

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0394 of 18 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Q Wedge Anchor BZ Plus and BZ-IG

Torque controlled expansion anchor for use in concrete

Q-railing Europe GmbH & Co. KG Marie-Curie-Straße 12 46446 Emmerich am Rhein DEUTSCHLAND

Deutschland, Werk 1

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Page 2 of 32 | 18 June 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 32 | 18 June 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Q Wedge anchor BZ plus and BZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12.
- Anchor type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for BZ plus	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for BZ plus	See Annex C 6
Characteristic resistance for static and quasi static action for BZ-IG	See Annex C 10 to C 12
Displacements under tension loads for BZ plus	See Annex C 8
Displacements under shear loads for BZ plus	See Annex C 9
Displacements under tension and shear loads for BZ-IG	See Annex C 14

Page 4 of 32 | 18 June 2015

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for BZ plus	See Annex C 7
Resistance to fire for BZ-IG	See Annex C 13

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings		1

Page 5 of 32 | 18 June 2015

English translation prepared by DIBt

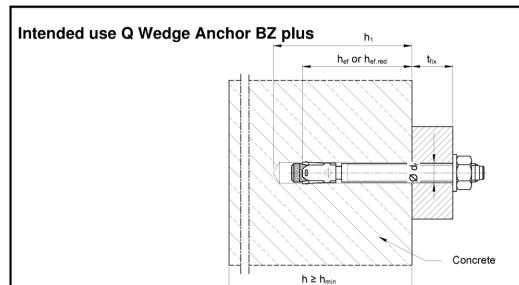
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 18 June 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:*Baderschneider

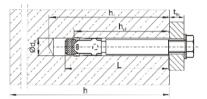
English translation prepared by DIBt

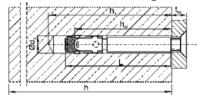


Anchor version	Product description	Intended use	Performance
BZ plus	Annex A1 – Annex A4	Annex B1 – Annex B4	Annex C1 – Annex C9
BZ-IG	Annex A1 – Annex A2 Annex A5 – Annex A6	Annex B1 Annex B5 – Annex B7	Annex C10 – Annex C14

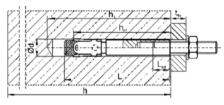
Q Wedge Anchor BZ plus and BZ-IG	
Product description Anchor types	Annex A1

Deutsches Institut für **Bautechnik**

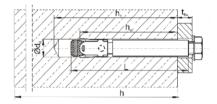

English translation prepared by DIBt

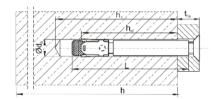

Intended use Q Wedge anchor BZ-IG Installation type V pre-setting installation

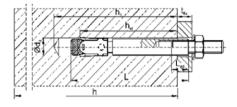
pre-set anchor body, the fixture bears on the screw or thread rod only


