

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0277 of 9 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system IM PURE HX ETA 7 for concrete

Bonded anchor with anchor rod for use in non-carcked concrete

TER LAARE VERANKERINGSTECHNIEKEN BV. ZWARTE ZEE 20 3140 MAASSLUIS NIEDERLANDE

Ter Laare Verankeringstechnieken BV Plant 1

22 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0277 English translation prepared by DIBt

Page 2 of 22 | 9 June 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 22 | 9 June 2015

European Technical Assessment ETA-15/0277 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System IM PURE HX ETA 7 for concrete" is a bonded anchor consisting of a cartridge with injection mortar IM PURE HX ETA 7 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C 4
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 8
Displacements under tension and shear loads	See Annex C 9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Page 4 of 22 | 9 June 2015

European Technical Assessment

ETA-15/0277

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- **3.7** Sustainable use of natural resources (BWR 7) The sustainable use of natural resources was not investigated.

3.8 General aspects

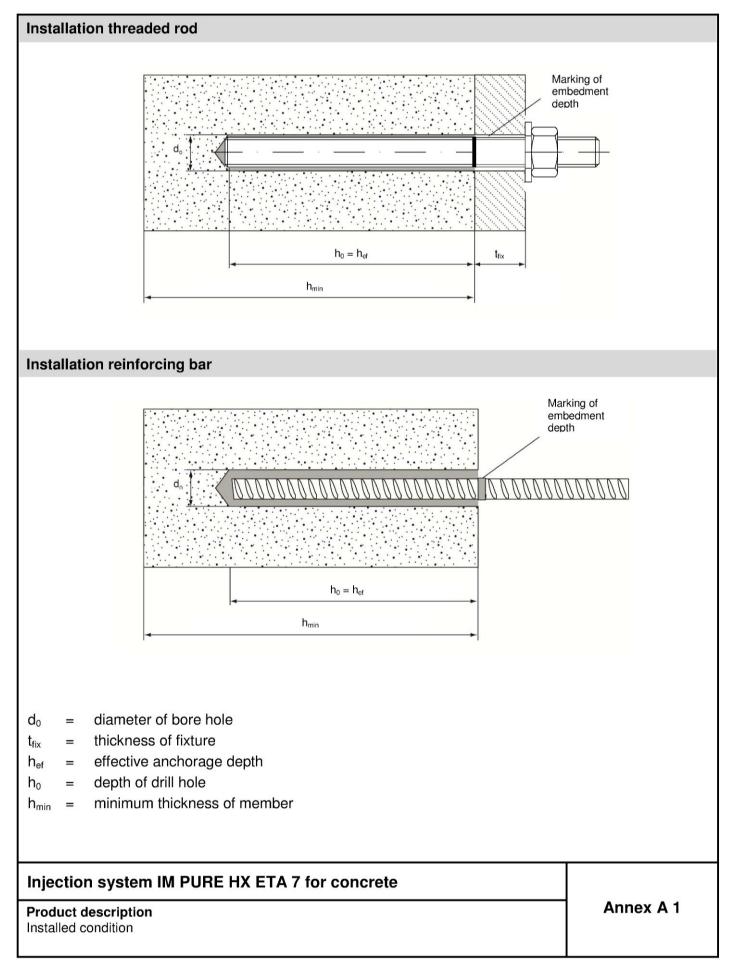
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

