

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0464 of 21 July 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti ETICS anchor HTH

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

HILTI Corporation
Feldkircherstraße 100
9494 SCHAAN
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

Hilti manufacturing plant

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0464

Page 2 of 15 | 21 July 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0464

Page 3 of 15 | 21 July 2015

English translation prepared by DIBt

Specific part

1 Technical description of the product

The Hilti ETICS screwed-in anchor HTH with a helix consist of a plastic part made of polypropylene and an accompanying specific screw of galvanised steel.

The description of the product is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 3
Point thermal transmittance	See Annex C 2
Displacements	See Annex C 2

3.4 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

European Technical Assessment ETA-15/0464

Page 4 of 15 | 21 July 2015

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

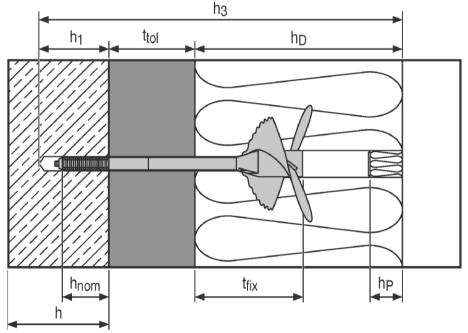
In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 21 July 2015 by Deutsches Institut für Bautechnik


Uwe Benderbeglaubigt:Head of DepartmentZiegler

Hilti ETICS anchor HTH

Intended use:

Fixing of external thermal insulation composite systems in concrete, masonry, lightweight aggregate concrete and autoclaved aerated concrete

Legend:

n = thickness of member (wall)

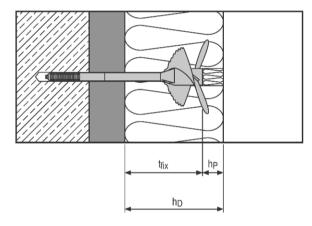
h₁ = depth of drilled hole in base material to deepest point

h₃ = total length of borehole from insulation material surface to deepest point

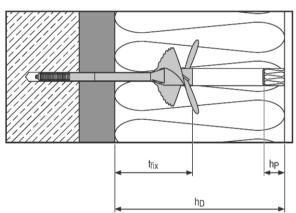
 h_{nom} = overall plastic anchor embedment depth in the base material

h_D = thickness of insulation material

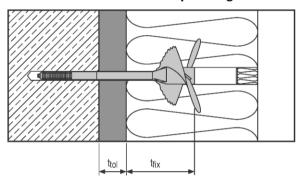
 h_P = thickness of plug t_{fix} = thickness of fixture

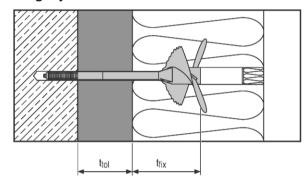

ttol = thickness of equalizing layer for compensation of tolerances or non-loadbearing layer

Hilti ETICS anchor HTH	
Product description Installed condition HTH	Annex A 1



Use in different insulation material thickness


Minimum thickness



Maximum thickness

Use in different thickness of equalizing or non-loadbearing layer

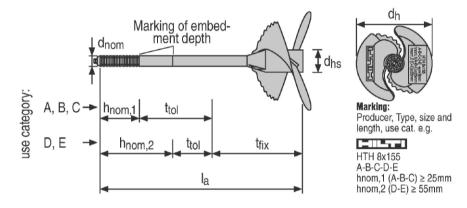
Legend:

h_D = thickness of insulation material

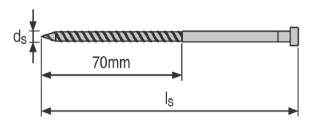
 h_P = thickness of plug t_{fix} = thickness of fixture

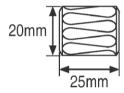
 t_{tol} = thickness of equalizing layer for compensation of tolerances or non-loadbearing layer

Hilti ETICS anchor HTH


Product description

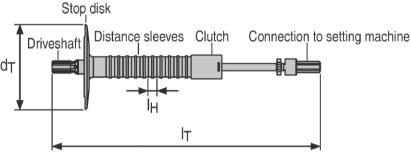
Different installed conditions


Annex A 2


Anchor sleeve HTH

Screw for HTH

Plug for HTH


Note: PU-Foam with specifications according to Table A4 can be used alternatively

