

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0276 of 9 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system IM PURE HX ETA 1 for concrete

Bonded anchor with anchor rod for use in concrete

TER LAARE VERANKERINGSTECHNIEKEN BV. ZWARTE ZEE 20 3140 MAASSLUIS NIEDERLANDE

Ter Laare Verankeringstechnieken BV Plant 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0276 English translation prepared by DIBt

Page 2 of 27 | 9 June 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 27 | 9 June 2015

European Technical Assessment ETA-15/0276 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System IM PURE HX ETA 1 for concrete" is a bonded anchor consisting of a cartridge with injection mortar IM PURE HX ETA 1 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Page 4 of 27 | 9 June 2015

European Technical Assessment

ETA-15/0276

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- **3.7** Sustainable use of natural resources (BWR 7) The sustainable use of natural resources was not investigated.

3.8 General aspects

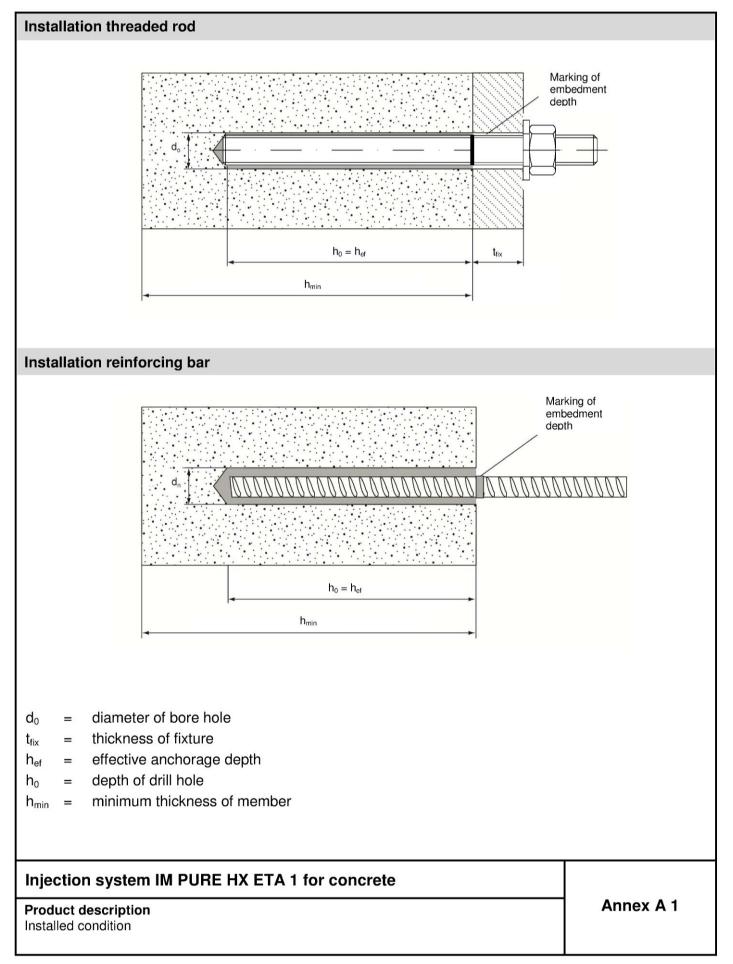
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

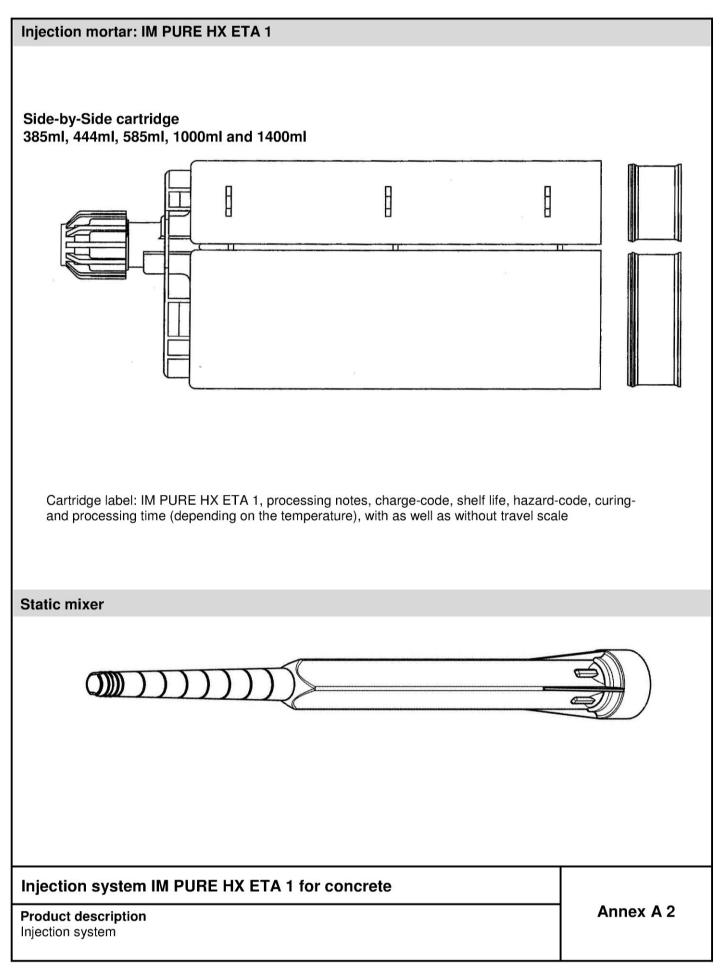
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 June 2015 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-15/0276 of 9 June 2015