BZ-IGS consisting of BZ-IG and S-IG

BZ-IG SK consisting of BZ-IG and SK-IG

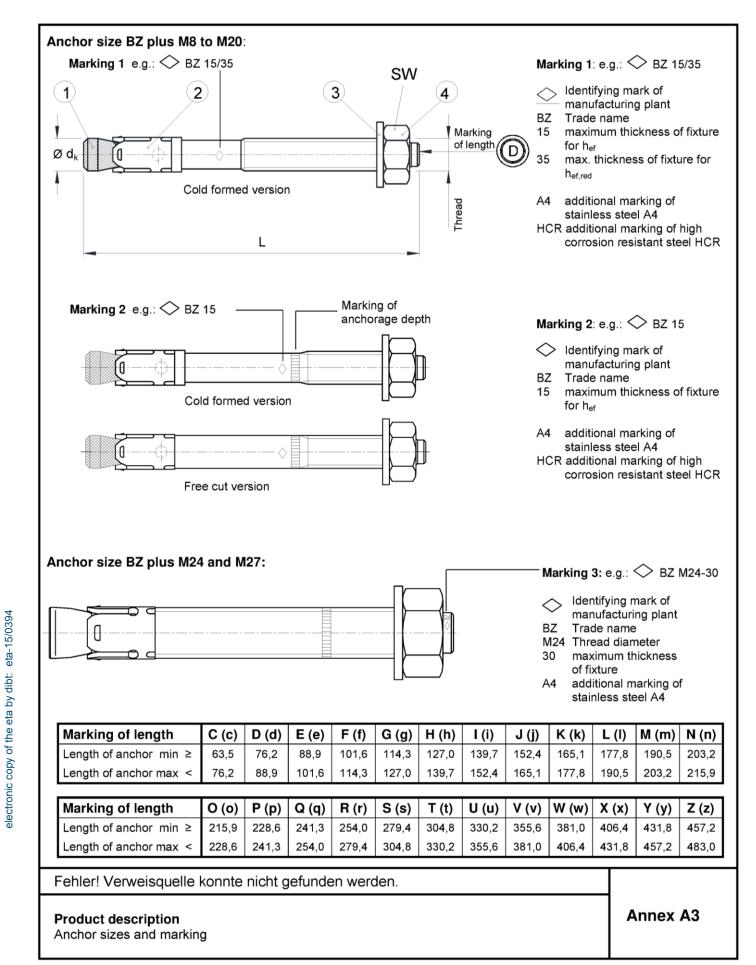



consisting of BZ-IG and MU-IG **BZ-IG B**



Installation type D through-setting installation

the anchor is set through the fixture, the fixture bears on the conical bolt BZ-IG



Q Wedge Anchor BZ plus and BZ-IG

Product description Installation situation

Annex A2

Table A1: Anchor dimensions BZ plus

·	Anchor	size		M8	M10	M12	M16	M20	M24	M27
1	Conical b	oolt	Thread	M8	M10	M12	M16	M20	M24	M27
			\emptyset d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Length	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	
	anchor	red. anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	/	//	
2	Expansion	on sleeve				s	ee Table A	.2		
3	Washer					s	ee Table A	.2		
4	Hexagon	nut	SW	13	17	19	24	30	36	41

Dimensions in mm

Table A2: Materials BZ plus

No.	Part	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic coated (M8 to M20)	Threaded bolt and threaded cone, steel	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578, EN 10088:2005, Cone plastic coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 10088:2005, material No. 1.4301 or 1.4401	Steel acc. to EN 10139-12:1997	Stainless steel 1.4401 or 1.4571, EN 10088:2005	Stainless steel 1.4401 or 1.4571, EN 10088:2005
3	Washer	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088:2005	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Hexagon nut	Steel, galvanised, coated		stainless steel 1.4401 or 1.4571, EN 10088:2005, coated	high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005, coated

Q Wedge Anchor BZ plus and BZ-IG	
Product description Dimensions and materials	Annex A4

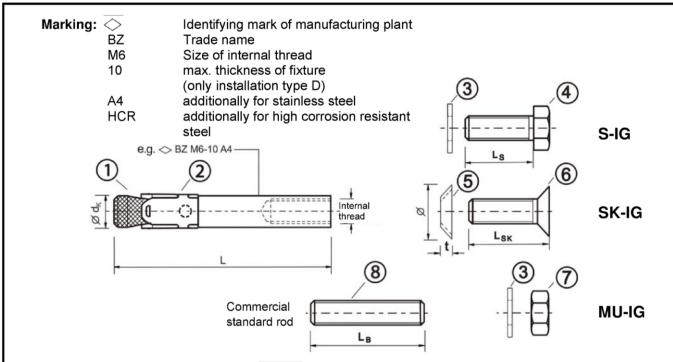


Table A3: Anchor dimensions BZ-IG

No.	Anchor size			М6	M8	M10	M12
	Conical bolt with Internal thread		\emptyset d_k	7,9	9,8	11,8	15,7
1	Installation type V		L	50	62	70	86
	Installation type D		L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve				see ta	ble A4	
3	Washer				see ta	ble A4	
	Hexagon head scree Installation type V		th across flats	10	13	17	19
4			Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D L _S		14 to 20	18 to 22	20 to 22	25 to 28	
5	Countersunk	Ø cou	ntersink	17,3	21,5	25,9	30,9
	washer		t	3,9	5,0	5,7	6,7
6	I head screw		bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
			L _{SK}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
			L _{SK}	16 to 20	20 to 25	25	30
7	Hexagon nut width across flats		10	13	17	19	
8	Commercial	type V	$L_{B} \geq$	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
L°	standard rod ¹⁾	type D	L _B ≥	21	28	34	41

1) acc. to specifications (Table A4)

Dimensions in mm

Fehler! Verweisquelle konnte nicht gefunden werden.