Hilti ETICS anchor HTH	
Product description Dimensions and marking of HTH anchor sleeve, expansion element and plug	Annex A 3

Setting tools

Setting tool D8-SW 1 or setting tool D8-SW 2

Setting tool HTH-SW 1 or setting tool HTH-SW 2

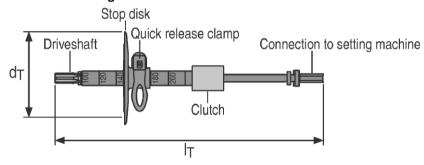


Table A1 Dimensions for setting tool types D8-SW 1 and D8-SW 2

Setting tool type		D8-SW 1	D8-SW 2			
Diameter of disk	d _⊤ [mm]	100				
Length of the tool	ℓ_{T} [mm]	310 477				
Length of distance sleeve (insulation thickness increment)	ℓ_{H} [mm]	10				
Applicable inculation thickness	h _{D,min} [mm]	100 ¹⁾	200			
Applicable insulation thickness	h _{D,max} [mm]	200	360			

This value applies for $t_{fix} = 80$ mm (for $t_{fix} = 110$ mm: $h_{D,min} = 130$ mm).

Table A2 Dimensions for setting tool types HTH-SW 1 and HTH-SW 2

Setting tool type	HTH-SW 1	HTH-SW 2			
Diameter of disk	d _T [mm]	100			
Length of the tool	ℓ_{T} [mm]	310 477			
	h _{D,min} [mm]	100 ¹⁾	200		
Applicable insulation thickness	increment [mm]	1	0		
	h _{D,max} [mm]	200	360		

This value applies for $t_{fix} = 80$ mm (for $t_{fix} = 110$ mm: $h_{D,min} = 130$ mm).

Hilti ETICS anchor HTH	
Product description Setting tools	Annex A 4

Table A3 Anchor types and dimensions of HTH

Anchor type			HTH 8x125	HTH 8x155	HTH 8x215
	Sleeve diameter	d _{nom} [mm]	8		
Plastic sleeve -	Length of sleeve	$\ell_{a} \; [mm]$	-		215
l lastic sieeve	Diameter of helix centre	d _{hs} [mm]			
	Diameter of helix	d _h [mm]	75		
Special corous	Screw diameter	d _s [mm]	5,35		
Special screw -	Length of screw	$\ell_{\sf s}$ [mm]	94	124	184

Table A4 Materials of HTH

Element	Material	
Anchor sleeve	Polypropylene, colour: black	
Screw	Steel, galvanised ≥ 5 μm, f _{yk} = 480 N/mm², f _{uk} = 600 N/mm²	
Plug	EPS or mineral Wool	
PU-Foam	Polyurethane, thermal conductivity ≤ 0,045 W/(m·K) Remark: use of foam only in accordance with ETICS system suppliers	

Hilti ETICS anchor HTH	
Product description Dimensions and Materials	Annex A 5

Specifications of intended use

Anchorages subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- Hollow or perforated masonry (use category C), according to Annex C 1
- Lightweight aggregate concrete (use category D), according to Annex C 1
- Autoclaved aerated concrete (use category E), according to Annex C 1
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks.

Hilti ETICS anchor HTH	
Intended use Specifications	Annex B 1

Table B1 Installation parameters for use in concrete and solid masonry (use category A, B)

Anchor type				HTH 8x125	HTH 8x155	нтн 8	3x215
Drill hole diameter	d_0	=	[mm]	8			
Cutting diameter of drill bit	d_{cut}	\leq	[mm]		8,45		
Minimum depth of drilled hole to deepest point	h ₁	≥	[mm]	45			
Overall plastic anchor embedment depth in the base material	h _{nom,1}	≥	[mm]	25			
Thickness of fixture	t_{fix}	=	[mm]	80	80	80	110
Thickness of equalizing layer for	$t_{tol,min}$	=	[mm]	0	0	50	20
compensation of tolerances or non- loadbearing layer	$t_{\text{tol,max}}$	=	[mm]	20	50	110 ¹⁾	80 ¹⁾
Total length of borehole	h ₃	\geq	[mm]	h_D+65	h_D+95	h _D +155	h _D +125

If $t_{tol,max}$ exceeds 50 mm it has to be ensured that the material t_{tol} has enough capability to carry the dead load of the ETICS. This can be considered as given if t_{tol} consists of plaster, old insulation or shells of jacket blocks.

