, Steel, property class 5.8 No.4 [kN] 29 46 67 125 196 282 368 Characteristic tension resistance, Steel, property class 5.0 (>M24) and 70 (< M24)	Anchor size threaded roo	d			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel, property class 3.6. NTRG.8 [NN] 13 23 34 65 96 141 164 Characteristic tension resistance, Steel, property class 5.8 Nrm.8. [KN] 18 29 42 78 122 176 230 Characteristic tension resistance, Steel, property class 5.8 Nrm.8. [kN] 29 46 67 125 196 282 368 Characteristic tension resistance, property class 50 (sM24) and 70 (sM24) Nrm.8. [kN] 26 41 59 110 171 247 230 Combined pull-out and concrete cone failure Nrm.8. [kN] 26 41 59 110 171 247 230 Combined pull-out and concrete cone failure Nrm.8. [kN] 26 41 59 110 171 247 230 Characteristic bond resistance in non-cracked concrete τ_{Ruar} [N/mm²] 10 12 12 12 11 10 40°C/24°C dry and wet concrete τ_{Ruar} [N/mm²] 7,5 8,5 8,5 6,5 6,5 6,5 <th>Steel failure</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>•</th> <th>•</th> <th></th> <th></th> <th></th> <th></th>	Steel failure					•	•	•				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic tension resi	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic tension resi	stance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I: 40°C/24°C dry and wet concrete Temperature range II: flooded bore hole Temperature range II: f	Characteristic tension resis Stainless steel A4 and HC	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
$\begin{array}{c c c c c c c } $ Temperature range I: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $					1							
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Characteristic bond resista	ance in non-cracked con	crete C20/	/25								
$\begin{array}{c c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c } \hline \end{tabular} \en$	- Femperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	11	10	9
Temperature range II: 80°C/50°COrder of the field of		flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	8,5	8,5	8,5		not adr	nissible	1
$\frac{1}{100 \text{ ded bore hole}} = \frac{1}{r_{\text{Rk,ucr}}} \begin{bmatrix} [\text{N/mm}^2] & 5,5 & 6,5 & 0,5 $	ſemperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Femperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
Increasing factors for concrete ψ_c C40/501,08C40/501,10Splitting failureEdge distance $c_{\alpha,sp}$ [mm] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$ Axial distance $s_{\alpha,sp}$ [mm] $2 c_{\alpha,sp}$ Install safety factor (dry and wet concrete) γ_2 $1,0$ $1,2$	20°C/72°C		$\tau_{Rk,ucr}$	[N/mm ²]	4,0 5,0 5,0 5,0 not admissible					nissible		
		L	C30/37	1				1,	04			
C50/601,10Splitting failureEdge distance $c_{\alpha,sp}$ [mm] $1,0 \cdot h_{ef} \leq 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \leq 2,4 \cdot h_{ef}$ Axial distance $s_{\alpha,sp}$ [mm] $2 c_{\alpha,sp}$ Install safety factor (dry and wet concrete) γ_2 $1,0$ $1,2$	5		C40/50		1,08							
Edge distance $c_{cr,sp}$ [mm] $1,0 \cdot h_{ef} \leq 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \leq 2,4 \cdot h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Install safety factor (dry and wet concrete) γ_2 $1,0$ $1,2$			C50/60		1,10							
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Install safety factor (dry and wet concrete) γ_2 1,0 1,2	Splitting failure				-							
Install safety factor (dry and wet concrete) γ_2 1,0 1,2	Edge distance		C _{cr,sp}	[mm]		1,0) ⋅ h _{ef} ≤	2 · h _{ef} 2	$5 - \frac{h}{h_{ef}}$) ≤ 2,4 · I	า _{ef}	
	Axial distance s _{or,sp} [mm]			[mm]	2 C _{or,sp}							
Install safety factor (flooded bore hole) γ ₂ 1,4 not admissible	nstall safety factor (dry ar	nd wet concrete)	γ2		1,0				1,2			
	nstall safety factor (floode	d bore hole)	γ2			1	,4			not adr	nissible	

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete

(Design according to TR 029)

Table C2: Characteristic in non-cracke								er she	ar load	ds
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm			1							
Characteristic shear resistance, Steel, property class 4.6	$V_{\text{Rk},s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	$M^0_{\ Rk,s}$	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]	2,0							
Installation safety factor	γ2		1,0							
Concrete edge failure										
Installation safety factor	γ2					1	,0			