Product description

Anchor parts, marking and dimensions

Annex A5

Table A4: Materials BZ-IG

No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, Cone plastic coated
2	Expansion sleeve BZ-IG	Stainless steel, 1.4301, 1.4401, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005	Stainless steel, 1.4401, 1.4571, EN 10088:2005
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088:2005	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088:2005, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088:2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel, 1.4401, 1.4571, EN 10088: 2005, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088:2005, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2005, property class 70, EN ISO 3506:2009

Q Wedge Anchor BZ plus and BZ-IG	
Product description Materials	Annex A6

Specifications of intended use

Q Wedge Anchor BZ plus	M8	M10	M12	M16	M20	M24	M27
Static or quasi-static action				✓			
Seismic action (Categorie C1 + C2) 1) 2)		✓	✓	✓	✓		
Reduced anchorage depth 2)	✓	✓	✓	✓			
Fire exposure 1)				✓			
Cracked and non-cracked				✓			

Q Wedge Anchor BZ-IG	М6	М8	M10	M12	
Static or quasi-static action	✓				
Seismic action					
Fire exposure	✓				
Cracked and non-cracked		•	/		

only for standard anchorage depth

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009, Annex D
 (It must be ensured that local spalling of the concrete cover does not occur)

Q Wedge Anchor BZ plus and BZ-IG	
Intended use Specifications	Annex B1

²⁾ only cold formed anchors acc. to Annex A3

Table B1: Installation parameters BZ plus

Anchor size				М8	M10	M12	M16	M20	M24	M27
Nominal drill I	nole diameter	d ₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation	Steel, zinc plated	T_{inst}	[Nm]	20	25	45	90	160	200	300
torque	A4, HCR	T_{inst}	[Nm]	20	35	50	110	200	290	
Diameter of c hole in the fix		$d_f \! \leq \!$	[mm]	9	12	14	18	22	26	30
Standard and	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	A4, HCR	$h_1 \geq $	[mm]	60	75	90	110	125	155	
Effective anchorage	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
depth	A4, HCR	h_{ef}	[mm]	46	60	70	85	100	125	
Reduced and	Reduced anchorage depth									
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effe anchorage de		$h_{\text{ef,red}}$	[mm]	35	40	50	65			

Table B2: Minimum spacings and edge distances, reduced anchorage depth, BZ plus

Anchor size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum enocing	S _{min}	[mm]	50	50	50	65
Minimum spacing	for c ≥	[mm]	60	100	160	170
Minimum ada adiatana	C _{min}	[mm]	40	65	65	100
Minimum edge distance	for s ≥	[mm]	185	180	250	250
Non-cracked concrete						
Minimum angoing	S _{min}	[mm]	50	50	50	65
Minimum spacing	for c ≥	[mm]	60	100	160	170
Minimum adaa diatanaa	C _{min}	[mm]	40	65	100	170
Minimum edge distance	for s ≥	[mm]	185	180	185	65

Q Wedge Anchor BZ plus and BZ-IG

Intended use

Installation parameters,

Minimum spacings and edge distances for reduced anchorage depth

Annex B2

Table B3:	Minimum spacir	as and edge dista	ances, standard an	ichorage depth.	BZ plus
		90 0 00.90 001	,		0.0.0

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	member								
Steel zinc plated									
Standard thickness of member	h _{min, 1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	45	60	60	95	100	125
	for c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	45	60	65	90	100	125
	for c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	180
	for s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min, 1}	[mm]	100	120	140	160	200	250	
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	60	60	95	125	/
	for c ≥	[mm]	70	75	100	100	150	125	
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	125	
	for s ≥	[mm]	80	90	140	180	200	125	/
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	60	65	90	125	/
	for c ≥	[mm]	80	75	120	120	180	125	
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	125	/
	for s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concrete									
Steel zinc plated and stainless	steel A4, H	CR							
Minimum thickness of member	$h_{min,2}$	[mm]	80	100	120	140			
Cracked concrete									,
Minimum spacing	Smin	[mm]	40	45	60	70	/	/	1 /
	for c ≥	[mm]	70	90	100	160			
Minimum edge distance	C _{min}	[mm]	40	50	60	80	/		
	for s ≥	[mm]	80	115	140	180		/	/
Non-cracked concrete									,
Minimum spacing	S _{min}	[mm]	40	60	60	80	/		
	for c ≥	[mm]	80	140	120	180	/		
Minimum edge distance	C _{min}	[mm]	50	90	75	90	1/		
	for s ≥	[mm]	100	140	150	200	<u>/</u>		