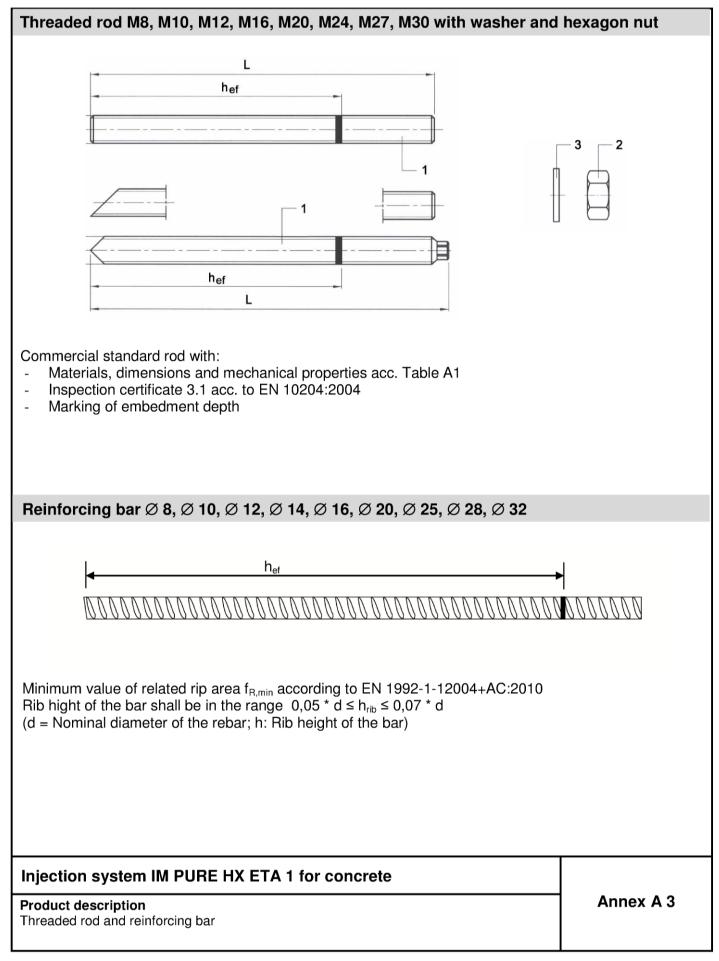


Table A1: Materials

Part		Material
Steel	, zinc plated ≥ 5 μm acc. to EN ISO 4042	2 or Steel,
າot-d	ip galvanised ≥ 40 μm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009 A ₅ > 8% fracture elongation
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised
Stain	less steel	
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
High	corrosion resistance steel	
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 \leq M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005
Reinf	orcing bars	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system IM PURE HX ETA 1 for concrete

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system IM PURE HX ETA 1 for concrete

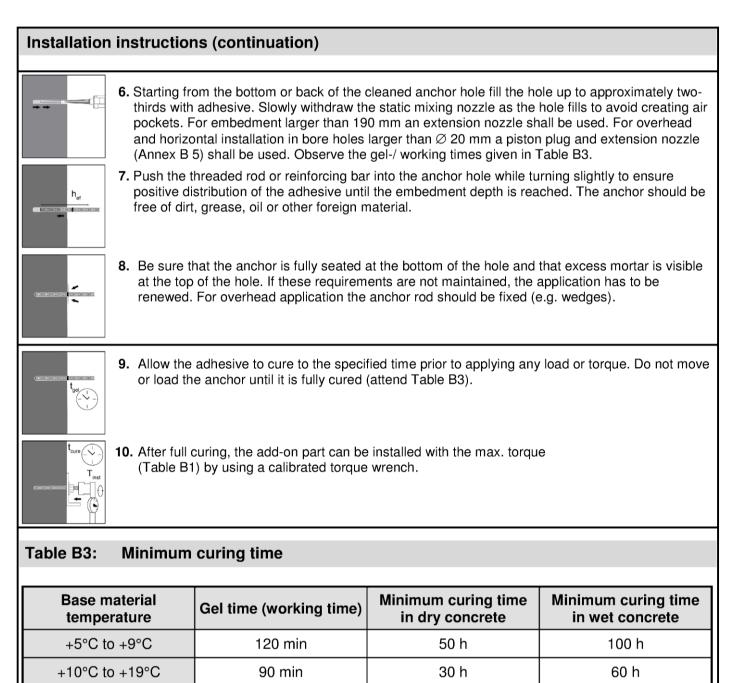
Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	parameters fo	s for threaded rod								
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	≥ 12 14 16 20 26 30 34 3				37				
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thickness of fivture	t _{fix,min} [mm] >	0								
Thickness of fixture	t _{fix,max} [mm] <	1500								
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀	I		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

