

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0296 of 27 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection System Hilti HIT-HY 200-A with HIT-Z-D and HIT-Z-R-D

Bonded expansion fastener for use in concrete

Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Corporation

18 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0296

Page 2 of 18 | 27 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 27 August 2015

Specific Part

1 Technical description of the product

The Injection System Hilti HIT-HY 200-A with HIT-Z-D and HIT-Z-R-D is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 200-A and a steel element HIT-Z-D M16 or HIT-Z-R-D M16.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action and displacements	See Annex C1 – C4
Characteristic resistance for seismic performance category C1 and displacements	See Annex C5
Characteristic resistance for seismic performance category C2 and displacements	See Annex C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-15/0296

Page 4 of 18 | 27 August 2015

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

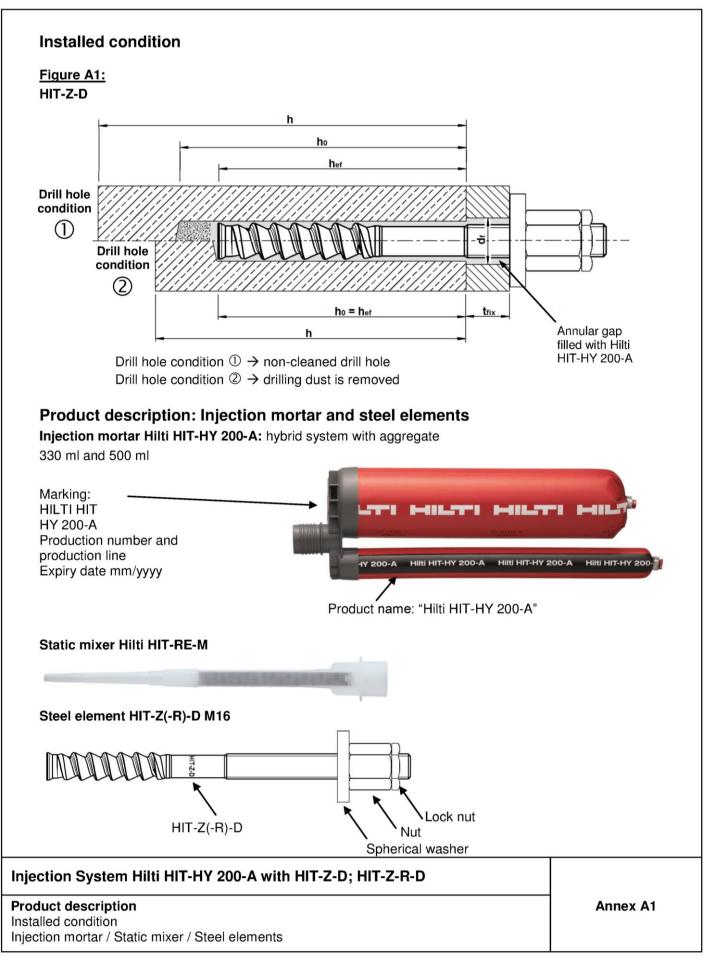
Assessment and verification of constancy of performance (AVCP) system applied, with 4 reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 27 August 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