Fire exposure from one sid	е		
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature
Fire exposure from more th	an one side		
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	≥ 300 mm

Intermediate values by linear interpolation.

Q Wedge Anchor BZ plus and BZ-IG

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B3

Installation instructions BZ plus

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Check position of nut.
4		Drive in anchor, such that h _{ef} or h _{ef,red} depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A3.
5	Tinst	Max. tightening torque T _{inst} shall be applied by using calibrated torque wrench.

Q Wedge Anchor BZ plus and BZ-IG	
Intended Use Installation instructions	Annex B4

Installation parameters BZ-IG Table B4:

Anchor size				М6	М8	M10	M12
Effective anchorage depth		h_{ef}	[mm]	45	58	65	80
Drill hole diameter		d_0	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
Installation moment		S	[Nm]	10	30	30	55
Installation moment, zinc plated steel	T_{inst}	SK	[Nm]	10	25	40	50
Zilic plated steel		В	[Nm]	8	25	30	45
Installation manner		S	[Nm]	15	40	50	100
Installation moment, stainless steel A4, HCR	T _{inst}	SK	[Nm]	12	25	45	60
stailless steel A4, FICK		В	[Nm]	8	25	40	80
Installation type V (Pre-setting in	nstallatio	n)					
Diameter of clearance hole in the	fixture	$d_f \leq$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	$t_{fix} \ge$	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-set	ting insta	allation)					
Diameter of clearance hole in the	fixture	$d_f \leq$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	$t_{fix} \geq$	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.
2) see Annex A2

Minimum spacings and edge distances BZ-IG Table B5:

Anchor size			М6	M8	M10	M12
Minimum thickness of concrete member	h_{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	for c ≥	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	for s ≥	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	for c ≥	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]	(See normal	temperature	Э
Minimum edge distance	C _{min,fi}	[mm]	n] See normal temperature			
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]] See normal temperature			
Minimum edge distance	C _{min,fi}	[mm]				

Q Wedge Anchor BZ plus and BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances

Annex B5

Installation instructions BZ-IG

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

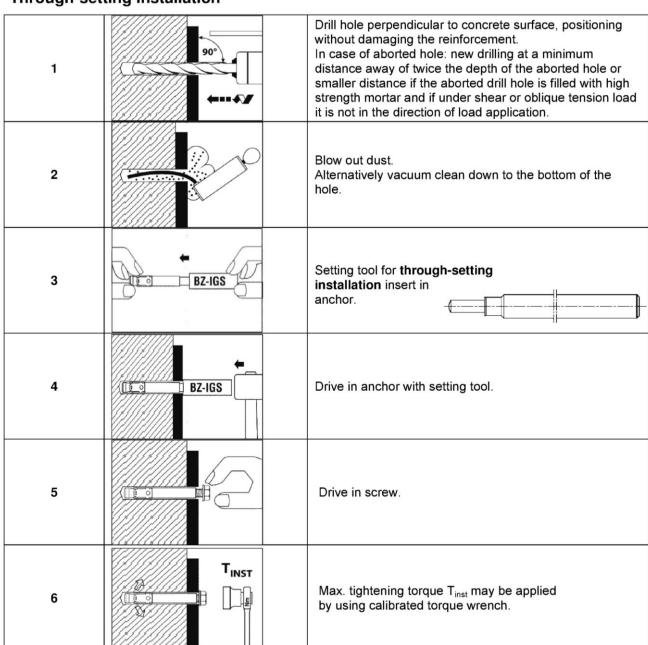
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

Pre-setting installation

1	90°	Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3	# NS-78	Setting tool for pre-setting installation insert in anchor.
4	\$39-78	Drive in anchor with setting tool.
5		Drive in srew.
6	Tinst	Max. tightening torque T _{inst} may be applied by using calibrated torque wrench.