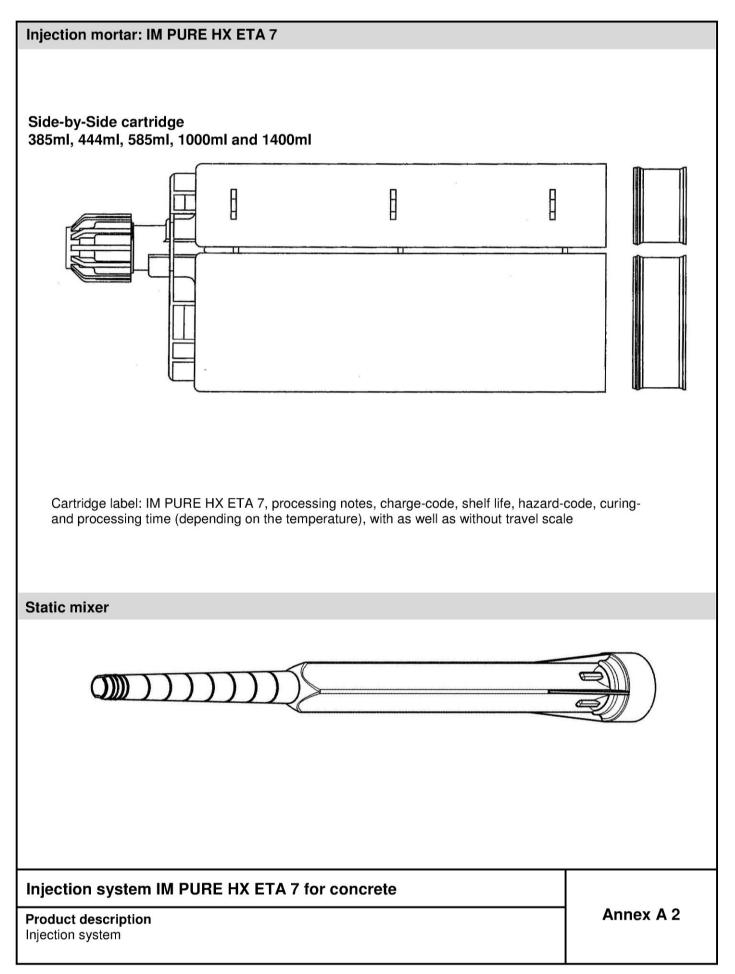
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 June 2015 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-15/0277 of 9 June 2015

