

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0532 of 6 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Mägert 2KTec RED 500 for concrete

Bonded anchor for diamond coring for use in uncracked concrete

Mägert G&C Bautechnik AG Sonnenbergstraße 11 6052 HERGISWIL SCHWEIZ

Mägert G&C Bautechnik AG Plant 1

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0532 English translation prepared by DIBt

Page 2 of 23 | 6 August 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 6 August 2015

Specific Part

1 Technical description of the product

"Mägert 2KTec RED 500 for concrete"" is a bonded anchor consisting of a cartridge with injection mortar 2KTec RED 500 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for design according to TR 029	See Annex C 1 to C 4		
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 5 to C 8		
Displacements under tension and shear loads	See Annex C 9 to C 10		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0532

Page 4 of 23 | 6 August 2015

English translation prepared by DIBt

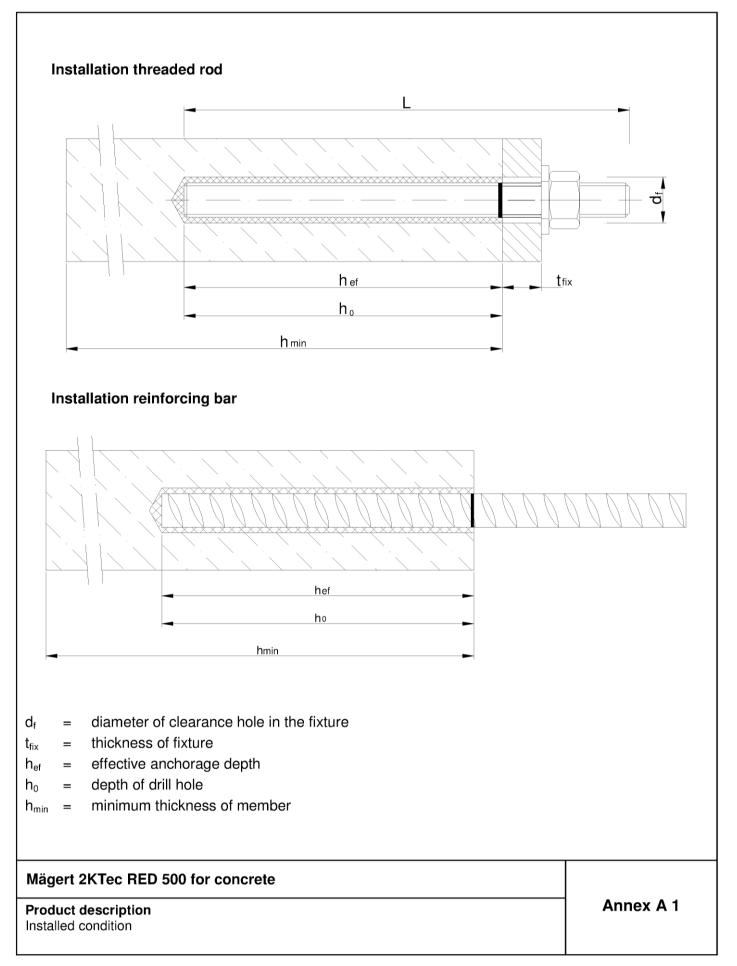
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