Novatech Injection System Novatio Q-Fix for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

	haracteristic val on-cracked cond							nsion	load	s in		
Anchor size reinforcin	g bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension re	esistance	N _{Rk,s}	[kN]					$A_{s} \boldsymbol{\cdot} f_{uk}$				
Combined pull-out and	d concrete cone failure											
Characteristic bond resi	stance in uncracked conc	rete C20/25	5									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
	_	C30/37						1,04				
Increasing factors for cc ψ_{c}	oncrete	C40/50						1,08				
		C50/60						1,10				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]		1	,0 ∙ h _{ef}	≤2 · h _e	f (2,5 –	$\left(\frac{h}{h_{ef}}\right) \le$	2,4 · h _e	f	
Axial distance		S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation safety factor	(dry and wet concrete)	γ2		1,0				1	,2			
Installation safety factor	(flooded bore hole)	γ2				1,4				not adr	nissible	

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029) $\,$

	eristic value racked con								oads		
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			1			1			1		
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
Steel failure with lever arm			1								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.	2 ∙ W _{el} ∙	f _{uk}			
Concrete pry-out failure	1										
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]					2,0				
Installation safety factor	γ2						1,0				
Concrete edge failure			_								
Installation safety factor	γ2						1,0				

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to TR 029) $\,$

Annex C 4

Electronic copy of the ETA by DIBt: ETA-15/0163

				М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	tance,	N _{Rk.s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resis	tance.	INRK,S	[KN]	23	+0	07	125	130	202	000	443
Stainless steel A4 and HCF property class 50 (>M24) ai	۲,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co											
-	nce in non-cracked concrete	e C20/25									
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	11	10	9
Temperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5			nissible	
Tomporaturo rango II:	rature range II: dry and wet concrete °C flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole τ_{Rk}	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
		C30/37			1	I	1,	04			
Increasing factors for concr Ψ_{c}	ete	C40/50					1,	08			
Ψο		C50/60					1,	10			
Factor according to CEN/TS 1992-4-5 Section 6	3223	k ₈	[-]				10),1			
Concrete cone failure	5.2.2.0										
Factor according to	2001	k _{ucr}	[-]				10),1			
CEN/TS 1992-4-5 Section 6 Edge distance	0.2.0.1	C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]					h _{ef}			
Splitting failure		,					· ·				
						0 6 4	<u>a h (a</u>	_ h)	<04 h		
Edge distance		C _{cr,sp}	[mm]			,0 · n _{ef} ≤	2 · h _{ef} 2	^{5−} h _{ef}	$\leq 2,4 \cdot n_e$	əf	
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor (dr	y and wet concrete)	γinst		1,0				1,2			
Installation safety factor (flo	oded bore hole)	γinst			1	,4			not adr	nissible	

erformances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm		·		·						
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,8				
Steel failure with lever arm	·									
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,0				
Installation safety factor	γinst					1,0				
Concrete edge failure ³⁾	·	·								
Effective length of anchor	l _f	[mm]			I _f =	min(h _{et} ; 8	3 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,0				-

Novatech Injection System Novatio Q-Fix for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

	racteristic value cracked concre									ls in		
Anchor size reinforcing ba	ır			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										1	1	
Characteristic tension resista	ance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out and co	ncrete failure		I	1								
Characteristic bond resistan	ce in non-cracked concre	ete C20/25	5									
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
		C30/37						1,04				
Increasing factors for concre Ψ_c	ete	C40/50						1,08				
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section 6.	.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6.	.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure				-								
Edge distance		C _{cr,sp}	[mm]			1,0 · h,	_{ef} ≤2·h _e	_{ef} (2,5	$\left(\frac{h}{h_{ef}}\right) \le 2$,4 ⋅ h _{ef}		
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation safety factor (dry	and wet concrete)	γinst		1.0				1	,2			
Installation safety factor (floc	oded bore hole)	γinst				1,4				not adr	nissible	
Novatech Injection	i System Novatio	Q-Fix	for conc	crete						Anne	ex C 7	,

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C8:Characteristic value cracked concrete (D								ads ir	n non	-	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm							1				
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.:	2 ∙ W _{el} ∙	f _{uk}			
Concrete pry-out failure		•									
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	l _f	[mm]				$I_{f} = m$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γinst						1,0				