Page 5 of European Technical Assessment ETA-15/0296 of 27 August 2015

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-15/0296 of 27 August 2015

English translation prepared by DIBt

Table A1: Materials						
Designation Material						
Metal parts made of zinc coated steel						
Anchor rod HIT-Z-D M16	$ \begin{array}{l} f_{uk} = 610 \ N/mm^2; \ f_{yk} = 490 \ N/mm^2 \\ Elongation \ at \ fracture \ (I_0 = 5d) > 8\% \ ductile \\ Electroplated \ zinc \ coated \geq 5 \ \mu m \end{array} $					
Spherical washer	Spherical washer G19 DIN 6319: 2001 Electroplated zinc coated $\geq 5~\mu m$					
Nut	Hexagon nut with a height of 1,5 d DIN 6330: 2003 Electroplated zinc coated \geq 5 μm					
Lock nut	Self locking counter nut DIN 7967: 1970 Electroplated zinc coated $\ge 5 \ \mu m$					
Metal parts made of stainless steel						
Anchor rod HIT-Z-R-D M16	$ f_{uk} = 610 \text{ N/mm}^2; \ f_{yk} = 490 \text{ N/mm}^2 \\ Elongation at fracture (I_0=5d) > 8\% \text{ ductile} \\ Stainless steel 1.4401, 1.4404 EN 10088-1:2014 $					
Spherical washer	Spherical washer G19 DIN 6319: 2001 Stainless steel A4 EN 10088-1:2014					
Nut	Hexagon nut with a height of 1,5 d DIN 6330: 2003 Stainless steel A4 EN 10088-1:2014					
Lock nut	Self locking counter nut DIN 7967: 1970 Stainless steel A4 EN 10088-1:2014					

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Product description Materials Annex A2

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading
- Seismic performance category C1 and C2

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and non-cracked concrete.

Temperature in the base material:

at installation

+5 °C to +40 °C

in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C) Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C) Temperature range III: -40 °C to +120 °C

```
(max. long term temperature +72 °C and max. short term temperature +120 °C)
```

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

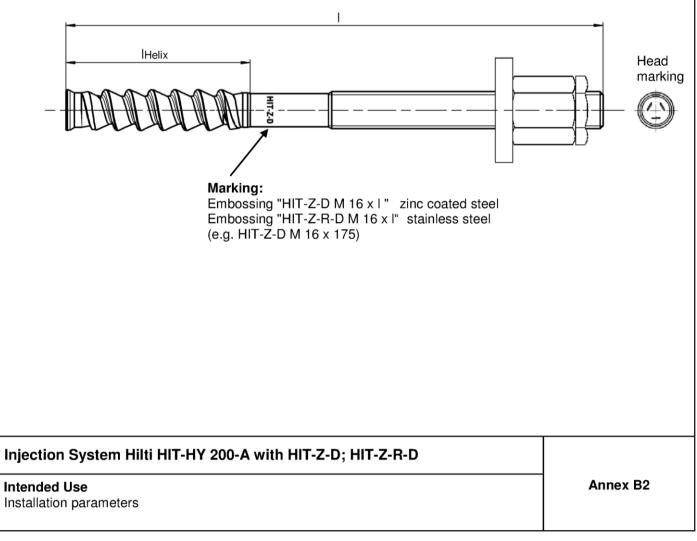
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: "EOTA Technical Report TR 029, 09/ 2010" or "CEN/TS 1992-4:2009, design method A"
- Anchorages under seismic actions (cracked concrete) are designed in accordance with: "EOTA Technical Report TR 045, 02/2013"

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered in this European technical assessment (ETA).

Installation:

- · Use category: dry or wet concrete (not in flooded holes)
- · Drilling technique: hammer drilling and hammer drilling with hollow drill bit TE-CD, TE-YD
- Overhead installation is admissible
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.


Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Intended Use Specifications

Annex B1

Deutsches Institut für Bautechnik

HIT-Z-D; HIT-Z-R-D			M16
Nominal diameter	d	[mm]	16
Nominal diameter of drill bit	d _o	[mm]	18
Length of english	min l	[mm]	175
Length of anchor	max I	[mm]	240
Length of helix	I _{Helix}	[mm]	96
Effective anchorage depth	h _{ef}	[mm]	125
Drill hole condition ① Minimum thickness of concrete member	h _{min}	[mm]	225
Drill hole condition ② Minimum thickness of concrete member	h _{min}	[mm]	160
Maximum depth of drill hole	h _o	[mm]	h – 2 d _o
Maximum diameter of clearance hole ¹⁾ in the fixture	d _f	[mm]	20
Maximum fixture thickness	t_{fix}	[mm]	80
Torque moment	T _{inst}	[Nm]	80

Minimum edge distance and spacing

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different thickness of concrete member the following equation shall be fulfilled:

 $A_{i,req} < A_{i,ef}$

Table B2: Required area A_{i,req}

HIT-Z-D; HIT-Z-R-D	M16		
Cracked concrete	A _{i,req}	[mm²]	94700
Non-cracked concrete	A _{i,req}	[mm²]	128000

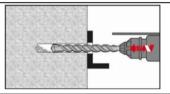
Table B3: Effective area A_{i,ef}

Intended Use

Installation parameters: member thickness, spacing and edge distances

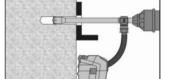
Annex B3

electronic copy of the eta by dibt: eta-15/0296



Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
5 °C	25 min	2 hours
6 °C to 10 °C	15 min	75 min
11 °C to 20 °C	7 min	45 min
21 °C to 30 °C	4 min	30 min
31 °C to 40 °C	3 min	30 min

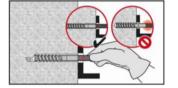
Installation


Hole drilling

a) Hammer drilling

<u>Through-setting</u>: Drill hole through the clearance hole in the fixture to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with hollow drill bit



<u>Through-setting</u>: Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual (see Annex A1 - Borehole condition ⁽²⁾).

Bore hole cleaning

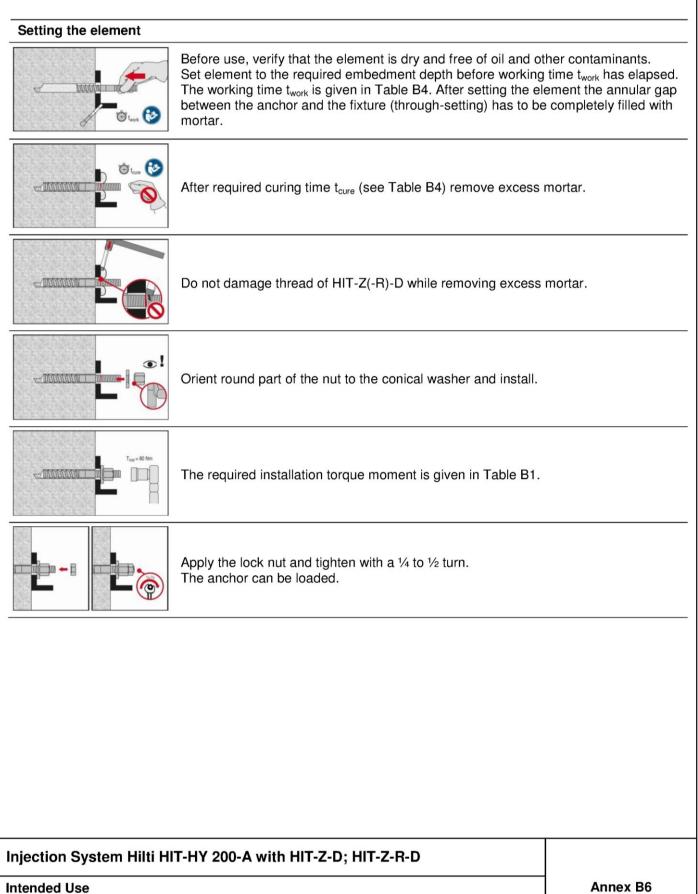
No cleaning required for hammer drilled boreholes

Check of setting depth

Mark the element and check the setting depth. The element has to fit in the hole until the required embedment depth. If it is not possible to insert the element to the required embedment depth, remove the dust in the drill hole or drill deeper.