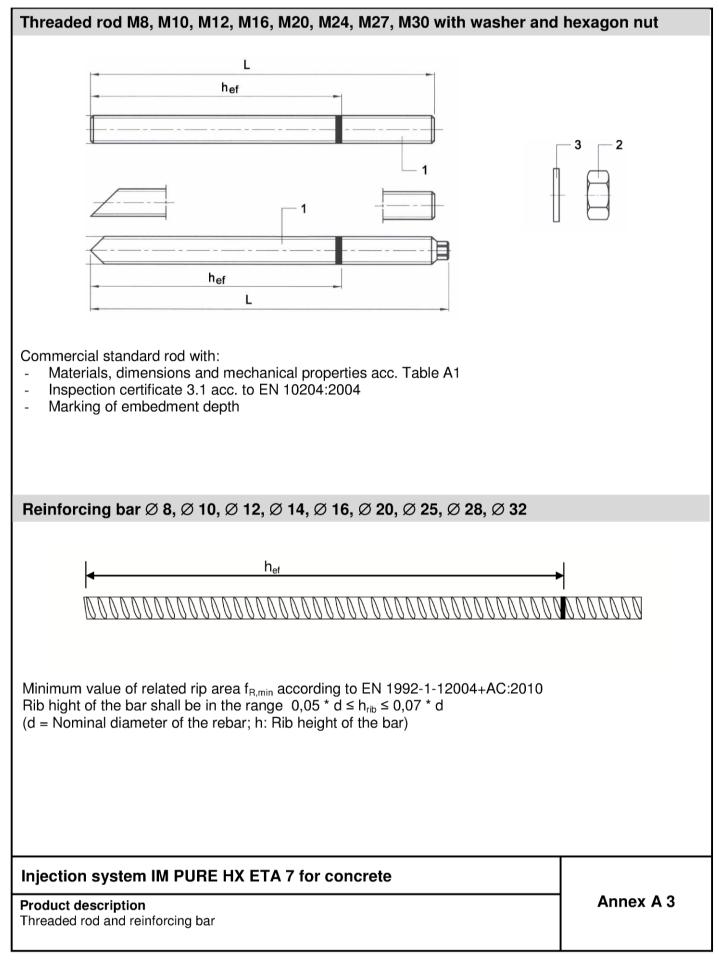


Table A1: Materials

Part	Designation	Material
	, zinc plated \ge 5 µm acc. to EN ISO 4042	
not-d	ip galvanised ≥ 40 μm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009
		Steel, EN 10087:1998 or EN 10263:2001
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009
		$A_5 > 8\%$ fracture elongation
		Steel acc. to EN 10087:1998 or EN 10263:2001
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN ISO 898-2:2012,
-		Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,
		Property class 8 (for class 8.8 rod) EN ISO 898-2:2012
	Washer, EN ISO 887:2006,	
3	EN ISO 7089:2000, EN ISO 7093:2000	Steel, zinc plated or hot-dip galvanised
	or EN ISO 7094:2000	
Stain	less steel	
		Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,
		> M24: Property class 50 EN ISO 3506-1:2009
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:2009
		$A_5 > 8\%$ fracture elongation
		Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009
-		≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
	Washer, EN ISO 887:2006,	
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
Ũ	or EN ISO 7094:2000	
Hiah	corrosion resistance steel	
		Material 1.4529 / 1.4565, EN 10088-1:2005,
1	Anchor rod	> M24: Property class 50 EN ISO 3506-1:2009
		≤ M24: Property class 70 EN ISO 3506-1:2009
		$A_5 > 8\%$ fracture elongation
~	1100 4000 0010	Material 1.4529 / 1.4565 EN 10088-1:2005,
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009
		\leq M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
	Washer, EN ISO 887:2006,	
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4529 / 1.4565, EN 10088-1:2005
	or EN ISO 7094:2000	
Reinf	orcing bars	
		Bars and de-coiled rods class B or C
1	Rebar EN 1992-1-1:2004+AC:2010,	f _{vk} and k according to NDP or NCL of EN 1992-1-1/NA:2013
	Annex C	$f_{uk} = f_{tk} = k \cdot f_{vk}$

Injection system IM PURE HX ETA 7 for concrete

Product description Materials Annex A 4

electronic copy of the eta by dibt: eta-15/0277

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system IM PURE HX ETA 7 for concrete

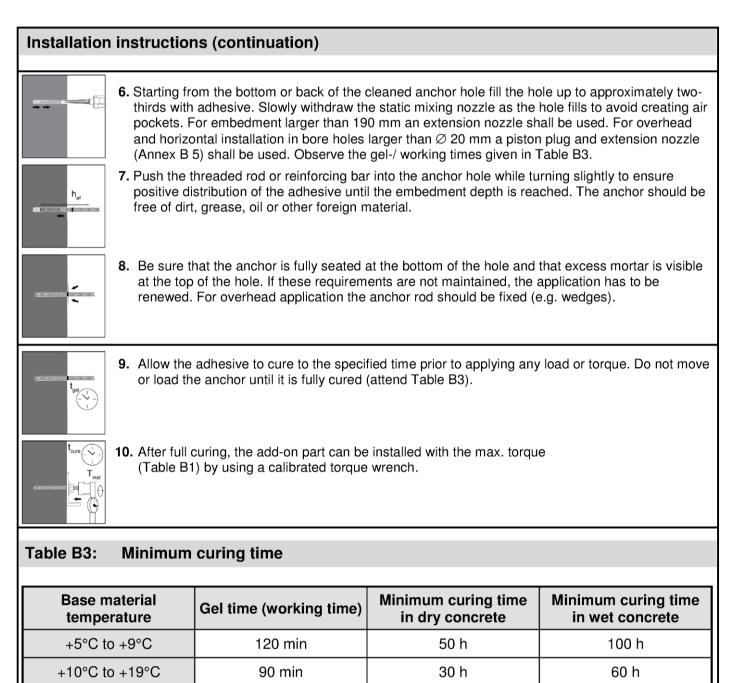
Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	parameters fo	or threa	aded ro	d						
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Enective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thickness of fixture	t _{fix,min} [mm] >				()				
Thickness of fixture	t _{fix,max} [mm] <	1500								
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀	I		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

				-	-							
Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40		
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128		
Enective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384		
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5		
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160		
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160		