Table B2 Installation parameters for use in thin concrete members (e.g. weather resistant skin of external wall panels) and hollow masonry (use category C)

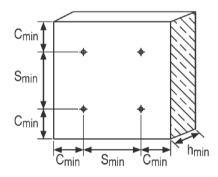
Anchor type				HTH 8x125	HTH 8x155	нтн а	3x215
Drill hole diameter	d_0	=	[mm]	8			
Cutting diameter of drill bit	d_{cut}	≤	[mm]	8,45			
Minimum depth of drilled hole to deepest point	h ₁	≥	[mm]	45			
Overall plastic anchor embedment depth in the base material	h _{nom,1}	≥	[mm]	25			
Thickness of fixture	t_{fix}	=	[mm]	80	80	80	110
Thickness of equalizing layer for	$t_{tol,min}$	=	[mm]	0	20 ¹⁾	80 ¹⁾	50 ¹⁾
compensation of tolerances or non- loadbearing layer	$t_{tol,max}$	=	[mm]	20	50	110 ²⁾	80 ²⁾
Total length of borehole	h ₃	≥	[mm]	h_D+65	h _D +95	h _D +155	h _D +125

 $t_{\text{tol, min}}$ may be lower if the anchor performance is tested on site.

Hilti ETICS anchor HTH	
Intended use Installation parameters – use categories A, B, C	Annex B 2

²⁾ If t_{tol,max} exceeds 50 mm it has to be ensured that the material t_{tol} has enough capability to carry the dead load of the ETICS. This can be considered as given if t_{tol} consists of plaster, old insulation or shells of jacket blocks.

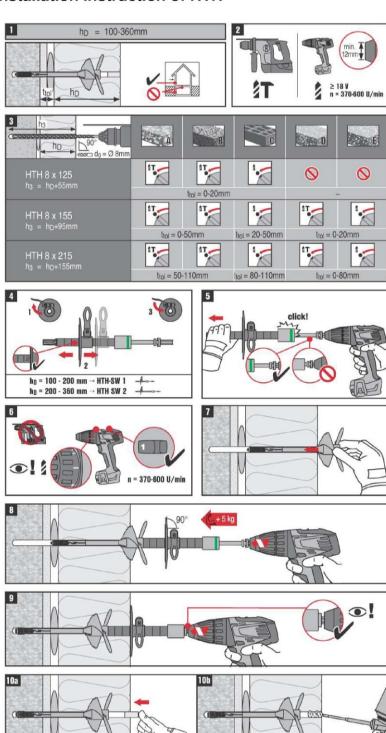
Table B3 Installation parameters for use in <u>lightweight aggregate concrete</u> and <u>autoclaved aerated</u> concrete (use category D, E)


Anchor type			HTH 8x125	HTH 8x155	нтн а	3x215	
Drill hole diameter	d_0	=	[mm]		8		
Cutting diameter of drill bit	d_{cut}	≤	[mm]		8,45		
Minimum depth of drilled hole to deepest point	h ₁	≥	[mm]		75		
Overall plastic anchor embedment depth in the base material	h _{nom,2}	≥	[mm]	-		55	
Thickness of fixture	t_{fix}	=	[mm]		80	80	110
Thickness of equalizing layer for	$t_{\text{tol,min}}$	=	[mm]		0	0	0
compensation of tolerances or non- loadbearing layer	t _{tol,max}	=	[mm]		20	80 ¹⁾	50
Total length of borehole	h ₃	≥	[mm]		h _D +95	h _D +155	h _D +125

If $t_{tol,max}$ exceeds 50 mm it has to be ensured that the material t_{tol} has enough capability to carry the dead load of the ETICS. This can be considered as given if t_{tol} consists of plaster, old insulation or shells of jacket blocks.