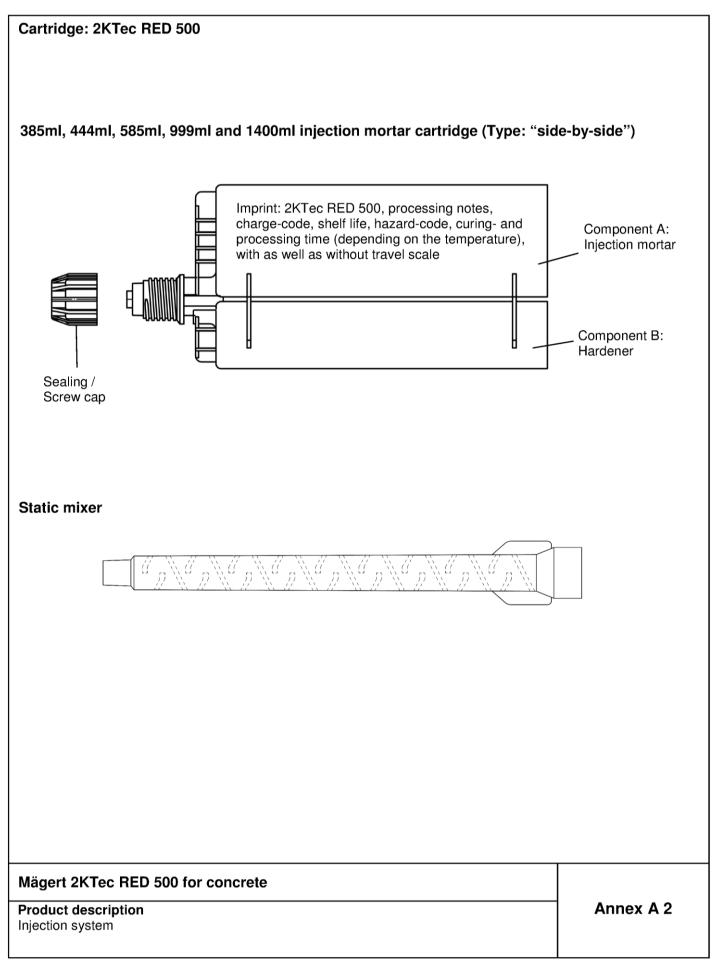
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 August 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-15/0532 of 6 August 2015

English translation prepared by DIBt

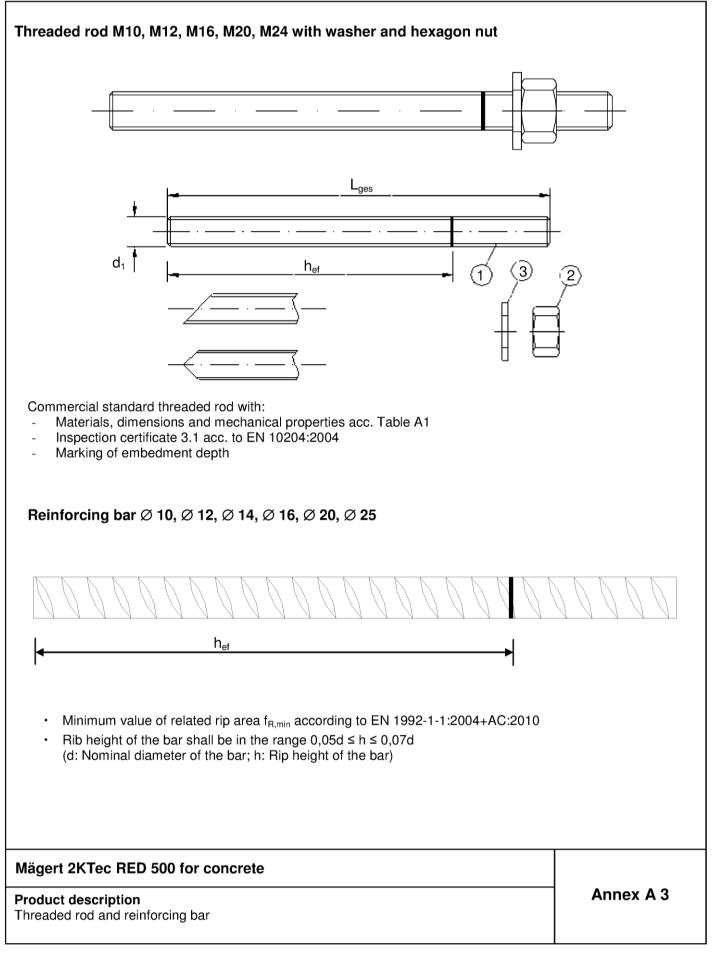


Table A1: Materials

Part	Designation	Material			
Steel,	, zinc plated $\ge 5 \ \mu m$ acc. to EN ISO 4042:19 , hot-dip galvanised $\ge 40 \ \mu m$ acc. to EN ISO	999 or	C:2009		
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-8)1		
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	63:2001 SO 898-2:2012, SO 898-2:2012,		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised			
Stain	less steel				
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 ≤ M24: Property class 70 EN ISO 3506-			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 ≤ M24: Property class 70 (for class 70 rc	-		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005		
High	corrosion resistance steel				
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, ≤ M24: Property class 70 EN ISO 3506-1:2009			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005		
Reinf	orcing bars				
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013		
	ert 2KTec RED 500 for concrete		Ammoss A 4		
Prod Mate	luct description rials		Annex A 4		