Injection system IM PURE HX ETA 7 for concrete

Intended Use Installation parameters Annex B 2

Installation in	nstructions	
	 Drill with hammer drill a hole into the base material to the size and emb by the selected anchor (Table B1 or Table B2). 	edment depth required
	Attention! Standing water in the bore hole must be removed before c	leaning.
2x □ 2	2a. Starting from the bottom or back of the bore hole, blow the hole clean w (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the reached an extension shall be used.	
Or •••	The hand-pump can be used for anchor sizes up to bore hole diameter	20 mm.
^{6 Bar}	For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	min. 6 bar) <u>must</u> be
22 1 2x	2b. Check brush diameter (Table B4) and attach the brush to a drilling mach screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,mir}$ of two times. If the bore hole ground is not reached with the brush, a brush all be used (Table B4).	(Table B4) a minimum
⊸ 2x	2c. Finally blow the hole clean again with compressed air or a hand pump (of two times. If the bore hole ground is not reached an extension shall b The hand-pump can be used for anchor sizes up to bore hole diameter For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	be used. 20 mm.
or GBar H	After cleaning, the bore hole has to be protected against re-contan appropriate way, until dispensing the mortar in the bore hole. If ne repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
	 Attach a supplied static-mixing nozzle to the cartridge and load the cartridispensing tool. For every working interruption longer than the recommended working ti as for new cartridges, a new static-mixer shall be used. 	-
	 Prior to inserting the anchor rod into the filled bore hole, the position of t shall be marked on the anchor rods. 	the embedment depth
×	 Prior to dispensing into the anchor hole, squeeze out separately a minim and discard non-uniformly mixed adhesive components until the mortar colour. 	
Injection syst	tem IM PURE HX ETA 7 for concrete	
Intended Use	ctions	Annex B 3

10 h

6 h

4 h

Injection system IM PURE HX ETA 7 for concrete

30 min

20 min

12 min

Intended Use Installation instructions (continuation) Curing time

+20°C to +29°C

+30°C to +39°C

+40 °C

Annex B 4

20 h

12 h

8 h

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b.min} (mm)	Piston plug
		2		anna.	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
8	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
199949911991999999111	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Injection system IM PURE HX ETA 7 for concrete

Intended Use Cleaning and setting tools Annex B 5

Anchor size threaded roc	I			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure										•			
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension resis Steel, property class 5.8	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280		
Characteristic tension resis Steel, property class 8.8	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension resis Stainless steel A4 and HCI property class 50 (>M24) a	٦,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and c	oncrete cone failure												
Characteristic bond resista	nce in non-cracked co	ncrete C20/	25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12		
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0		
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5		
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0		
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5		
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5		
		C30/37				•	1,	04					
Increasing factors for concl Ψ_c	rete	C40/50					1,	08					
		C50/60					1,	10					
Splitting failure							L						
		h	n / h _{ef} ≥ 2,0	1	,0 h _{ef}		h _{ef} ,0 -						
Edge distance		2,0 > h	n / h _{ef} > 1,3	4,6 h	_{ef} - 1,8 h	1	,3						
	h	n / h _{ef} ≤ 1,3	2,26 h _{ef}				10.6)	C _{cr,sp}			
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}					1,0°n _{ef} 2,20°n _{ef}				
Installation safety factor (di	y and wet concrete)	γ2		1,2 1,4									
	ooded bore hole)	γ2			1,2					1,4			

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029

Table C2: Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to TR 029)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140	
Steel failure with lever arm											
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Characteristic bending moment, Steel, property class 5.8	${\sf M}^0_{{\sf Rk},{\sf s}}$	[Nm]	19	37	65	166	324	560	833	1123	
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Concrete pry-out failure									-	-	
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors			2,0								
Installation safety factor	γ2					1,	,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR 02	9 for the desi	gn of Bond	led Ancho	ors							
Installation safety factor	γ2					1	.0				

Injection system IM PURE HX ETA 7 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads non-cracked concrete, Design according to TR 029 $\,$

	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	N _{Rk,s}	[kN]					$A_{s} \ge f_{uk}$				
Combined pull-out and c	oncrete cone failure	I										
Characteristic bond resista	nce in non-cracked co	oncrete C20	/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°Ċ/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	_					1,04				
Increasing factors for conc Ψ_c	rete	C40/50						1,08				
c		C50/60						1,10				
Splitting failure		1										
		h	n / h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} ↑					
	-			2,0			2,0 -					
Edge distance		2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h			1,3 -					
		h / h _{ef} ≤ 1,3		2,26 h _{ef}				C _{cr,sp}				C _{cr.sp}
Axial distance	S _{cr,sp}	[mm]	2 c _{cr,sp}			1,0 ·h _{ef} 2,26 ·h _{ef}						
Installation safety factor (d	rv and wet concrete)	γ ₂	1,2					1,4				
	ooded bore hole)	γ2				-,_		1,4			, .	

