

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0208 of 28 April 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Carbon Fix Product family nailed-in plastic anchor for fixing of external thermal to which the construction product belongs insulation composite systems with rendering in concrete and masonry Manufacturer Deutsche Amphibolin Werke, DAW Robert-Murjahn Stiftung GmbH & Co. KG Roßdörfer Straße 50 64372 Ober-Ramstadt DEUTSCHLAND Manufacturing plant DAW Herstellwerk 10183 DAW manufacturing plant 10183 This European Technical Assessment 13 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Plastic issued in accordance with Regulation (EU) anchors for fixing of external thermal insulation composite No 305/2011, on the basis of systems with rendering", ETAG 014, edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0208 English translation prepared by DIBt

Page 2 of 13 | 28 April 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 13 | 28 April 2015

European Technical Assessment ETA-15/0208 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The nailed-in anchor Carbon Fix consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of polyethylene and an accompanying specific nail of galvanised steel with an overmoulding of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90. An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Not applicable.

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

Page 4 of 13 | 28 April 2015

European Technical Assessment

ETA-15/0208

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

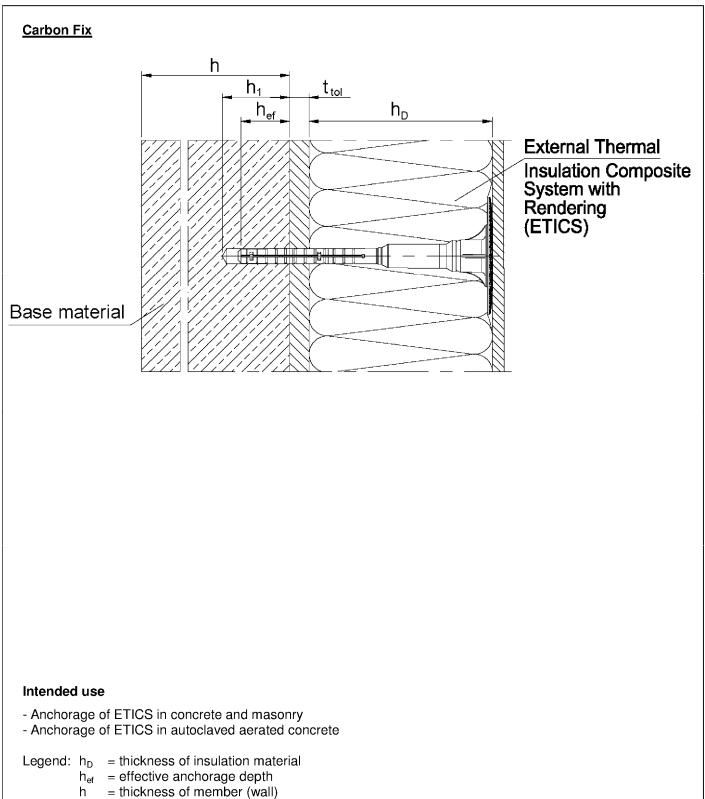
According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 April 2015 by Deutsches Institut für Bautechnik