			-								
Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128	
Enective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384	
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5	
Minimum thickness of member	h _{min} [mm]	-	30 mm 0 mm	h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160	
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160	


Injection system IM PURE HX ETA 1 for concrete

Intended Use Installation parameters Annex B 2

Installation instructions	
1. Drill with hammer drill a hole into the base material to the size and emb by the selected anchor (Table B1 or Table B2).	edment depth required
Attention! Standing water in the bore hole must be removed before of	cleaning.
 2a. Starting from the bottom or back of the bore hole, blow the hole clean w (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the reached an extension shall be used. 	
or The hand-pump can be used for anchor sizes up to bore hole diameter	20 mm.
EXAMPLE 1 For bore holes larger then 20 mm or deeper 240 mm, compressed air (used.	min. 6 bar) <u>must</u> be
 2b. Check brush diameter (Table B4) and attach the brush to a drilling mach screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,mi} of two times. If the bore hole ground is not reached with the brush, a brushall be used (Table B4). 	n (Table B4) a minimum
 2c. Finally blow the hole clean again with compressed air or a hand pump of two times. If the bore hole ground is not reached an extension shall The hand-pump can be used for anchor sizes up to bore hole diameter For bore holes larger then 20 mm or deeper 240 mm, compressed air (used. 	be used. 20 mm.
After cleaning, the bore hole has to be protected against re-contain appropriate way, until dispensing the mortar in the bore hole. If ne repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
3. Attach a supplied static-mixing nozzle to the cartridge and load the cart dispensing tool. For every working interruption longer than the recommended working t as for new cartridges, a new static-mixer shall be used.	-
4. Prior to inserting the anchor rod into the filled bore hole, the position of shall be marked on the anchor rods.	the embedment depth
5. Prior to dispensing into the anchor hole, squeeze out separately a minir and discard non-uniformly mixed adhesive components until the mortar colour.	
Injection system IM PURE HX ETA 1 for concrete	
Intended Use Installation instructions	Annex B 3

10 h

6 h

4 h

Injection system IM PURE HX ETA 1 for concrete

30 min

20 min

12 min

Intended Use Installation instructions (continuation) Curing time

+20°C to +29°C

+30°C to +39°C

+40 °C

Annex B 4

20 h

12 h

8 h

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d₀ (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		8		ann an	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
-	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
1999,1991,1991,1997,1991,1991,1991,1991	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Injection system IM PURE HX ETA 1 for concrete

