

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0367 of 20 October 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Areo - stair system Treppenmeister

Prefabricated stair with steps made of aluminium for use as an indoor stair in buildings

Treppenmeister GmbH Emminger Straße 38 71131 Jettingen DEUTSCHLAND

Treppenmeister, Werk 1 bis Werk 85

13 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Prefabricated stair kits", ETAG 008 Part 1: "Prefabricated stair kits in general (excluding severe climatic conditions)", January 2002, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0367

Page 2 of 13 | 20 October 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 13 | 20 October 2015

Specific part

1 Technical description of the product

The Areo - stair system Treppenmeister is a prefabricated stair system, which can be constructed as a load-bearing bolt stair or as a string stair.

The load-bearing bolt stair consists of steps, load-bearing bolts and wall ties. The steps of the load-bearing bolt stair are connected with each other by one load-bearing bolt on the wall-free side. On the wall side each step is equipped with two wall ties, which are anchored in the staircase wall. Alternatively, the wall ties can be anchored in a wall string.

The string stair consists of steps, strings and system fasteners. The steps are connected with the strings by system fasteners on both sides. On the wall side the steps can also be connected directly by two wall ties to the wall.

The steps are made of aluminium, the load-bearing bolts, system fasteners and wall ties are made of steel and the strings can be made of solid wood, steel or HPL.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the stair is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the stair of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Load-bearing capacity	See Annex C2
Load/displacement behaviour	See Annex C2
Vibration behaviour	First natural frequency: $f_1 \ge 5$ Hz (inclusive a single mass of 100 kg) Deflection under a single load F = 1 kN: $w \le 5$ mm
Prevention of progressive collapse	Failure of individual components of the stair does not lead to a progressive collapse of the complete stair
Residual load-bearing capacity	Local material failure does not lead to an abrupt total loss of load-bearing capacity of the stair.
Long-term behaviour	Load-bearing capacity is ensured under an appropriate use and maintenance over the indicated working life
Resistance to earthquakes	No performance assessed
Resistance of fixings	See technical documentation of this European Technical Assessment

European Technical Assessment

ETA-15/0367

Page 4 of 13 | 20 October 2015

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	See Annex A4
Fire resistance	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Geometry	See Annex C1
Slipperiness	No performance assessed
Equipment of the stair for a safe use	No performance assessed
Safe breakage of stair components	No brittle failure of individual stair components
Impact resistance	No performance assessed

3.5 General aspects

Essential characteristic	Performance
Resistance to deterioration caused by physical, chemical and biological agents	Adequate resistance for the intended use under an appropriate use and maintenance
Finishes and surface layers	Stair components made of solid wood can be coated with varnish on all sides or they are oiled

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 008, January 2002, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: 99/89/EC

The System to be applied is: 2+

In addition, with regard to reaction to fire for products covered by the guideline for European technical approval ETAG 008, January 2002, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: 2001/596/EC