Andreas Kummerow p. p. Head of Department

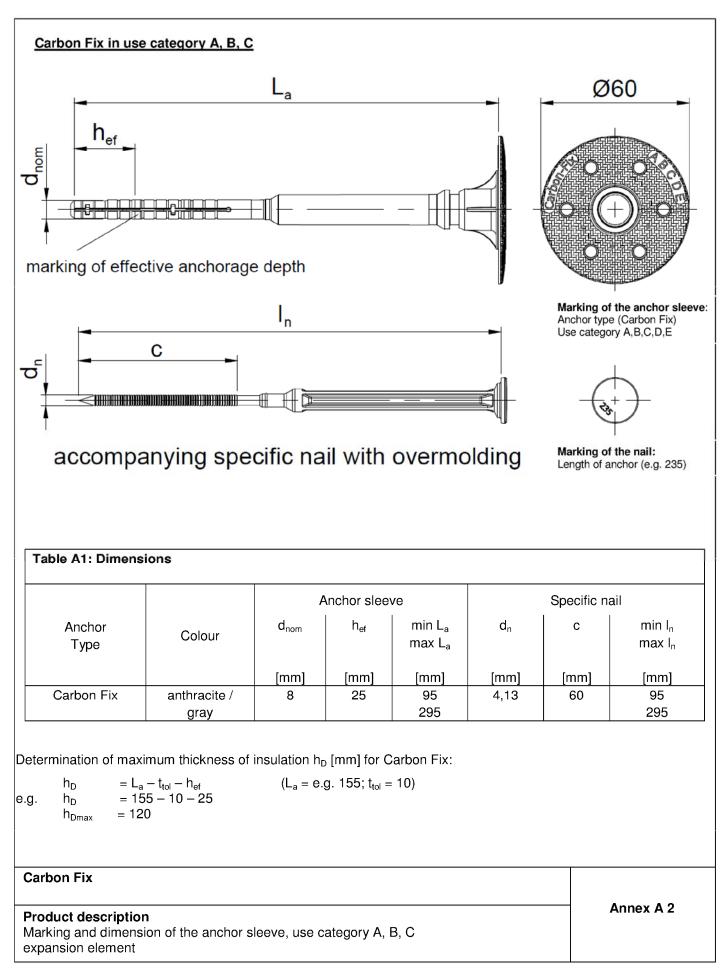
beglaubigt: Ziegler

Page 5 of European Technical Assessment ETA-15/0208 of 28 April 2015

English translation prepared by DIBt

- h_1 = depth of drill hole to deepest point
- t_{tol} = thickness of equalizing layer or non-load-bearing coating

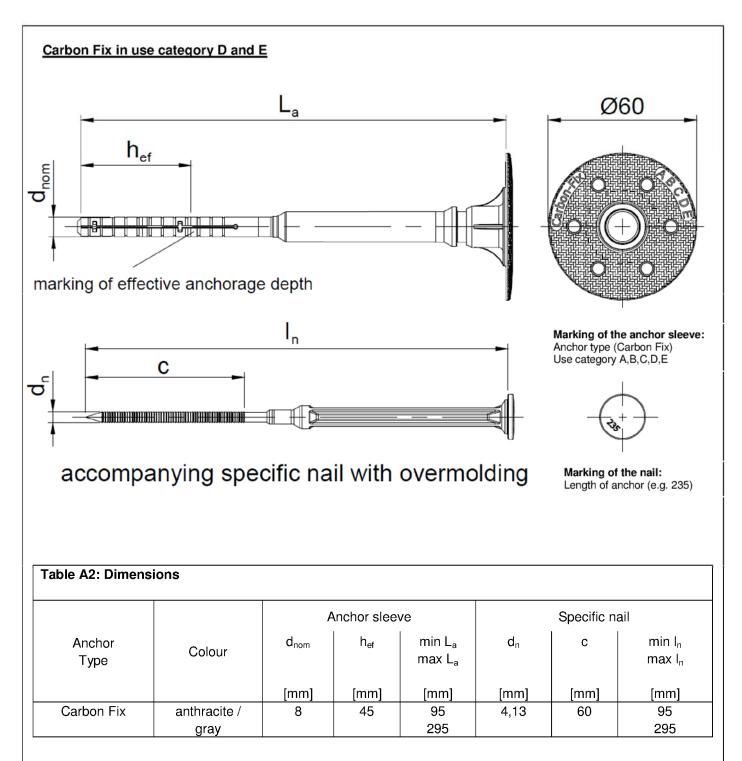
Carbon Fix


Product description Intended use

Annex A 1

Page 6 of European Technical Assessment ETA-15/0208 of 28 April 2015

English translation prepared by DIBt



Page 7 of European Technical Assessment ETA-15/0208 of 28 April 2015

English translation prepared by DIBt

Determination of maximum thickness of insulation h_D [mm] for Carbon Fix:

. . . e.g. h_{Dmax} TUU

$$\begin{array}{rcl} n_{\rm D} & = L_{\rm a} - t_{\rm tol} - n_{\rm ef} \\ h_{\rm D} & = 155 - 10 - 45 \\ h_{\rm D} & - 100 \end{array}$$

.