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029

Steel failure without lever arm Characteristic shear resistance $V_{RK,s}$ [KN] $0,50 \times A_s \times f_{uk}$ Steel failure with lever arm Characteristic bending moment $M^0_{RK,s}$ [Nm] $1.2 \cdot W_{el} \cdot f_{uk}$ Characteristic bending moment $M^0_{RK,s}$ [Nm] $1.2 \cdot W_{el} \cdot f_{uk}$ Concrete pry-out failure $2,0$ $2,0$ Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors $2,0$ $1,0$ Installation safety factor γ_2 $1,0$ $1,0$ Concrete edge failure See section $5.2.3.4$ of Technical Report TR 029 for the design of Bonded Anchors $1.2 \cdot W_{el} \cdot f_{uk}$	Characteristic shear resistance $V_{Rk,s}$ [kN] $0,50 \times A_s \times f_{uk}$ Steel failure with lever arm Characteristic bending moment $M^0_{Rk,s}$ [Nm] $1.2 \cdot W_{el} \cdot f_{uk}$ Characteristic bending moment $M^0_{Rk,s}$ [Nm] $1.2 \cdot W_{el} \cdot f_{uk}$ Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors $2,0$ $2,0$ Installation safety factor γ_2 $1,0$ Concrete edge failure γ_2 $1,0$	Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure with lever arm Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1.2 ·W _{ol} · f _{uk} Concrete pry-out failure Factor k in equation (5.7) of Technical Report 2,0 Installation safety factor γ_2 1,0	Steel failure with lever arm Characteristic bending moment $M^0_{Rk,s}$ $[Nm]$ $1.2 \cdot W_{el} \cdot f_{uk}$ Concrete pry-out failure Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors $2,0$ Installation safety factor γ_2 $1,0$ Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors Bonded Anchors	Steel failure without lever arm											
Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1.2 ·W _{ol} · f _{uk} Concrete pry-out failure Eactor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ_2 1,0 Concrete edge failure Kernel Kernel	Characteristic bending moment $M^0_{Rk,s}$ [Nm] 1.2 · W_{el} · f_{uk} Concrete pry-out failure Eactor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ_2 1,0 Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors Eactor the design of Bonded Anchors	Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,	50 x A _s x	f _{uk}			
Concrete pry-out failure Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 1,0 Concrete edge failure	Concrete pry-out failure Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 1,0 Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors 10	Steel failure with lever arm			1								
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 1,0 Concrete edge failure	Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 1,0 Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors	Characteristic bending moment	М ⁰ _{Вк,s}	[Nm]				1	.2 •W _{el} • 1	uk			
TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 Concrete edge failure	TR 029 for the design of bonded anchors 2,0 Installation safety factor γ2 1,0 Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors	Concrete pry-out failure											
Concrete edge failure	Concrete edge failure See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors	Factor k in equation (5.7) of Technical Re TR 029 for the design of bonded anchors	port						2,0				
	See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors	Installation safety factor	γ2						1,0				
See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors		Concrete edge failure											
	Installation safety factor γ_2 1,0	See section 5.2.3.4 of Technical Report T	R 029 for the	design of	Bonded A	Anchors							
Installation safety factor γ_2 1,0		Installation safety factor	γ2						1,0				

Injection system IM PURE HX ETA 7 for concrete

Performances Characteristic values of resistance for rebar under shear loads in non-cracked concrete, Design according to TR 029

Anchor size threaded roc	I			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis	stance,	N _{Rk.s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	stance,	N _{Rk.s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resis	tance.	INHK,S	[KN]	23	0	0/	120	130	202	000	
Stainless steel A4 and HCI property class 50 (>M24) a	٦,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c											
Characteristic bond resista	nce in non-cracked concrete	C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	15	15	15	14	13	12	12	12
40°Ċ/24°C	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
r2°C/43°C flooded bore hole		$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Increasing factors for conc	C30/37					,	04				
Ψc		C40/50 C50/60		1,08							
Factor according to CEN/T	S 1992-4-5 Section 6.2.2.3	k ₈									
Concrete cone failure											
Factor according to CEN/T	S 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure											
		ł	n / h _{ef} ≥ 2,0	1,() h _{ef}		2,0 -				
Edge distance	2,0 > h	n / h _{ef} > 1,3	4,6 h _e	_f - 1,8 h		1,3					
	h / h _{ef} ≤ 1,3		2,26 h _{ef}			1	1,0∙h,	, 2,26	∂·h _{ef} c _c	:r,sp	
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor (di	γ inst		1,2 1,4								
Installation safety factor (flo	oded bore hole)	γinst					1	,4			