Intended Use Cleaning and setting tools Annex B 5

$\begin{aligned} \begin{array}{c c c c c c c c c c c c c c c c c c c $		l			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
$\begin{split} \text{Steel, property class 4.6 New Mex.} & N 15 23 24 53 24 53 24 53 24 53 24 53 24 14 14 14 14 14 14 14$	Steel failure										•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Characteristic tension resis	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
$\begin{array}{c c c c c c c } \mbox{Characteristic tension resistance, Stainless steel A4 and HCR, Stainless steel A4 and HCR, Competer class 50 (-M24) and 70 (< M24) \\ \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \mbox{Combined pull-out and concrete cone failure } \\ \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
$\begin{array}{c c c c c c } \mbox{Characteristic bond resistance in non-cracked concrete C20/25} \\ \hline Temperature range I: \\ 40^{\circ}C/24^{\circ}C & \hline flooded bore hole \\ $T_{Rk,ucr}$ [N/mm^{2}] 15 15 14 13 10 9,5 8,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7$	Characteristic tension resis Stainless steel A4 and HCF	٦,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281	
$ \begin{array}{c c c c c c } Temperature range I: \\ concrete \\ flooded bore hole \\ TeRcaer [N/mm2] 15 15 15 15 14 13 12 12 12 \\ flooded bore hole \\ terce \\ te$	Combined pull-out and co	oncrete cone failure											
$ \begin{array}{c c c c c c } \hline Temperature range 1: \\ 40^{\circ}C/24^{\circ}C & 15 15 16 14 13 12 12 12 12 12 12 12	Characteristic bond resista	nce in non-cracked co	ncrete C20)/25									
$ \frac{100 \text{ dode d bore hole}}{160 \text{ dode d bore hole}} = \frac{1}{16 \text{ k,uer}} [N/mm^2] = 15 = 14 = 13 = 10 = 9,5 = 8,5 = 7,5 = 7,5 = 60^{\circ} \text{ C/3}^{\circ} \text{ C} + 160 \text{ dode d bore hole}}{160 \text{ dode d bore hole}} = \frac{1}{16 \text{ k,uer}} [N/mm^2] = 9,5 = 9,5 = 9,0 = 8,5 = 8,0 = 7,5 = 7,0 = 6,5 = 7,0 = 6,5 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 6,5 = 7,0 = 7,0 = 7,0 = 6,5 = 7,0 = 7,$			$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12	
$ \begin{array}{c c c c c c c } \hline Tence term for the te$.0°C/24°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0	
$\frac{100 \text{ ded bore hole}}{100 \text{ ded bore hole}} = \frac{\tau_{\text{Rk,uer}}}{100 \text{ ded bore hole}} = \frac{\tau_{\text{Rk,uer}}}{100$			$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
$\frac{1100 \text{ ded bore hole}}{\text{Ve}} \frac{1}{\text{Fe}_{\text{R},\text{uer}}} \frac{[\text{N/mm}^2]}{(\text{N/mm}^2]} \frac{8,5}{8,5} \frac{8,6}{8,0} \frac{7,5}{7,0} \frac{7,0}{6,0} \frac{5,5}{5,5} \frac{1}{7,0} \frac{6,0}{5,5} \frac{5,5}{7,0} \frac{1}{7,0} \frac{6,0}{5,5} \frac{5,5}{7,0} \frac{1}{7,0} \frac$	Temperature range III:		$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
$\frac{C40/50}{C50/60} \qquad 1,08$ $\frac{C40/50}{C50/60} \qquad 1,08$ Splitting failure $\frac{h \mid h_{ef} \geq 2,0}{2,0 > h \mid h_{ef} > 1,3} \qquad 4,6 \ h_{ef} - 1,8 \ h \qquad 1,3$ $\frac{1,0 \ h_{ef}}{1,0 \ h_{ef} \leq 2,26 \ h_{ef}} \qquad 1,0$ Axial distance $\frac{s_{cr,sp}}{r_2} \qquad [mm] \qquad 2c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\frac{2}{r_2} \qquad 1,2 \qquad 1,4$		flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
			C30/37					1,	04				
C50/601,10Splitting failureEdge distance $h / h_{ef} \ge 2,0$ $1,0 h_{ef}$ $2,0 > h / h_{ef} \ge 1,3$ $4,6 h_{ef} - 1,8 h$ $h / h_{ef} \le 1,3$ $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 \rightarrow 1,3 \rightarrow 1,3$ Axial distance $s_{cr,sp}$ [mm] $2,26 h_{ef}$ Installation safety factor (dry and wet concrete) γ_2 $1,2$ $1,4$	•	ete	C40/50					1,	08				
Edge distanceh / h_{ef} \ge 2,01,0 h_{ef}2,0 > h / h_{ef} > 1,34,6 h_{ef} - 1,8 hh / h_{ef} \le 1,32,26 h_{ef}Axial distancescr.spInstallation safety factor (dry and wet concrete) γ_2 1,21,4			C50/60	250/60 1,10					10				
Edge distance $ \frac{ h / h_{ef} \ge 2,0 1,0 h_{ef} }{2,0 > h / h_{ef} > 1,3} 4,6 h_{ef} - 1,8 h 1,3 4,6 h_{ef} - 2,26 h_{ef} 1,0 h_{ef} 2,26 h_{ef} 2,0 1,0 h_{ef} 2,26 h_{ef} 2,0 1,0 h_{ef} 2,26 h_{ef} 2,0 1,0 h_{ef} 2,0 $	Splitting failure				1		h	h.7					
Edge distance $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3$ h / $h_{ef} \le 1,3$ $2,26 h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) γ_2 $1,2$ $1,4$				h / h _{ef} ≥ 2,0	1	,0 h _{ef}							
h / h_{ef} \le 1,32,26 h_{ef}1,31,31,0		-	0.0	h / h									
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) γ_2 1,21,4	age distance	_	2,0 >	$n / n_{ef} > 1,3$	4,6 n _{ef} - 1,8 n		1	,3 -					
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) γ_2 1,21,4			h / h _{ef} ≤ 1,3		2,26 h _{ef}					,	c _{cr,sp}		
Installation safety factor (dry and wet concrete) γ_2 1,21,4	vial distance		Sec. an	[mm]				20		ef 2,2	26 [,] n _{ef}		
		y and wet concrete)		[]									
					1,4								
Installation safety factor (flooded bore hole) γ_2 1,4			72						,4				