Novatech Injection System Novatio Q-Fix for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

splaceme	nts under tension	on load ¹⁾	(threa	ded ro	od)				
ed rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
ete C20/25									
δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
δ_{N_∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
	ed rod ete C20/25 δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor	ed rod ete C20/25 δ_{N0} -factor [mm/(N/mm ²)]	ed rod M 8 ete C20/25 δ_{N0} -factor [mm/(N/mm^2)] 0,021 δ_{No} -factor [mm/(N/mm^2)] 0,030 δ_{N0} -factor [mm/(N/mm^2)] 0,050 δ_{No} -factor [mm/(N/mm^2)] 0,072 δ_{N0} -factor [mm/(N/mm^2)] 0,050 δ_{N0} -factor [mm/(N/mm^2)] δ_{N0} -factor δ_{N0} -factor	ed rod M 8 M 10 ete C20/25 δ_{N0} -factor [mm/(N/mm^2)] 0,021 0,023 δ_{No} -factor [mm/(N/mm^2)] 0,030 0,033 δ_{No} -factor [mm/(N/mm^2)] 0,050 0,056 δ_{No} -factor [mm/(N/mm^2)] 0,072 0,081 δ_{N0} -factor [mm/(N/mm^2)] 0,050 0,056	ed rod M 8 M 10 M 12 ete C20/25 δ_{N0} -factor [mm/(N/mm^2)] 0,021 0,023 0,026 δ_{No} -factor [mm/(N/mm^2)] 0,030 0,033 0,037 δ_{No} -factor [mm/(N/mm^2)] 0,050 0,056 0,063 δ_{No} -factor [mm/(N/mm^2)] 0,072 0,081 0,090 δ_{No} -factor [mm/(N/mm^2)] 0,050 0,056 0,063	ete C20/25 δ_{N0} -factor [mm/(N/mm ²)] 0,021 0,023 0,026 0,031 δ_{No} -factor [mm/(N/mm ²)] 0,030 0,033 0,037 0,045 δ_{No} -factor [mm/(N/mm ²)] 0,050 0,056 0,063 0,075 δ_{No} -factor [mm/(N/mm ²)] 0,072 0,081 0,090 0,108 δ_{No} -factor [mm/(N/mm ²)] 0,050 0,056 0,063 0,075	ed rodM 8M 10M 12M 16M 20ete C20/25 δ_{No} -factor[mm/(N/mm²)]0,0210,0230,0260,0310,036 δ_{No} -factor[mm/(N/mm²)]0,0300,0330,0370,0450,052 δ_{No} -factor[mm/(N/mm²)]0,0500,0560,0630,0750,088 δ_{No} -factor[mm/(N/mm²)]0,0720,0810,0900,1080,127 δ_{No} -factor[mm/(N/mm²)]0,0500,0560,0630,0750,088	ed rod M 8 M 10 M 12 M 16 M 20 M24 ete C20/25 δ _{N0} -factor [mm/(N/mm²)] 0,021 0,023 0,026 0,031 0,036 0,041 δ _{No} -factor [mm/(N/mm²)] 0,030 0,033 0,037 0,045 0,052 0,060 δ _{No} -factor [mm/(N/mm²)] 0,050 0,056 0,063 0,075 0,088 0,100 δ _{No} -factor [mm/(N/mm²)] 0,050 0,056 0,063 0,075 0,088 0,100 δ _{No} -factor [mm/(N/mm²)] 0,050 0,056 0,063 0,075 0,088 0,100	ed rodM 8M 10M 12M 16M 20M24M 27ete C20/25 δ_{N0} -factor[mm/(N/mm^2)]0,0210,0230,0260,0310,0360,0410,045 δ_{Nac} -factor[mm/(N/mm^2)]0,0300,0330,0370,0450,0520,0600,065 δ_{Nac} -factor[mm/(N/mm^2)]0,0500,0560,0630,0750,0880,1000,110 δ_{Nac} -factor[mm/(N/mm^2)]0,0500,0560,0630,0750,0880,1000,110 δ_{Nac} -factor[mm/(N/mm^2)]0,0500,0560,0630,0750,0880,1000,110

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \ \cdot \ \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \cdot \ \tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	concrete C2	0/25	•			•				
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
$\delta_{V\infty}=\delta_{V\infty}\text{-facto}$	or ·V;									

Novatech Injection System Novatio Q-Fix for concrete

Performances Displacements (threaded rods) Annex C 9

Electronic copy of the ETA by DIBt: ETA-15/0163

Anchor size reinfe	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Table C12: D	isplacen	nent under s	hear Io	ad ¹⁾ (r	ebar)						
Anchor size reinfo	orcing bar		hear lo Ø 8	øad ¹⁾ (r	ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Anchor size reinfo Non-cracked cono	orcing bar crete C20/2	25	Ø 8	Ø 10	Ø 12						Ø 32
Anchor size reinfo	brcing bar crete C20/2 δ_{V0} -factor $\delta_{V\infty}$ -factor	25 [mm/(kN)] [mm/(kN)]	1		-	Ø 14 0,04 0,06	Ø 16 0,04 0,06	Ø 20 0,04 0,05	Ø 25 0,03 0,05	Ø 28 0,03 0,04	Ø 32 0,03 0,04

Performances Displacements (rebar)