Table B4 Minimum thickness of base material, edge distance and anchor spacing

				нтн
Minimum thickness of the base material	concrete, masonry, lightweight aggregate concrete and autoclaved aerated concrete		[mm]	100
material	thin concrete members (e.g. weather resistant skin of external wall panels)	h _{min}	[mm]	40
Minimum allowable spacing		S _{min}	[mm]	100
Minimum allowable edge distant	ce	C _{min}	[mm]	100


Scheme of minimum thickness of base material, edge distances and anchor spacings

Hilti ETICS anchor HTH	
Intended use	Annex B 3
Installation parameters – use categories D, E	
Minimum thickness of base material, distances and spacings	

Installation instruction of HTH

Hilti	ETICS	anchor	HTH

Intended use Installation instruction for HTH

Annex B 4

Z55213.15

electronic copy of the eta by dibt: eta-15/0464

Table C1 Characteristic resistance to tension loads N_{Rk} in concrete, masonry, lightweight aggregate concrete and autoclaved aerated concrete for single anchor

Base material	Use cat. ³⁾	Bulk density class ρ	Compressive strength- class f _b	Remarks	Drill method	N _{Rk}
		[kg/dm ³]	[N/mm²]			[kN]
Concrete C12/15 – C50/60 EN 206-1:2000	Α	-	-	-	hammer	1,2
Thin concrete members (e.g. weather resistant skins of external wall panels) C16/20 – C50/60 EN 206-1:2000	Α	-	-	Thickness of the thin skin h ≥ 40mm	hammer	1,2
Clay brick, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	В	2,0	20	Cross section reduced up to 15% by perforation vertically to the resting area	hammer	1,2
Sand-lime solid brick, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	В	2,0	20	Cross section reduced up to 15% by perforation vertically to the resting area	hammer	1,2
Vertically perforated clay brick, Hlz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	С	1,2	12	Cross section reduced more than 15% and less than 50% by perforation vertically to the resting area 1)	rotary only	1,2
Vertically perforated sand-lime brick, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	С	1,4	12	Cross section reduced more than 15% and less than 50% by perforation vertically to the resting area ²⁾	Rotary only	1,2
Lightweight aggregate concrete, LAC e.g. according to EN 1520:2011 EN 771-3:2011	_	0,9	2 4	-	hammer	0,6 1,2
Autoclaved aerated concrete, AAC e.g. according to DIN V 4165-100:2005-11 / EN 771-4:2011	E	0,5	4	-	rotary only	0,9

The value applies only for outer web thickness ≥ 12 mm
The value applies only for outer web thickness ≥ 23 mm

Otherwise the characteristic resistance shall be determined by job-site pull-out tests

Different installation parameters for use categories A, B, C and use categories D, E and thin concrete members to be considered (see Annex B 2 and B 3)

Hilti ETICS anchor HTH	
Performance Characteristic resistance	Annex C 1

Table C2 Point thermal transmittance acc. EOTA Technical Report TR 025:2007-06

Anchor type		Insulation thickness h _D	S Nominal value of point thermal transmittance χ [W/K]	
		[mm]	Hole filled with EPS plug	Hole filled with PUR spray foam
HTH 125 HTH 155	+ 90mm	100 ≤ h _D ≤ 150	0,001	0,001
HTH 215	t _{fix} =80mm	150 < h _D ≤ 360	0,000	0,000
HTH 155	+ 110mm	130 ≤ h _D ≤ 150	0,001	0,001
HTH 215	t _{fix} =110mm	150 < h _D ≤ 360	0,001	0,001

Table C3 Displacements

Base material	Bulk density class ρ	Compressive strength– class f _b	Tension load N	$\delta_{\sf m}({\sf N})$
	[kg/dm³]	[N/mm²]	[kN]	[mm]
Concrete, C12/15 – C50/60 (EN 206-1:2000)	-	-	0,40	< 0,6
Thin concrete members, C16/20 – C50/60 (EN 206-1:2000)	-	-	0,40	< 0,5
Clay brick, Mz (DIN 105-100:2012-01 / EN 771-1:2011)	2,0	20	0,40	< 0,5
Sand-lime solid brick, KS (DIN V 106:2005-10 / EN 771-2:2011)	2,0	20	0,40	< 0,5
Vertically perforated clay brick, Hlz (DIN 105-100:2012-01 / EN 771-1:2011)	1,2	12	0,40	< 0,5
Vertically perforated sand-lime brick, KSL (DIN V 106:2005-10 / EN 771-2:2011)	1,4	12	0,40	< 0,5
Lightweight aggregate concrete, LAC (EN 1520:2011 / EN 771-3:2011)	0,9	2 4	0,20 0,40	< 0,5 < 0,5
Autoclaved aerated concrete, AAC (DIN V 4165-100:2005-11 / EN 771-4:2011)	0,5	4	0,30	< 0,7

Hilti ETICS anchor HTH	
Performance Point thermal transmittance and displacements	Annex C 2