Q Wedge Anchor BZ plus and BZ-IG

Intended Use


Installation instructions for pre-setting installation

Annex B6

Installation instructions BZ-IG

Through-setting installation

Q Wedge Anchor	BZ plus and	BZ-IG
----------------	-------------	-------

Intended Use

Installation instructions for through-setting installation

Annex B7

Table C1: Characteristic values for tension loads, BZ plus zinc plated, cracked concrete, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ2 = γinst	[-]				1,0			
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ̃Ms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)			
Increasing factor for $N_{Rk,p}$ and $N_{Rk,p,red}$	ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65			
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7,2			

¹⁾ Pull-out is not decisive.

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **zinc plated cracked concrete**, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

English translation prepared by DIBt

Table C2: Characteristic values for **tension loads**, BZ plus **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p,red}$	[kN]	5	7,5	1)	1)		
Increasing factor for $N_{Rk,p \text{ and }} N_{Rk,p,\text{red}}$	ψc	[-]			$\left(\frac{f_{ck}}{}\right)$	25)0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65		
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7,2		

¹⁾ Pull-out is not decisive.

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Annex C2

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for **tension loads**, BZ plus **zinc plated**, **non-cracked concrete**, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure	,,								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)			
Splitting For the proof against split	ting failure N ⁰ _{Rk,c} h	as to be	replaced b	y N ^o _{Rk,sp} with	n considerat	ion of the m	nember thick	ness	
Standard anchorage depth									
Splitting for standard thickness the values $s_{\text{cr,sp}}$ and $c_{\text{cr,sp}}$ may be linear								ed;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1									
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	1)	50
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]				3 h _{ef}			
Case 2									
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	1)	1)	1)
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Splitting for minimum thickness	of concrete m	ember							
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			/
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}				/
Reduced anchorage depth							,		,
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			/
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$		7,5	9	1)	1)			
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300			
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψς	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$	i		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65			
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]				10,1			

¹⁾ Pull-out is not decisive.

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **zinc plated**, **non-cracked concrete**, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

English translation prepared by DIBt

Table C4: Characteristic values for **tension loads**, BZ plus **A4** / **HCR**, **non-cracked concrete**, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0		
Steel failure	,,							
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p,red}$	[kN]	7,5	9	1)	1)		
Splitting For the proof against splitting	ig failure N ⁰ _{Rk,c} has to	be repla	aced by N ⁰ Rk	_{ssp} with consi	deration of the	ne member	thickness	
Standard anchorage depth								
Splitting for standard thickness of the values s _{cr,sp} and c _{cr,sp} may be linear							pplied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]			3	h _{ef}		
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	1)	1)
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	230	250	280	400	440	500
Splitting for minimum thickness	of concrete mem	ber						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7,5	9	1)	1)		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	200	200	250	300		
Increasing factor for N _{Rk,p(red)} and N ⁰ _{Rk,sp}	ψc	[-]			$\left(\frac{f_{ck,cu}}{25}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]				10,1		
) Pull-out is not decisive	401					•		

¹⁾ Pull-out is not decisive.

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **A4** / **HCR**, **non-cracked concrete**, static and quasi-static action

Annex C4

Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for shear loads, BZ plus, cracked and non-cracked concrete, static or quasi static action

Anchor size				М8	M10	M12	M16	M20	M24	M27
Installation safety fac	tor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure withou	ıt lever arm, Steel	zinc pla	ted							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility		k_2	[-]				1,0			
Partial safety factor		γмѕ	[-]		1,	25		1,33	1,25	1,25
Steel failure withou	ıt lever arm, Stain	less stee	el A4, F	ICR						
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Factor for ductility		k_2	[-]				1,0			
Partial safety factor		γMs	[-]		1,	25		1,4	1,25	
Steel failure with le	ver arm, Steel zin	c plated								
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor		γ̃Ms	[-]		1,	25		1,33	1,25	1,25
Steel failure with le	ver arm, Stainles:	s steel A	4, HCR							
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	200	454	785,4	
Partial safety factor		γмѕ	[-]		1,	25		1,4	1,25	
Concrete pry-out fa	ailure									
Factor k acc. to ETA or k ₃ acc. to CEN/TS		k ₍₃₎	[-]		2,	4			2,8	
Concrete edge fail										_
Effective length of anchor in shear	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	I _f	[mm]	46	60	70	85	100	125	
Effective length of anchor in shear	Steel zinc plated	$I_{\rm f,red}$	[mm]	35	40	50	65			
loading with h _{ef,red}	Stainless steel A4, HCR	$I_{\rm f,red}$	[mm]	35	40	50	65			
Outside diameter of	anchor	d_{nom}	[mm]	8	10	12	16	20	24	27