The System to be applied is: 4

European Technical Assessment ETA-15/0367

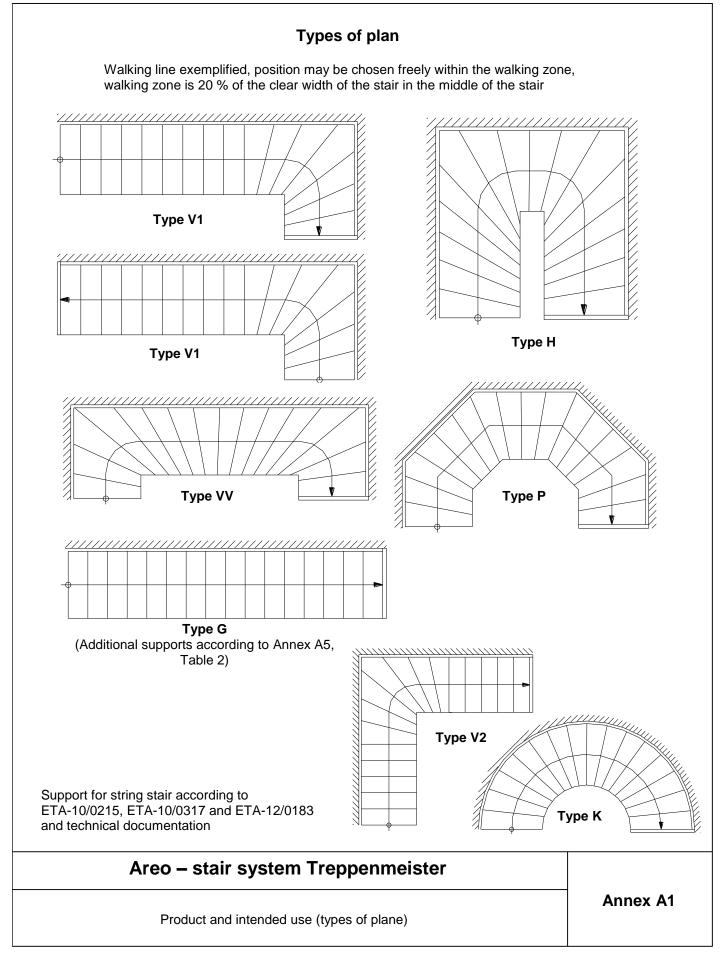
Page 5 of 13 | 20 October 2015

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

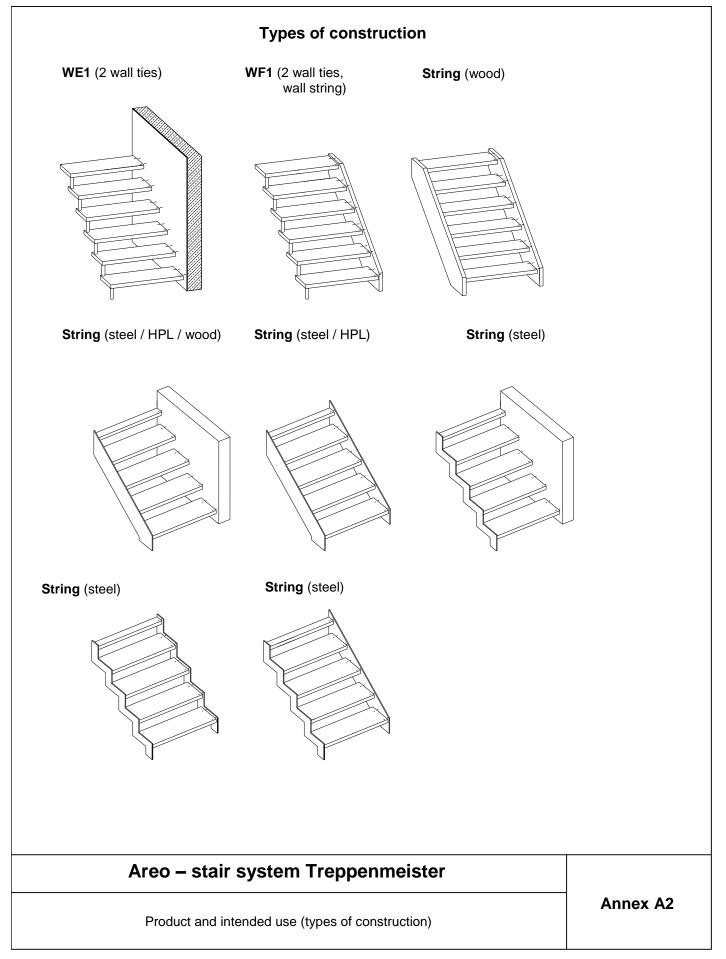
Issued in Berlin on 20 October 2015 by Deutsches Institut für Bautechnik