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Intended Use Maximum working time and minimum curing time Installation instructions Annex B4



Injection preparation						
HDM 330 HDM 500 HDE 500-A22	Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifo mixing nozzle. Observe the instruction for use of the dispenser and the morta Check foil pack holder for proper function. Insert foil pack into put holder into HIT-dispenser.	r.				
330 mi: 2x 550 mi: 3x T < 5 °C: 4x	The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are: 2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack.					
Inject adhesive from the	back of the drill hole without forming air voids					
	Inject the adhesive starting at the back of the hole, slowly with each trigger pull.	drawing the mixer with				
100 %	Fill 100% of the drill hole.					
	After injection is completed, depressurize the dispenser by pre trigger. This will prevent further adhesive discharge from the m					
Overhead installation						
	For overhead installation the injection is only possible with the piston plugs. Assemble HIT-RE-M mixer, extension(s) and app plug HIT-SZ 18. Insert piston plug to back of the hole and injection the piston plug will be naturally extruded out of the drip pressure.	propriately sized piston adhesive. During				
Injection System Hilti H	IT-HY 200-A with HIT-Z-D; HIT-Z-R-D					
Intended Use Installation instructions		Annex B5				

Page 12 of European Technical Assessment ETA-15/0296 of 27 August 2015

English translation prepared by DIBt

Installation instructions

Table C1: Characteristic resistance for HIT-Z(-R)-D under tension load in case of static and quasi static loading

HIT-Z-D; HIT-Z-R-D			M16
Installation safety factor	$\gamma_2^{(1)} = \gamma_i$	inst ²⁾ [-]	1,0
Steel failure			
Characteristic resistance HIT-Z-D	$N_{Rk,s}$	[kN]	96
Characteristic resistance HIT-Z-R-D	$N_{Rk,s}$	[kN]	96
Combined pullout and concrete cone	failure		
Effective anchorage depth for calculatio of $N^0_{Rk,p}$ (TR 029, 5.2.2.3 respectively CEN/TS 1992-4:2009 part 5, 6.2.2)	n h _{ef} = I _{He}	_{elix} [mm]	96
Characteristic bond resistance in non-cr	acked co	ncrete C20)/25
Temperature range I: 40 °C/24 °C	$\tau_{Rk,ucr}$	[N/mm ²]	24
Temperature range II: 80 °C/50 °C	$\tau_{Rk,ucr}$	[N/mm ²]	22
Temperature range III: 120 °C/72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	20
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	k ₈ ²⁾	[-]	10,1
Characteristic bond resistance in cracke	ed concre	te C20/25	
Temperature range I: 40 °C/24 °C	$\tau_{Rk,cr}$	[N/mm ²]	22
Temperature range II: 80 °C/50 °C	$\tau_{Rk,cr}$	[N/mm ²]	20
Temperature range III: 120 °C/72 °C	$\tau_{Rk,cr}$	[N/mm ²]	18
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	$k_8^{(2)}$	[-]	7,2
Increasing factors for τ_{Rk} in concrete > C20/25	Ψc	[-]	1,0
Concrete cone failure			
Effective embedment depth for calculation of $N_{Rk,c}$ (TR 029, 5.2.2.4 or CEN/TS 1992-4:2009 part 5, 6.2.3)	h _{ef}	[mm]	125
Factor acc. to section 6.2.3.1 of CEN/TS 1992-4:2009 part 5	$k_{cr}^{2)}$	[-]	7,2
Factor acc. to section 6.2.3.1 of CEN/TS 1992-4:2009 part 5	$k_{ucr}^{2)}$	[-]	10,1
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}
Spacing	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances

Characteristic values of resistance under tension loads – static and quasi-static loading Design according to "EOTA Technical Report TR 029, 09/2010" or "CEN/TS 1992-4:2009"

Splitting failure					
Effective embedment depth for calculation of N _{Rk,c} (TR 029, 5.2.2 CEN/TS 1992-4:2009 part 5, 6.2.4		1	[mm]		125
Factor according to section 6.2.3. of CEN/TS 1992-4:2009 part 5	1 k _{cr} ²	2)	[-]		7,2
Factor according to section 6.2.3. of CEN/TS 1992-4:2009 part 5	1 k _{ucr}	2) r	[-]		10,1
		h / h _{ef}	≥ 2,35	1,5 h _{ef}	h/h _{ef} 2,35
Edge distance c _{cr.sp} [mm] for	2,35 >	> h / h _{ef}	> 1,35	6,2 h _{ef} – 2,0 h	1,35
		h / h _{ef}	≤ 1,35	3,5 h _{ef}	1,5·h _{ef} 3,5·h _{ef}
Spacing	S _{cr,sp})	[mm]		2·c _{cr,sp}

¹⁾ Parameter for design according to EOTA Technical Report TR 029.