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M10 to M24, Rebar Ø10 to Ø25.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M10 to M24, Rebar Ø10 to Ø25.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Mägert 2KTec RED 500 for concrete

Intended Use Specifications

ſ

Anchor size		M 10	M 12	M 16	M 20	M 24	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96	
hole depth	h _{ef,max} [mm] =	200	240	320	400	480	
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14	18	22	26	
Diameter of steel brush	d _b [mm] ≥	14	16	20	26	30	
Torque moment	T _{inst} [Nm]	20	40	80	120	160	
Thickness of fivture	t _{fix,min} [mm] >	0					
Thickness of fixture	t _{fix,max} [mm] <	1500					
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	

Table B2: Installation parameters for rebar

Rebar size	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	32
Embedment depth and bore	h _{ef,min} [mm] =	60	70	75	80	90	100
hole depth	h _{ef,max} [mm] =	200	240	280	320	400	500
Diameter of steel brush	d _b [mm] ≥	16	18	20	22	26	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	70	80	100	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	125

Mägert 2KTec RED 500 for concrete

Intended Use Installation parameters

Steel brush Table B3: Parameter cleaning and setting tools d_{b,min} Piston Threaded \mathbf{d}_0 d_{b} Rebar min. Rod Drill bit - Ø plug Brush - Ø Brush - Ø (mm) (mm) (mm) (mm) (mm) (No.) M10 12 14 12,5 M12 10 14 16 14,5 No 12 16 18 piston plug 16,5 required M16 14 20 18 18,5 22 16 20 20,5 M20 20 24 26 24,5 # 24 M24 28 30 # 28 28,5 25 32 34 32,5 # 32

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

Mägert 2KTec RED 500 for concrete

Intended Use

Cleaning and setting tools

Installation in	structions	
	1b. Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth
	2a. Rinsing with water until clear water comes out.	
<u>*********</u> ** 2x	2b. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3).	d _{b,min} (Table B3) a
	2c. Rinsing again with water until clear water comes out.	
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.
2x	2d. Starting from the bottom or back of the bore hole, blow the hole cle. (Annex B3) (min. 6 bar) a minimum of two times. If the bore hole gr extension shall be used.	
2x	 22. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > c minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3). 21. Finally blow the hole clean again with compressed air acc. Annex E minimum of two times. If the bore hole ground is not reached an ex After cleaning, the bore hole has to be protected against re-co appropriate way, until dispensing the mortar in the bore hole. I cleaning has to be repeated directly before dispensing the mort must not contaminate the bore hole again. 	d _{b,min} (Table B3) a ne brush, a brush 33 (min. 6 bar) a tension shall be used. ntamination in an I f necessary, the
	3. Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	C C
l her	4. Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a n strokes and discard non-uniformly mixed adhesive components unti consistent grey colour. For foil tube cartridges is must be discarded strokes.	I the mortar shows a
Mägert 2KTec R	ED 500 for concrete	
ntended Use		Annex B 4

Installation instructions

Installation inst	ructions (continuation)						
 6. Starting from the bottom or back of the cleaned anchor hole fill the hole of approximately two-thirds with adhesive. Slowly withdraw the static mixin the hole fills to avoid creating air pockets. For embedment larger than 19 extension nozzle shall be used. For overhead and horizontal installation plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ times given in Table B4. 							
	7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.						
	The anoner chedia be nee of ant, greace, on or error tereigh matchair						
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).						
20°C e.g.	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).						
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench. 						

Table B4: Minimum curing time

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete	
≥ 5 °C	120 min	50 h	100 h	
≥ + 10 °C	90 min	30 h	60 h	
≥ + 20 °C	30 min	10 h	20 h	
≥ + 30 °C	20 min	6 h	12 h	
≥ + 40 °C	12 min	4 h	8 h	