 $(L_a = e.g. 155; t_{tol} = 10)$

Carbon Fix

Product description

Marking and dimension of the anchor sleeve, use category D and E expansion element

Annex A 3

Page 8 of European Technical Assessment ETA-15/0208 of 28 April 2015

English translation prepared by DIBt

Table A3: Materials						
Name	Materials	Materials				
Anchor sleeve	Polyethylene, PE-HD, colour: anthracite	Polyethylene, PE-HD, colour: anthracite / gray				
Specific nail - overmouldii	ng Polyamide, PA GF 50	Polyamide, PA GF 50				
Specific nail	Steel, electro galvanized $\ge 5 \ \mu m \ accord$ blue passivated f _{yk} $\ge 670 \ N/mm^2$	Steel, electro galvanized \geq 5 µm according to EN ISO 4042:2001, blue passivated f _{yk} \geq 670 N/mm ²				
SL 140 plus		SBL 140 pluscolournatured_[mm]20,0d[mm]2,0Material1) 2)				
90		$\begin{tabular}{ c c c c } \hline VT & 90 \\ \hline colour & nature \\ \hline d_d & [mm] & 17,5 \\ \hline d & [mm] & 1,2 \\ \hline Material & {}^{1) 2) \end{tabular}$				
		¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50				
arbon Fix						
roduct description aterials,		Annex A 4				

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1.
- Solid masonry (use category B), according to Annex C 1.
- Hollow or perforated masonry (use category C), according to Annex C 1.
- · Lightweight aggregate concrete (use category D), according to Annex C 1.
- · Autoclaved aerated concrete (use category E), according to Annex C 1.
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

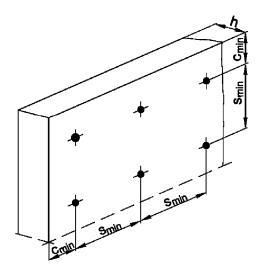
- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- · Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

Carbon Fix

Intended use Specifications Annex B 1

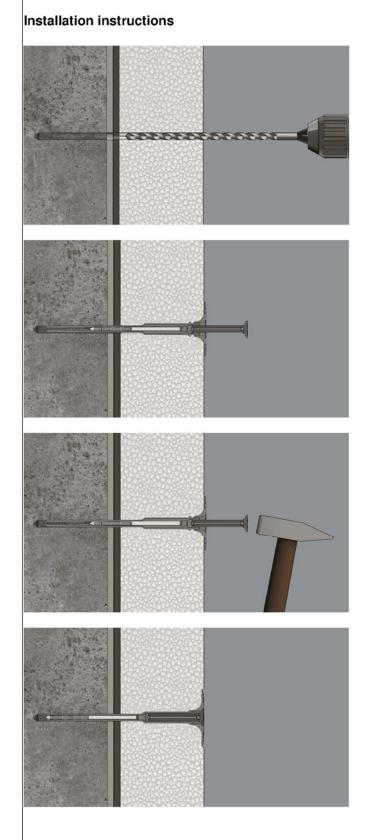

Table B1: Installation parameters				
Anchor type		Carbon Fix		
		use category		
		A, B, C	D and E	
Drill hole diameter	d ₀ [mm] =	8	8	
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45	
Depth of drilles hole to deepest point	h₁ [mm] ≥	35	55	
Effective anchorage depth ¹⁾	h _{ef} [mm] ≥	25	45	

¹⁾ Larger anchoring depths are fundamentally possible.