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **shear loads**, BZ plus, **cracked** and **non-cracked concrete**, static or quasi static action

Annex C5

Table C6: Characteristic resistance for seismic loading, BZ plus, standard anchorage depth, performance category C1 and C2

Tension loads								
Anchor size			M10	M12	M16	M20		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0					
Steel failure, steel zinc pl	ated							
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	27	40	60	86		
Characteristic resistance C2	$N_{Rk,s,seis,C2}$	[kN]	27	40	60	86		
Partial safety factor	γ _{Ms,seis}	[-]	1,53	1,6				
Steel failure, stainless st	eel A4, HCR							
Characteristic resistance C1	$N_{Rk,s,seis,C1}$	[kN]	27	40	64	108		
Characteristic resistance C2	$N_{\text{Rk,s,seis,C2}}$	[kN]	27	40	64	108		
Partial safety factor	$\gamma_{Ms,seis}$	[-]		1,5		1,68		
Pull-out								
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	9	16	25	36		
Characteristic resistance C2	$N_{Rk,p,seis,C2}$	[kN]	3,6	10,2	13,8	22,4		

Shear loads									
Steel failure without lever arm, Steel zinc plated									
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69			
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2			
Partial safety factor	γ̃Ms,seis	[-]	1,25 1,33						
Steel failure without lev	re without lever arm, Stainless steel A4, HCR								
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	20	27	44	69			
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	14	16,2	35,7	55,2			
Partial safety factor	γ _{Ms,seis}	[-]		1,25		1,4			

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic resistance for **seismic loading**, BZ plus, **standard anchorage depth**, performance category **C1** and **C2**

Table C7: Characteristic values **for tension and shear load** under **fire exposure**, BZ plus, **standard anchorage depth**, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				М8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel zinc plate	ed									
-	R30			1,4	2,2	3,2	6,0	9,4	13,6	17,6
Characteristic	R60	N.	FI-AIT	1,1	1,8	2,8	5,2	8,2	11,8	15,3
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
	R30			3,8	6,9	11,5	21,5	33,5	48,2	
Characteristic	R60	NI	[LAI]	2,9	5,2	8,6	16	25,0	35,9] /
resistance	R90	$N_{Rk,s,fi}$	[kN]	2,0	3,5	5,6	10,5	16,4	23,6] /
	R120			1,6	2,7	4,2	7,8	12,1	17,4	
Shear load										
Steel failure wi	thout lever a	arm								
Steel zinc plate	ed									
•	R30			1,6	2,6	3,8	7,0	11	16	20,6
Characteristic	R60			1,5	2,5	3,6	6,8	11	15	19,8
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120			1,0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR									•
	R30			3,8	6,9	11,5	21,5	33,5	48,2	
Characteristic	R60			2,9	5,2	8,6	16	25,0	35,9	1 /
resistance	R90	$V_{Rk,s,fi}$	[kN]	2,0	3,5	5,6	10,5	16,4	23,6	1 /
	R120			1,6	2,7	4,2	7,8	12,1	17,4	
Steel failure wi	th lever arm									
Steel zinc plate	ed									
•	R30			1,7	3,3	5,9	15	29	50	75
Characteristic	R60	0		1,6	3,2	5,6	14	28	48	72
resistance	R90	${ m M}^0_{ m Rk,s,fi}$	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120			1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR								'	
	R30			3,8	9,0	17,9	45,5	88,8	153,5	
Characteristic	R60	0	_, _	2,9	6,8	13,3	33,9	66,1	114,3	1 /
resistance	R90	${ m M}^0_{ m Rk,s,fi}$	[Nm]	2,1	4,5	8,8	22,2	43,4	75,1	1 /
	R120			1,6	3,4	6,5	16,4	32,1	55,5	1/

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive $N_{Rk,p}$ in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by $N_{Rk,p}^0$.