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances

Characteristic values of resistance under tension loads – static and quasi-static loading Design according to "EOTA Technical Report TR 029, 09/2010" or "CEN/TS 1992-4:2009"

Table C2: Characteristic resistance for HIT-Z(-R)-D under shear load in case of static and quasi static loading

HIT-Z-D; HIT-Z-R-D			M16
Steel failure without lever arm			
Factor according to section 6.3.2.1 of CEN/TS 1992-4: 2009 part 5	k ₂ ²⁾	[-]	1,0
Characteristic resistance HIT-Z-D	V _{Rk,s}	[kN]	48
Characteristic resistance HIT-Z-R-D	$V_{Rk,s}$	[kN]	57
Steel failure with lever arm			
Characteristic resistance HIT-Z-D	М ⁰ _{Rk,s}	[kN]	203
Characteristic resistance HIT-Z-R-D	М ⁰ _{Rk,s}	[kN]	203
Concrete pry-out failure			
Factor acc. to equation (5.7) of TR 029 or acc. to equation (27) of CEN/TS 1992-4: 2009 part 5	$k^{1)} = k_3^{2)}$	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading	l _f	[mm]	125
Diameter of anchor	$d^{1)}=d_{nom}{}^{2)}$	[mm]	16

¹⁾ Parameter for design according to EOTA Technical Report TR 029.

²⁾ Parameter for design according to CEN/TS 1992-4:2009.

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances Characteristic values of resistance under tension loads – static and quasi-static loading Design according to "EOTA Technical Report TR 029, 09/2010" or "CEN/TS 1992-4:2009"

Table C3: Displacements under tension load ¹⁾ for HIT-Z(-R)-D in case of static and quasi static loading

HIT-Z-D; HIT-Z-R	-D	M16			
Temperature range I : 40°C / 24°C			Non-cracked concrete	Cracked concrete	
Displacement	δ_{N0} – factor	[mm/(N/mm²)]	0,05	0,09	
Displacement	$\delta_{N^\infty} - factor$	[mm/(N/mm²)]	0,13	0,21	
Temperature ran	ge II : 80°C / 50°C				
Disalesensent	δ_{N0} – factor	[mm/(N/mm²)]	0,06	0,10	
Displacement $\delta_{N\infty}$ – factor		[mm/(N/mm²)]	0,15	0,23	
Temperature range III : 120°C / 72°C					
Disalara	δ_{N0} – factor	[mm/(N/mm²)]	0,06	0,11	
Displacement	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]	0,16	0,25	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau$ $\delta_{N^{\infty}} = \delta_{N^{\infty}} - \text{factor} \cdot \tau$

(r: action bond strength)

Table C4: Displacements under shear load ¹⁾ for HIT-Z(-R)-D in case of static and quasi static loading

HIT-Z-D; HIT-Z-R-D			M16
Displacement	δ_{V0} – factor	[mm/kN]	0,04
Displacement	$\delta_{V\infty}$ – factor	[mm/kN]	0,06

¹⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{\text{V0}} = \delta_{\text{V0}} - \text{factor} \, \cdot \, \text{V} \\ \delta_{\text{V\infty}} = \delta_{\text{V\infty}} - \text{factor} \, \cdot \, \text{V} \end{array}$ (V: action shear load)

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances Displacements

Table C5: Characteristic resistance under tension load for HIT-Z(-R)-D in case of seismic performance category C1

HIT-Z-D; HIT-Z-R-D			M16
Installation safety factor	γ2	[-]	1,0
Steel failure			
Characteristic resistance HIT-Z-D	N _{Rk,s,seis}	[kN]	96
Characteristic resistance HIT-Z-R-D	N _{Rk,s,seis}	[kN]	96
Combined pullout and concrete cone			
Effective anchorage depth for calculation of $N_{Rk,p,seis}$	$h_{\text{ef}} = I_{\text{Heli}}$	x [mm]	96
Characteristic bond resistance in cracke			
Temperature range I: 40 °C/24 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	21
Temperature range II: 80 °C/50 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	19
Temperature range III: 120 °C/72 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	17