Table B2: Anchor distances and dimensions of members

Anchor type	Carbon Fix	
Minimum allowable spacing	$s_{min} \geq [mm]$	100
Minimum allowable edge distance	$c_{min} \geq [mm]$	100
Minimum thickness of member	h ≥ [mm]	100
Minimum thickness of thin concrete members	h ≥ [mm]	40

Scheme of distance and spacing



Carbon Fix

Intended use
Installations parameters,
Minimum thickness of member, edge distances and spacing

Annex B 2

Drill the hole perpendicular to the substrate surface. Clean the drill hole 3x.

Place the anchor into the drill hole. The bottom side of the plate must be flush with the ETICS.

Drive in the specific nail with the hammer.

Installed condition Carbon Fix

Carbon Fix

Intended use Installation instructions Annex B 3

Table C1:Characteristic resistance to tension loads N_{Rk} in concrete an masonry for a single anchor in kN					
Anchor type					Carbon Fix
Base materials	Bulk density class ρ	minimum compressive strength f _b	General remarks	Drill method	N _{Rk}
	[kg/dm³]	[N/mm ²]			[kN]
Concrete C16/20- C50/60 EN 206-1:2000				hammer	0,9
Thin concrete members (e.g. weather resistant skin) Concrete C12/15– C50/60 EN 206-1:2000			Thickness of the thin skin: 100 mm > h ≥ 40 mm	hammer	0,9
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 0,8	12	Vertically perforation more than 15 % and less than 50 %.	rotary	0,6 ¹⁾
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,6	12	Vertically perforation more than 15 %.	rotary	0,9 ²⁾
Lightweight aggregate concrete, LAC 4 – LAC 25 e.g. according to EN 1520:2011-06 / EN 771-3:2011	≥ 0,7	4		rotary	0,9
Autoclaved aerated concrete, AAC 4 – AAC 7 e.g. according to DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4		rotary	0,5

¹⁾ The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.
²⁾ The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site

The value applies only for outer web thickness \geq 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

Carbon Fix

Performances Characteristic resistance Annex C 1

		insulation thickness		point thermal transmittance			
anchor type		h _D [mm]		χ [W/K]			
Carbon Fix		60 – 260		0,001			
Table C3: Plate stiffnes	ss according E	OTA Techni	cal Report T	R 026:2007	-06		
anchor type	of the ar	meter nchor plate	of the an	sistance chor plate	plate stiffness		
Carbon Fix		[mm] 60		[kN] 1,5		[kN/mm] 1,17	
Table C4: Displacemer Base materials	nts	Bulk dens class	-	nimum pressive	Tension load	Displacements	
		ρ [kg/dm ³	st	rength f _b /mm²]	N [kN]	δ(N) [mm]	
Concrete C16/20– C50/60 EN 206-1:2000					0,3	0,4	
Thin concrete members (e.g. weather resistant s Concrete C12/15 – C50/ EN 206-1:2000					0,3	0,5	
Clay bricks, Mz DIN 105-100:2012-01 / EN 771-1:2011		≥ 1,8		12	0,3	0,5	
Sand-lime solid bricks, KS DIN V 106:2005-10 / EN 771-2:2011		≥ 1,8		12	0,3	0,3	
Vertically perforated clay bricks, HLz DIN 105-100:2012-01 / EN 771-1:2011		≥ 0,9		12	0,2	0,5	

 \geq 1,4

≥ 0,7

 \geq 0,55

12

4

4

0,3

0,3

0,15

Annex C 2

0,4

0,5

0,4

Performances Point thermal transmittance, plate stiffness displacements

DIN 105-100:2012-01 / EN 771-1:2011 Sand-lime perforated bricks, KSL

DIN V 106:2005-10 / EN 771-2:2011 Lightweight aggregate concrete,

EN 1520:2011-06 / EN 771-3:2011 Autoclaved aerated concrete,

DIN V 4165-100:2005-10 / EN 771-4:2011

LAC 4 - LAC 25

AAC 4 - AAC 7

Carbon Fix