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

	Table C8: Dis	placements	under	tension	load,	BΖ	plus
--	---------------	------------	-------	---------	-------	----	------

Anchor size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	$\delta_{N\infty}$	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension lo	oads C2								
Displacements for DLS δ_N	l,seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		1 /
Displacements for ULS δ_N	l,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	/
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	
	$\delta_{N\infty}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	\vee
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	
	$\delta_{N\infty}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	V
Displacements under seismic tension lo	oads C2								
Displacements for DLS δ_N	l,seis,C2(DLS)	[mm]		4,1	4,9	3,6	5,1		
Displacements for ULS δ_N	l,seis,C2(ULS)	[mm]		13,8	15,7	9,5	15,2		
Reduced anchorage depth									
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			1 /
Displacement	δ_{N0}	[mm]	0,8	0,7	0,5	1,0			
	$\delta_{N\infty}$	[mm]	1,2	1,0	0,8	1,1			
Tension load in non-cracked concrete	N	[kN]	3,7	4,3	8,5	12,6			1 /
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2			
	$\delta_{N^{\infty}}$	[mm]	0,7	0,7	0,7	0,7			

Q Wedge	Anchor	BZ plus	and BZ-IG
---------	--------	---------	-----------

Performance

Displacements under tension load

rabio coi biopiacomonto amaci circai roda, be piac	Table C9: Dis	placements	under	shear	load,	BZ	plus
--	---------------	------------	-------	-------	-------	----	------

Anchor size			М8	M10	M12	M16	M20	M24	M27	
Standard anchorage depth										
Steel zinc plated										
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8	
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6	
	$\delta_{V^{\infty}}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4	
Displacements under seisn	nic shear	loads C	2							
Displacements for DLS $\delta_{\text{V,s}}$	eis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7			
Displacements for ULS $\delta_{\text{V,s}}$	eis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1			
Stainless steel A4, HCR										
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6		
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	2,9	2,8		
	$\delta_{V^{\infty}}$	[mm]	2,9	3,6	5,9	6,4	4,3	4,2		
Displacements under seisn	nic shear	loads C	2							
Displacements for DLS $\delta_{\text{V,s}}$	eis,C2(DLS)	[mm]		2,7	3,5	4,3	4,7			
Displacements for ULS $\delta_{\text{V,s}}$	eis,C2(ULS)	[mm]		5,3	9,5	9,6	10,1			
Reduced anchorage dep	th									
Steel zinc plated										
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4				
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5				
	$\delta_{V^{\infty}}$	[mm]	3,0	4,7	5,5	5,3				
Stainless steel A4, HCR										
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4				
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3] /			
	$\delta_{V^{\infty}}$	[mm]	2,9	3,6	5,9	6,4	\bigvee			

Q Wedge	Anchor	BZ plus	and	BZ-IG

Performance

Displacements under shear load

Table C10: Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12	
Installation safety factor	γ2 = γinst	[-]		1,	2		
Steel failure							
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial safety factor	γMs	[-]		1	,5		
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
Partial safety factor	γMs	[-]		1,	87		
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor	ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor acc. to CEN/TS 1992-4	k cr	[-]	_	7	,2	_	

Q Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Table C11: Characteristic values for tension loads, BZ-IG, non-cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1,	2			
Steel failure								
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6		
Partial safety factor	γMs	[-]		1	,5			
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0		
Partial safety factor	γMs	[-]		1,	87			
Pull-out								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30		
Splitting (N ⁰ _{Rk,c} has to be replaced by N ⁰ _{Rk,sp.} The higher resistance of Case 1 and Case 2 may be applied.)								
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160		
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25		
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]		3	h _{ef}			
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30		
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	5 h _{ef}					
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]	$\left(rac{f_{ck,cube}}{25} ight)^{0.5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80		
Factor acc. to CEN/TS 1992-4	k_{ucr}	[-]		10),1			

Q	Wed	lge /	Ancl	hor	ΒZ	plus	and	BZ-IG	ì
---	-----	-------	------	-----	----	------	-----	-------	---