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029 $\,$

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30	
Steel failure										
Characteristic tension re Steel, property class 4.6		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280	
Characteristic tension re Steel, property class 8.8	,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449	
Characteristic tension re Stainless steel A4 and H property class 50 (>M24	HCR,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281	
Combined pull-out and	d concrete cone failure)								
Characteristic bond resi	stance in cracked concr	ete C20/25								
		$\tau_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,2	No Pe	(NPD)			
40°Ċ/24°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		$\tau_{\text{Rk,seis,C2}}$	[N/mm ²]	2,4	2,1	No Pe	rformance I	Determined	(NPD)	
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Performance Determined (NPD)				
60°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Pe	rformance l	Determined	(NPD)	
		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Performance Determin		Determined	ed (NPD)	
72°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)	
Increasing factors for co	oncrete	C30/37				1,0)4			
(only static or quasi-state Ψ_c		C40/50				1,0)8			
		C50/60				1,1				
Installation safety factor	(dry and wet concrete)	γ2		1,	2		1	,4		
Installation safety factor	(flooded bore hole)	γ2				1,	4			

Injection system IM PURE HX ETA 1 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C3:Characteristic values of resistance for threaded rods under shear loads in
cracked and non-cracked concrete (Design according to TR 029 and TR
045)

045)										
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	ormance	14	27	42	56	72	88
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance I	Determined	d (NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo	ormance	18	34	53	70	91	111
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance I	Determined	(NPD)
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo	ormance	30	55	85	111	145	177
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance I	Determined	(NPD)
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	24	44	No Per	formance I	Determined	(NPD)
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]								
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance [Determined	d (NPD)		
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]								
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance [Determined	d (NPD)		
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	$M^0_{\rm Rk,s,seis,C1}$	[Nm]								
	$M^0_{\rm Rk,s,seis,C2}$	[Nm]	No Performance Determined (NPD)							
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR,	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			No Dor		Determiner			
property class 50 (>M24) and 70 (\leq M24)	$M^0_{\rm Rk,s,seis,C2}$	[Nm]	No Performance Determined (NPD)							
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors			2,0							
Installation safety factor	γ2		1,0							
Concrete edge failure										
See section 5.2.3.4 of Technical Report TR 02	9 for the desig	n of Bond	ded Ancho	ors						
Installation safety factor	γ2					1,	,0			
Injection system IM PURE H) Performances Characteristic values of resistance for thr concrete, Design according to TR 029 an	eaded rods u			in crack	ked and i	non-crac	ked	An	nex C	3

	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					•	I	I		L			
Characteristic tension resis	tance	N _{Rk,s}	[kN]					$A_{s} \ge f_{uk}$				
Combined pull-out and co	oncrete cone failure	I	_									
Characteristic bond resistar	nce in non-cracked co	oncrete C20	/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°Ċ/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°Ċ/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37				I	I	1,04	I			
Increasing factors for concr Ψ_c	Increasing factors for concrete							1,08				
		C50/60						1,10				
Splitting failure												
		h	1,0 h _{ef}									
Edge distance	-	2,0 > ł	n / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h			2,0					
	-		h / h _{ef} ≤ 1,3									_
		, · · ·					1,0 h _{ef} 2,26 h _{ef}					
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}								
Installation safety factor (dr	. ,	γ ₂ γ ₂		1,2				1,4	1,4			

Design according to TR 029

	racteristic val ked concrete							oads i	n					
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
Steel failure														
Characteristic tension res	Characteristic tension resistance $\begin{bmatrix} N_{Rk,s} = \\ N_{Rk,s,seis,C1} \end{bmatrix}$ [kN]						A _s x f _{uk}							
Combined pull-out and	concrete cone failure													
Characteristic bond resist	ance in cracked concre	ete C20/25												
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5				
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5				
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0				
	hoded bore hole	$ au_{Rk,seis,C1}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0				
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5				
Temperature range II:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5				
60°C/43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0				
	hoded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0				
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0				
Temperature range III:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0				
72°C/43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0				
	hoded bore hole	$ au_{Rk,seis,C1}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0				
Increasing factors for one	avata	C30/37					1,04							
Increasing factors for concrete (only static or quasi-static actions) C40/50							1,08							
Ψc		C50/60		1,10										
Installation safety factor (. ,	γ2		1,2 1,4										
Installation safety factor (f		1,4												

Injection system IM PURE HX ETA 1 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045