Table C6: Characteristic resistance under shear load for HIT-Z(-R)-D in case of seismic performance category C1

HIT-Z-D; HIT-Z-R-D			M16
Steel failure without lever arm			
Characteristic resistance HIT-Z-D	$V_{Rk,s,seis}$	[kN]	28
Characteristic resistance HIT-Z-R-D	$V_{Rk,s,seis}$	[kN]	31

Table C7: Displacements under tension load for HIT-Z(-R)-D in case of seismic performance category C1¹⁾

HIT-Z-D; HIT-Z-R-D			M16	
Displacement	$\delta_{\text{N,seis}}$	[mm]	1,3	

¹⁾ Maximum displacement during cycling (seismic event).

Table C8: Displacements under shear load for HIT-Z(-R)-D in case of seismic performance category C1¹⁾

HIT-Z-D; HIT-Z-R-D			M16
Displacement HIT-Z-D	$\delta_{V,seis}$	[mm]	4,3
Displacement HIT-Z-R-D	$\delta_{V,seis}$	[mm]	6,0

¹⁾ Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances

Characteristic values of resistance, displacements – seismic performance category C1 Design according to "EOTA Technical Report TR 045, 02/2013"

Table C9: Characteristic resistance under tension load for HIT-Z(-R)-D in case of seismic performance category C2

	-	-		
HIT-Z-D; HIT-Z-R-D			M16	
Installation safety factor	γ2	[-]	1,0	
Steel failure				
Characteristic resistance HIT-Z-D	N _{Rk,s,seis}	[kN]	96	
Characteristic resistance HIT-Z-R-D	$N_{Rk,s,seis}$	[kN]	96	
Combined pullout and concrete cone failure				
Effective anchorage depth for calculation of $N_{\text{Rk},\text{p},\text{seis}}$	$h_{\text{ef}} = I_{\text{Helix}}$	[mm]	96	
Characteristic bond resistance in cracked concrete C20/25				
Temperature range I: 40 °C/24 °C	$\tau_{Rk,seis}$	[N/mm ²]	19	
Temperature range II: 80 °C/50 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	17	
Temperature range III: 120 °C/72 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	16	

Table C10: Characteristic resistance under shear load for HIT-Z(-R)-D in case of seismic performance category C2

HIT-Z-D; HIT-Z-R-D			M16
Steel failure			
Characteristic resistance HIT-Z-D	$V_{Rk,s,seis}$	[kN]	17
Characteristic resistance HIT-Z-R-D	$V_{Rk,s,seis}$	[kN]	21

Table C11: Displacements under tension load for HIT-Z(-R)-D in case of seismic performance category C2

HIT-Z-D; HIT-Z-R-D		M16	
Displacement DLS	$\delta_{\text{N,seis(DLS)}}$ [mm	1,9	
Displacement ULS	$\delta_{\text{N,seis(ULS)}}$ [mm	3,6	

Table C12: Displacements under shear load for HIT-Z(-R)-D in case of seismic performance category C2

HIT-Z-D; HIT-Z-R-D			M16
Displacement DLS HIT-Z-D	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]	3,1
Displacement ULS HIT-Z -D	$\delta_{V,seis(ULS)}$	[mm]	6,2
Displacement DLS HIT-Z-R-D	$\delta_{V,seis(DLS)}$	[mm]	3,1
Displacement ULS HIT-Z-R-D	$\delta_{V,seis(ULS)}$	[mm]	6,2

Injection System Hilti HIT-HY 200-A with HIT-Z-D; HIT-Z-R-D

Performances

Characteristic values of resistance, displacements – seismic performance category C2 Design according to "EOTA Technical Report TR 045, 02/2013"