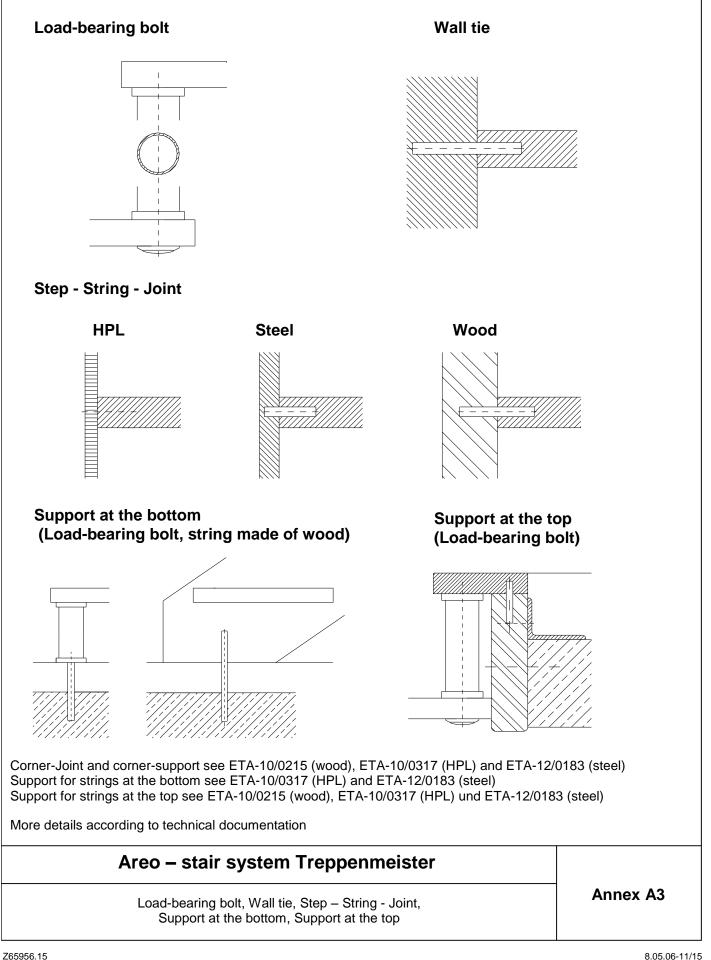

Andreas Kummerow p.p. Head of Department

beglaubigt: Wittstock

Page 6 of European Technical Assessment ETA-15/0367 of 20 October 2015

English translation prepared by DIBt




Page 7 of European Technical Assessment ETA-15/0367 of 20 October 2015

English translation prepared by DIBt

Component of stair	Material ¹⁾	Dimension		Dimension		Value	Reaction to fire
Step	Aluminium	Thickness	[mm]	25	A1		
Load-bearing bolt / threaded rod	Steel	Diameter	[mm]	10	A1		
Load-bearing bolt distance sleeve	Steel pipe	Diameter x Wall thickness	[mm]	42,4 x 2 ³⁾			
		Diameter	[mm]	12 (10) ⁴⁾			
Wall tie	Round steel	Embedment depth wall	[mm]	80	A1		
String Solid wood ²⁾		Width x Height	[mm]	44 x 240310 ⁵⁾	D-s2, d0		
String	HPL ⁸⁾	Width x Height	[mm]	10 x 240340 ⁶⁾	D-s2, d0		
String	Steel 8)	Width x Height	[mm]	12 x 240310 ⁷⁾	A1		
Cut string	Steel ⁸⁾	Width x Height	[mm]	16 x 100140 ⁷⁾	A1		

1) Characteristic values according to technical documentation

2) Only wood of following wood species:

Group 1: Amazakoué, Bangkirai, Bongossi, Beech, Oak, Ash, Iroko/Kambala, Merbau, Wengé, Zebrano

Group 2: Maple, Afzelia/Doussié, Acacia/Robinie, Birch, Bubinga, Cherry tree, Nut tree, Elm, Sapelli, Teak, Dibetou, Hevea with washer d = 50 mm,

- 4)
- according to technical documentation 5)
- see ETA 10/0215

3)

- 6) see ETA 10/0317
- 7) see ETA 12/0183
- 8) not for type of plan K

Table 2: Additional support for maximum clear width of the stair

Construction			WE1 Wall WF1 Wall string			
Туре	Rises	Clear width of stair [mm]	Required additional support to step (rear edge)			
	< 17	900	5	4 (only HPL)		
G	≤ 17	1000	4 + 13	-		
	≤ 15	800	-	-		

Areo – stair system Treppenmeister

Minimum dimensions of components of the stair and reaction to fire Additional supports

Annex A4

Specification of intended use (Part 1)

Intended use:

- European Technical Assessment applies for a construction system.
- For the specific case of use the corresponding type of stair is manufactured within the context of the values defined in this European Technical Assessment.
- Values of this ETA apply to all types of stairs, the real dimensions follow in accordance with the relevant case of use.

Stair subject to:

• Static and quasi static loads

Use conditions:

- Indoor stair
- Air temperatures between +5 °C and +30 °C
- Relative air humidity between 30% and 70%
- To the individual requirements handrail and barrier may be attached to the stair optionally. Conditions for possible barrier/handrail:

Dead load \leq 0.5 kN/m Height \leq 1.00 m Distance of baluster \leq 0.26 m

Design:

- Design of the stair according to the annexes and the technical documentation of this European Technical Assessment.
- Fastening of the stair to the construction works according to the annexes and the technical documentation of this Technical European Assessment.
- Verification of the transmission of loads to the construction works by the civil engineer responsible for the construction works.
- Load bearing capacity at ultimate limit state:

$\mathbf{q}_{\mathbf{k}} \cdot \gamma_{\mathbf{Q}}$	≤	q _{Rk} / γ _M
$Q_k \cdot \gamma_Q$	≤	Q_{Rk}/γ_M
$h_k \cdot \gamma_Q \cdot \Psi_0$	≤	h_{Rk}/γ_M

with

q _{Rk} , Q _{Rk} , h _{Rk:}	characteristic values of resistance; see Table 4	
--	--	--