Injection system IM PURE HX ETA 7 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4 Annex C 5

electronic copy of the eta by dibt: eta-15/0277

Table C6: Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1					0,	8				
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k3					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure	crete edge failure									
Effective length of anchor	ŀ	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor 1,0										

Injection system IM PURE HX ETA 7 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, Design according to CEN/TS 1992-4

	acteristic value act concrete (D								n Ioa	ds in	non-			
Anchor size reinforcing ba	r			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure														
Characteristic tension resista	ance	N _{Rk,s}	[kN]	A _s x f _{uk}										
Combined pull-out and co	ncrete failure													
Characteristic bond resistant	ce in non-cracked concr	ete C20/2	25											
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	14	14	13	13	12	12	11	11	11		
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0		
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5		
60°C/43°C					8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0		
Temperature range III:					7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0		
72°C/43°C					7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5		
	C30/37		1,04											
Increasing factors for concre ψ_c	te	C40/50		1,08										
	C50/60		1,10											
Factor according to CEN/TS 1992-4-5 Section 6	k ₈	[-]					10,1							
Concrete cone failure														
Factor according to CEN/TS 1992-4-5 Section 6.	.2.3.1	k _{ucr}	[-]	10,1										
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}										
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}						
Splitting failure														
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}							
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3							
		h	/ h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0∙h _{ef}	2,26	hof (C _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}	., <u> </u>	_,				
Installation safety factor (dry	and wet concrete)	γinst				1,2				1	,4			
Installation safety factor (floo	oded bore hole)	γinst						1,4				1		

Injection system IM PURE HX ETA 7 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Table C8:	Characteristic values of resistance for rebar under shear loads in non-	
	cracked concrete (Design according to CEN/TS 1992-4)	

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32						
Steel failure without lever arm																	
Characteristic shear resistance	eristic shear resistance V _{Rk,s} [kN						$0,50 imes A_s imes f_{uk}$										
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1		0,8															
Steel failure with lever arm																	
Characteristic bending moment $M^0_{Bk,s}$ [Nm] 1.2 · W_{el} · f_{uk}																	
Concrete pry-out failure																	
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0										
Installation safety factor	γinst						1,0										
Concrete edge failure																	
Effective length of anchor	ective length of anchor Ir [mm] $I_t = min(h_{et}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30						
Installation safety factor						1,0											

Injection system IM PURE HX ETA 7 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, Design according to CEN/TS 1992-4

Table C9: Di	Table C9: Displacements under tension load ¹⁾ (threaded rod)													
Anchor size threa	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30				
Non-cracked concrete C20/25 under static and quasi-static action														
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035				
40°C/24°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140				
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043				
60°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161				
72°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043				
72°C/43°C -/	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161				
1) 0 1 1 1 1 1 1 1					_									

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} - \text{factor} \cdot \tau; \delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked concrete C20/25 under static and quasi-static action											
All temperatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
$\delta_{V_{\infty}}$ – factor [mm/(kN)		[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0} - \text{factor} \cdot V$; $\delta_{V\infty} = \delta_{V\infty} - \text{factor} \cdot V$;

Table C11: Displacements under tension load¹⁾ (rebar)

Anchor size r	einforcing b	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Non-cracked	Non-cracked concrete C20/25 under static and quasi-static action												
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037		
$\delta_{N_{\infty}}$ – factor	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149		
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043		
60°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172		
72°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043		
72°C/43°C ⁻ ∕	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172		

¹⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0} - \text{factor} \cdot \tau; \delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C12: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action											
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V_\infty} - factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0} - \text{factor} \cdot V$; $\delta_{V\infty} = \delta_{V\infty} - \text{factor} \cdot V$;

Injection system IM PURE HX ETA 7 for concrete

Performances Displacements