Performance

Characteristic values for **tension loads**, **BZ-IG**, **non-cracked concrete**, static and quasi-static action

Table C12: Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12
Installation safety factor		1,	,0			
BZ-IG, steel zinc plated						
Steel failure without lever arm, Installa	tion type \	/				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Installa	tion type I	D				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Installation						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Installation	1 type D					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]		1,	25	
Factor of ductility	k ₂	[-]		1,	,0	
BZ-IG, stainless steel A4, HCR						
Steel failure without lever arm, Installa	tion type \	/				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial safety factor	γMs	[-]		1,:	25	
Steel failure without lever arm, Installa	tion type I	<u> </u>				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial safety factor	γMs	[-]		1,:	25	
Steel failure with lever arm, Installation						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Partial safety factor	γMs	[-]		1,	56	
Steel failure with lever arm, Installation	1 type D					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	28,2	44,3	69,9	191,2
Partial safety factor	γMs	[-]		1,:	25	
Factor of ductility	k ₂	[-]		1,	0	
Concrete pry-out failure						
Factor k acc. to ETAG 001, Annex C or	k ₍₃₎	[-]	1,5	1,5	2,0	2,0
k₃ acc. to CEN/TS 1992-4	N(3)	[-]	1,0	1,5	2,0	2,0
Concrete edge failure						
Effective length of anchor in shear loading	l _f	[mm]	45	58	65	80
Effective diameter of anchor	d_{nom}	[mm]	8	10	12	16

Q Wedge Anchor BZ plus and BZ-IG	
Performance Characteristic values for shear loads, BZ-IG, cracked and non-cracked concrete, static and quasi-static action	Annex C12

Table C13: Characteristic values for **tension** and **shear load** under **fire exposure**, **BZ-IG** cracked and non-cracked concrete C20/25 to C50/60

Anchor size				М6	M8	M10	M12
Tension load							
Steel failure							
Steel zinc plate	d						
•	R30			0,7	1,4	2,5	3,7
Characteristic R60	R60	N.	rlania	0,6	1,2	2,0	2,9
resistance	R90	$N_{Rk,s,fi}$	[kN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	NI	[kN]	1,9	3,8	6,3	9,2
resistance	R90	$N_{Rk,s,fi}$	[KIN]	1,0	2,1	3,9	5,7
	R120		<u> </u>	0,5	1,3	2,7	4,0
Shear load							
Steel failure wit	hout lever arm)					
Steel zinc plate	d						
Characteristic	R30			0,7	1,4	2,5	3,7
	R60	.,		0,6	1,2	2,0	2,9
resistance	R90	V _{Rk,s,fi} [[kN]	0,5	0,9	1,5	2,2
	R120				0,4	0,8	1,3
Stainless steel	A4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	V	[[LN]]	1,9	3,8	6,3	9,2
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure wit	h lever arm						
Steel zinc plate	d						
-	R30			0,5	1,4	3,3	5,7
Characteristic	R60	M ⁰ _{Rk,s,fi}	[[N]	0,4	1,2	2,6	4,6
resistance	R90	IVI Rk,s,fi	[Nm]	0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel	A4, HCR						
	R30			2,2	5,5	11,2	19,6
Characteristic	R60	M ⁰ _{Rk,s,fi}	[[[1,5	3,9	8,1	14,3
resistance	R90	IVI Rk,s,fi	[Nm]	0,7	2,2	5,1	8,9
	R120		[0,4	1,3	3,5	6,2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Q Wedge Anchor BZ plus and BZ-IG Performance Characteristic values for tension and shear loads under fire exposure, BZ-IG cracked and non-cracked concrete C20/25 to C50/60 Annex C13

Table C14: Displacements under tension load, BZ-IG

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements $\frac{\delta_{N0}}{}$	[mm]	0,6	0,6	0,8	1,0	
Displacements	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
Displacements	$\delta_{N^{\infty}}$		0,8	0,8	1,2	1,4

Table C15: Displacements under shear load, BZ-IG

Anchor size			М6	М8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
Displacements	$\delta_{V^{\infty}}$	[mm]	4,2	4,4	3,8	5,3

Q Wedge Anchor BZ plus and BZ-IG

Performance
Displacements under tension load and under shear load

Annex C14