γ_{M} : recommended material partial safety factor; see Table 4
--

- q_k, Q_k, h_k: characteristic values of imposed loads according to EN 1991-1-1:2010-12
- $\gamma_Q = 1.5$: recommended partial safety factor, in absence of other national regulations
- $\psi_0 = 0.7$: recommended combination factor, in absence of other national regulations
- Maximum characteristic values of imposed loads under consideration of the partial factors mentioned above; see Table 6

Areo – stair system Treppenmeister

Specification of intended use (Part 1)

Annex B1

Specification of intended use (Part 2)

Installation:

- Installation by personal appropriately trained and authorized by the holder of the approval by means of the technical documentation of this European Technical Assessment
- Installation only in the way as specified in the technical documentation of this European Technical Assessment
- Installation of timber components when moisture content of timber components is 8 \pm 2 %
- Sufficient support of the stair when assembling
- Installation of stair components without imposed deformations
- Installation of stair components without significant defects and cracks
- Replacing of stair components, which begin tearing when assembling
- Bolted connection are protected such that they will not be loosened by vibrations

Indication of the manufacturer:

- Ensure that all persons involved will be appropriately informed about the specific conditions according to sections 1 and 2 (including the annexes to which reference is being made as well as the not confidential parts of the technical documentation deposited to this European Technical Assessment)
- Packaging of timber components such that the wood moisture is 8 ± 2 % during transport and storage
- Instructions for use should provide information as to use, maintenance and repair of the stair. Including the information of avoidance of moisture penetration of the timber components and the information on the relationship between moisture content of timber components, air temperature and relative air humidity

Areo – stair system Treppenmeister

Specification of intended use (Part 2)

Annex B2

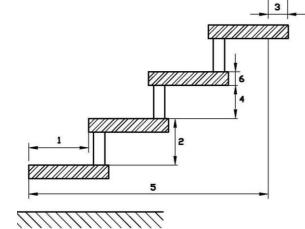
Page 12 of European Technical Assessment ETA-15/0367 of 20 October 2015

English translation prepared by DIBt

Table 3: Geometry

Designation		Dime	nsion	
			Minimum	Maximum
Caina	Step on walking line ¹⁾	[mm]	210	370 ²⁾
Going	Tapered step	[mm]	70 ^{2) 3)}	600 ^{2) 4)}
Rise of the s	stair ¹⁾	[mm]	140 ²⁾	210
Pitch of the	walking line 1)	[°]	21	45
Overlap of s	steps	[mm]	70 - 5)	
Number of r	Number of rises		3	17
Ononingo	Between stair and wall	[mm]	_ 5)	0
Openings	Between consecutive steps	[mm]	_ 5)	185
Clear width	of stairs	[mm]	500	1000
Minimum headroom		[mm]	- "	5)
Length of th	e flight	[mm]	- ⁵⁾ 4160	
Thickness o	f steps	[mm]	25 - ⁵⁾	

¹⁾ Values are constant within one flight


 $^{2)}$ Tolerance between nominal value and actual value = $\pm\,5$ mm

³⁾ Wall-free side of tapered step

⁴⁾ Wall side of tapered step

⁵⁾ Not relevant

- 1 Going
- 2 Rise
- 3 Overlap
- 4 Opening between consecutive steps
- 5 Length of the flight
- 6 Thickness of steps

Areo – stair system Treppenmeister

Geometry

Annex C1

Type of loading		Characteristic values of resistance		
vertical variable uniformly distributed load	q _{R,k}	[kN/m²]	5.0	
vertical variable single load	Q _{R,k}	[kN]	3.3	1,1
horizontal variable uniformly distributed load on barrier	h _{R,k}	[kN/m]	0.6	
Deflection of the flight under uniformly distributed load		1		
Deflection of the flight under uniformly distributed load				
uniformly distributed load	q _k	[kN/m²]	3.0)
• •	q _k	[kN/m²] [mm]	3.0 4160	
uniformly distributed load) 1)
uniformly distributed load length of the median line of the flight	L	[mm]	4160) 1)
uniformly distributed load length of the median line of the flight deflection under load F _s related to the median line of the flight	L	[mm]	4160) ¹⁾ 00
uniformly distributed load length of the median line of the flight deflection under load F _s related to the median line of the flight Deflection of the step under single point load	L	[mm]	4160 ≤ L/2) ¹⁾ 00

¹⁾ I = reference length = distance between supports (additional supports according to Annex A5, Tab. 2)

Table 6: Imposed loads

Type of loading	Imposed loads		oads
vertical variable uniformly distributed load	q _k	[kN/m²]	3.0
vertical variable single load	Q _k	[kN]	2.0
horizontal variable uniformly distributed load on barrier	h _k	[kN/m]	0.5

Areo – stair system Treppenmeister

Load-bearing capacity – Characteristic values of resistance, Deflections under loading, Service loads Annex C2