Annex C 5

electronic copy of the eta by dibt: eta-15/0276

Table C6:	Characteristic v and non-cracke											d	
Anchor size reinf	orcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure with	out lever arm												
		$V_{Rk,s}$	[kN]				0,	50 x A _s x	f _{uk}				
Characteristic shea	ar resistance	[kN]	Perfor	mined			0,4	44 x A _s x	f _{uk}				
Steel failure with	lever arm												
Oberesteristic ber		М ⁰ _{Rk,s}	[Nm]	1.2 ⋅W _{el} ⋅ f _{uk}									
Characteristic bend	aing moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)									
Concrete pry-out	failure												
Factor k in equatio TR 029 for the des	n (5.7) of Technical Repo ign of bonded anchors	rt						2,0					
Installation safety f	iactor	γ2						1,0					
Concrete edge fai	ilure												
See section 5.2.3.4	4 of Technical Report TR (029 for the de	esign of [3onded A	Anchors								
Installation safety f	actor	γ2						1,0					
				<u> </u>									

Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045

Anchor size threaded roo	i			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis	stance,	N _{Rk.s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCl property class 50 (>M24) a	٦,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c	· · · · · · · · · · · · · · · · · · ·		_								
Characteristic bond resista	nce in non-cracked concrete	e C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Increasing factors for conc Ψ_c	rete	C30/37 C40/50 C50/60					1,	04 08 10			
Factor according to CEN/T	S 1992-4-5 Section 6.2.2.3	k ₈	[-]				,),1			
Concrete cone failure											
Factor according to CEN/T	S 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	i h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure							4				
		I	h / h _{ef} ≥ 2,0	1,() h _{ef}		1/h _{ef}				
Edge distance		2,0 >	h / h _{ef} > 1,3	4,6 h _e	_f - 1,8 h		1,3				
			h / h _{ef} ≤ 1,3	2,2	:6 h _{ef}			1,0∙h,	, 2,26	∂·h _{ef} c _o	cr,sp
Axial distance		S _{cr,sp}	[mm]			·	2 0	cr,sp			
Installation safety factor (d	ry and wet concrete)	γinst			1,	,2			1	,4	
Installation safety factor (flo	oded bore hole)	γinst					1	,4			

Injection system IM PURE HX ETA 1 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension resist Steel, property class 5.8	ance,	$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	42	78	122	176	230	280
Characteristic tension resist Steel, property class 8.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	ł,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and co	oncrete failure								
Characteristic bond resistar	nce in cracked concrete C2	20/25							
		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,2	No Per	ormance [Determine	d (NPD
40°Ċ/24°C		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,1	No Per	ormance [Determine	d (NPD
		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Femperature range II:		ℓ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Per	ormance [Determine	d (NPD
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	ℓ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,4	1,4	No Per	ormance I	Determine	d (NPD
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	ℓ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Femperature range III:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance [Determine	d (NPD
72°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance I	Determine	d (NPD
ncreasing factors for concre	ata	C30/37				1,	04		-
only static or quasi-static a		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 5.2.2.3	6 1992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 5.2.3.1	6 1992-4-5 Section	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]				h _{ef}		
Installation safety factor (dry	y and wet concrete)	γinst		1	,2	1,4			
Installation safety factor (flo		γinst γinst			1,4				

Injection system IM PURE HX ETA 1 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s,seis,C1}$	[kN]	No Perf	ormance	14	27	42	56	72	88
	$V_{\text{Rk},\text{s},\text{seis},\text{C2}}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance E	Determined	(NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	18	34	53	70	91	111
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance E	Determined	(NPD)
	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance D	Determined	(NPD)
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	24	44	No Per	formance E	Determined	(NPD)
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	$M^0_{Rk,s,seis,C1}$	[Nm]			No Perfe	ormance [)otormine			
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	$M^0_{Rk,s,seis,C1}$	[Nm]			No Perfo	ormance [Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]				1				
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	-		No Perfo	ormance [Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]	-		No Perfo	ormance [Determine	ed (NPD)		
	$M^0_{Rk,s,seis,C2}$	[Nm]								
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure										
Effective length of anchor	h	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	0			

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

electronic copy of the eta by dibt: eta-15/0276

	Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)													
Anchor size reinforcing ba	r			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure											I			
Characteristic tension resista	ance	N _{Rk,s}	[kN]					$A_s \ge f_{uk}$						
Combined pull-out and co	ncrete failure	<u> </u>		1										
Characteristic bond resistant	ce in non-cracked concr	ete C20/2	25											
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	14	14	13	13	12	12	11	11	11		
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0		
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5		
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0		
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0		
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5		
	•	C30/37						1,04				·		
Increasing factors for concre ψ_c	te	C40/50						1,08						
		C50/60												
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	K ₈ [-] 10,1											
Concrete cone failure														
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k _{ucr}	[-]					10,1						
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}						
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}						
Splitting failure														
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}							
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3							
		h	/ h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0∙h _{ef}	2,26	h _{ef}	C _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}		,	01			
Installation safety factor (dry	and wet concrete)	γinst				1,2				1	,4			
Installation safety factor (floo	Installation safety factor (flooded bore hole) γ_{inst}							1,4						

Injection system IM PURE HX ETA 1 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Table C11: Cha crac	racteristic val ked concrete										
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension resi	stance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_{s} \ge f_{uk}$				
Combined pull-out and c	concrete failure										
Characteristic bond resista	ance in cracked concre	ete C20/25									
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet	$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
Increasing factors for cond	crete	C30/37					1,04				
(only static or quasi-static		C40/50					1,08				
Ψc		C50/60					1,10				
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				7,2				
Concrete cone failure											
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]				7,2				
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}				
Installation safety factor (c	ry and wet concrete)	γinst			1,2			1	,4		
Installation safety factor (flooded bore hole) Yinst					1,4						

Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Table C12: Characteristic valu and non-cracked c											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	[kN]				0,5	50 x A _s x	f _{uk}				
Characteristic shear resistance	[kN]	Perfor	lo mance mined PD)			0,4	4 x A _s x	f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1						0,8					
Steel failure with lever arm											
Characteristic handling memory	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	[mm]				l _f = m	in(h _{ef} ; 8	d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor						1,0					

Injection system IM PURE HX ETA 1 for concrete

Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Anchor size thre	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked cor	ncrete C20/25 unde	r static and qu	asi-stati	ic actio	n							
4000/0400	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035		
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140		
C000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043		
60°C/43°C	$\delta_{N_\infty} - \text{factor}$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16		
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043		
72°C/43°C	$\delta_{N_\infty} - \text{factor}$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16 [.]		
Cracked concret	e C20/25 under sta	itic, quasi-stati	c and se	eismic (C1 actio	n						
1000/0100	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05		
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	1		0,21	0,21	0,21	0,21	0,21	0,21		
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,043	0,049	0,055	0,061	0,067		
60°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24		
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	1		0,037	0,043	0,049	0,055	0,061	0,06		
72°C/43°C	72°C/43°C $\delta_{N_{\infty}}$ – factor [mm/(N/mm				0,24	0,24	0,24	0,24	0,24	0,24		
Cracked concret	e C20/25 under sei	smic C2 action	1							•		
40%0/04%0	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm ²)]			0,03	0,05						
40°C/24°C	$\delta_{\text{N,seis}(\text{ULS})} - factor$	[mm/(N/mm ²)]]		0,06	0,09						
60%0/42%0	$\delta_{N,seis(DLS)}-factor$	[mm/(N/mm ²)]		ormance mined	0,03	0,05	No Borf	No Performance Determined (NF				
60°C/43°C	S. factor	[0.00	0,09	No Peri					
	$\delta_{N,seis(ULS)}$ – factor	[mm/(N/mm ²)]	(NI	PD)	0,06	0,09						
70°C/42°C	$\frac{\delta_{N,seis(ULS)} - factor}{\delta_{N,seis(DLS)} - factor}$	[mm/(N/mm ²)] [mm/(N/mm ²)]		PD)	0,06	0,09						
72°C/43°C	$\frac{\delta_{N,seis(DLS)} - factor}{\delta_{N,seis(ULS)} - factor}$ he displacement	[mm/(N/mm ²)] [mm/(N/mm ²)]		PD)	-	-						
¹⁾ Calculation of th	$ \begin{array}{c c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \tau; & \delta_{N,seis(T,\tau; S,\tau; S,\tau; S,\tau; S,\tau; S,\tau; S,\tau; S,\tau; S$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $ULS) = \delta_{N,seis(ULS)}-fa$	ctor τ; ctor τ; oad ¹⁾ (1	(τ: act thread	0,03 0,06 iion bonc ed roc	0,05 0,09 strength		M24	M 27	M 30		
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} - factor δ_{N\infty} = δ_{N\infty} - factor Γable C14: DAnchor size thre$		$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $uLS) = \delta_{N,seis(ULS)}-fa$ nder shear l	ctor τ; ctor τ; oad ¹⁾ (1 M 8	(τ: act thread M 10	0,03 0,06 iion bonc ed roc M 12	0,05 0,09 strength) M 16	M 20	M24	M 27	M 30		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: D Anchor size thre Non-cracked and		$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis}(DLS)-fa$ $uLS) = \delta_{N,seis}(ULS)-fa$ $nder shear la$ $C20/25 under$	ctor τ; ictor τ; oad ¹⁾ (1 M 8 static, q	(τ: act thread M 10 uasi-sta	0,03 0,06 iion bonc ed roc M 12	0,05 0,09 strength) M 16	M 20 c C1 ac	tion	M 27	M 30		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: D Anchor size thre Non-cracked and		$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $uLS) = \delta_{N,seis(ULS)}-fa$ nder shear l	ctor τ; ctor τ; oad ¹⁾ (1 M 8	(τ: act thread M 10	0,03 0,06 ion bond ed roc M 12 atic and	0,05 0,09 strength) M 16 seismi	M 20			0,03		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: D Anchor size thre Non-cracked and All temperatures	$ \begin{array}{c c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \tau; & \delta_{N,seis(T,\tau)} \\ \hline \sigma \cdot \tau; \\ \hline \sigma \cdot \tau; & \delta_{N,seis(T,\tau)} \\ \hline \sigma \cdot \tau; \\ \hline \sigma \cdot$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis}(DLS)-fa$ $nder shear la$ fa $C20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	(τ: act thread M 10 uasi-sta 0,06	0,03 0,06 ion bond ed roc M 12 atic and 0,05	0,05 0,09 strength) M 16 seismi 0,04	M 20 c C1 ac 0,04	tion 0,03	0,03	0,03		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: D Anchor size thre Non-cracked and All temperatures Cracked concret	$ \begin{array}{c c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \tau; & \delta_{N,seis(} \\ \hline tisplacements u \\ \hline aded rod \\ \hline d cracked concrete \\ \hline \delta_{V0} - factor \\ \hline \delta_{V\infty} - factor \\ \hline e C20/25 under sei \\ \hline \end{array} $	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis}(DLS)-fa$ $nder shear la$ fa $C20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	(τ: act thread M 10 uasi-sta 0,06 0,08	0,03 0,06 ion bond ed roc M 12 atic and 0,05	0,05 0,09 strength) M 16 seismi 0,04	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	0,03 0,05		
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} -factor δ_{N\infty} = δ_{N\infty} -factor Table C14: D Anchor size thre Non-cracked anc All temperatures$	$ \begin{array}{ c c c c c }\hline\hline & \delta_{N,seis(DLS)} - factor \\\hline & \delta_{N,seis(ULS)} - factor \\\hline & \delta_{N,seis(ULS)} - factor \\\hline & \tau; & \delta_{N,seis(} \\\hline & \tau; & \delta_{N,seis(} \\\hline & \tau; & \delta_{N,seis(} \\\hline & splacements u \\\hline & aded rod \\\hline & aded rod \\\hline & aded concrete \\\hline & \delta_{V0} - factor \\\hline & \delta_{V\infty} - factor \\\hline & \delta_{V\infty} - factor \\\hline \end{array} $	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder shear la$ $C20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	(τ: act thread M 10 uasi-sta 0,06 0,08	0,03 0,06 ion bond ed roc M 12 atic and 0,05 0,08	0,05 0,09 strength) M 16 seismi 0,04 0,06	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03	0,03 0,05		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: D Cable C14: D Inchor size thre Ion-cracked and Il temperatures Cracked concret	$\begin{array}{c c} \delta_{N,seis(DLS)} - factor\\ \hline \delta_{N,seis(ULS)} - factor\\ \hline \delta_{N,seis(ULS)} - factor\\ \hline tripole displacement\\ \hline \tau; & \delta_{N,seis(}\\ \hline tripole displacements u\\ \hline aded rod\\ \hline d cracked concrete\\ \hline \hline \delta_{V0} - factor\\ \hline \delta_{V\infty} - factor\\ \hline e C20/25 under sei\\ \hline \hline \delta_{V,seis(DLS)} - factor\\ \hline \hline \delta_{V,seis(ULS)} - factor\\ \hline \hline \delta_{V,seis(ULS)} - factor\\ \hline he displacement\\ \hline \cdot V; & \delta_{V,seis}\\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis}(DLS)-fa$ $nder shear la$ $c20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$ $[mm/kN]$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09 No Perfe Deter (NF actor V	(τ: act thread M 10 uasi-sta 0,06 0,08 ormance mined PD)	0,03 0,06 ion bond ed roc M 12 atic and 0,05 0,08	0,05 0,09 strength) M 16 seismi 0,04 0,06 0,1 0,1	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	0,03 0,05		

Table C15: Displacements under tension load ¹⁾ (rebar)													
Anchor size	reinforcing b	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked	concrete C2	20/25 under sta	atic and	quasi-s	tatic act	ion							
40°C/24°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037		
40°0/24°0	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149		
60°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043		
60°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172		
72°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043		
72°0/43°0	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172		
Cracked con	crete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	tion						
1000/0400	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061		
40°C/24°C	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	1		0,21	0,21	0,21	0,21	0,21	0,21	0,21		
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,040	0,043	0,049	0,056	0,063	0,070		
60°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24		
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]]		0,037	0,040	0,043	0,049	0,056	0,063	0,070		
72°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau; \qquad (\tau: \text{action bond strength})$

 $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size re	einforcing b	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
For concrete C20/25 under static, quasi-static and seismic C1 action													
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03		
All δ_{V_0} – factor[mm/(kN)]temperatures $\delta_{V_{\infty}}$ – factor[mm/(kN)]			0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04		

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} - factor \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty} - factor \cdot V; \end{split}$$
(V: action shear load)

Injection system IM PURE HX ETA 1 for concrete

Performances Displacements (rebar)