Mägert 2KTec RED 500 for concrete

Installation instructions (continuation) Curing time

Anchor size threaded ro	d			M 10	M 12	M 16	M 20	M24
Steel failure						1		
Characteristic tension resi Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	23	34	63	98	141
Characteristic tension resi Steel, property class 5.8	stance,	N _{Rk,s}	[kN]	29	42	78	122	176
Characteristic tension resi Steel, property class 8.8	stance,	N _{Rk,s}	[kN]	46	67	125	196	282
Characteristic tension resi Stainless steel A4 and HC property class 70		N _{Rk,s}	[kN]	41	59	110	171	247
Combined pullout and c	oncrete cone failure		·				•	
Characteristic bond resista	ance in non-cracked concr	ete C20/2	5					
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0
40°C/24°C	flooded bore hole	𝔤Rk,ucr	[N/mm²]	9,0	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5
60°Ċ/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0
72°Ċ/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0
Increasing factor		C30/37		1,04				
Ψ _c		C40/50		1,08				
Splitting failure		C50/60				1,10		
Edge distance		C _{cr,sp}	[mm]	1,C	l · h _{ef} ≤ 2 · I	$n_{ef}\left(2,5-\frac{1}{h}\right)$	$\left \frac{h}{ef}\right \leq 2,4 \cdot$	h _{ef}
Axial distance		S _{cr,sp}	[mm]			2 c _{cr,sp}		
Installation safety factor		γ2		1,0	1,2			

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

Table C2: Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to TR 029)

Anchor size threaded rod	M 10	M 12	M 16	M 20	M24				
Steel failure without lever arm									
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	12	17	31	49	71		
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	15	21	39	61	88		
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141		
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124		
Steel failure with lever arm									
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s	[Nm]	30	52	133	260	449		
Characteristic bending moment, Steel, property class 5.8	$M^0_{Rk,s}$	[Nm]	37	65	166	324	560		
Characteristic bending moment, Steel, property class 8.8	$M^0_{Rk,s}$	[Nm]	60	105	266	519	896		
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784		
Concrete pry-out failure									
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]	2,0						
Installation safety factor	γ2		1,0						
Concrete edge failure									
Installation safety factor	γ2				1,0				

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

bar			-	to TR 0	_0)			
			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
sistance	N _{Rk,s}	[kN]			A _s ·	• f _{uk}		
concrete cone failure								
tance in non-cracked c	concrete	C20/25						
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
·	C30/37	C30/37 1			1,0	,04		
			1,08					
	C50/60)			1,	10		
	1				(
	C _{cr,sp}	[mm]		1,0 · h _{ef} s	≤ 2 · h _{ef} (2,	$\left(5 - \frac{h}{h_{ef}}\right) \le $	a 2,4 · h _{ef}	
	S _{cr,sp}	[mm]	2 c _{cr,sp}					
	γ2		1,0			1,2		
	concrete cone failure tance in non-cracked of dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete	concrete cone failure tance in non-cracked concrete dry and wet concrete flooded bore hole TRIK,ucr flooded bore hole TRIK,ucr flooded bore hole TRIK,ucr flooded bore hole TRIK,ucr C30/37 C40/50 C50/60 C50/60 C50/60 TRIK,ucr	Concrete cone failure tance in non-cracked concrete C20/25 dry and wet concrete TRk,ucr [N/mm²] flooded bore hole TRk,ucr [N/mm²] dry and wet concrete TRk,ucr [N/mm²] flooded bore hole TRk,ucr [N/mm²] G100ded bore hole TRk,ucr [N/mm²] C40/50 C50/60 [mm] Image: Imag	and a set of the set o	Concrete cone failure tance in non-cracked concrete C20/25 dry and wet concrete TRk,uer [N/mm²] 11 10 flooded bore hole TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 9,0 6,5 flooded bore hole TRk,uer [N/mm²] 6,0 6,0 flooded bore hole TRk,uer [N/mm²] 6,0 6,0 flooded bore hole TRk,uer [N/mm²] 5,0 6,0 flooded bore hole TRk,uer [N/mm²] 5,0 6,0 flooded bore hole TRk,uer [N/mm²] 5,0 6,0 C30/37	Concrete cone failure tance in non-cracked concrete C20/25 dry and wet concrete $\tau_{Rk,uer}$ $[N/mm^2]$ 11 10 10 flooded bore hole $\tau_{Rk,uer}$ $[N/mm^2]$ 9,0 10 10 dry and wet concrete $\tau_{Rk,uer}$ $[N/mm^2]$ 9,0 10 10 dry and wet concrete $\tau_{Rk,uer}$ $[N/mm^2]$ 5,5 6,5 6,5 flooded bore hole $\tau_{Rk,uer}$ $[N/mm^2]$ 5,0 6,0 5,5 dry and wet concrete $\tau_{Rk,uer}$ $[N/mm^2]$ $1,0 \cdot h_{ef} \leq 2 \cdot h_{ef}$ $2 \cdot h_{ef}$ gradie $r_{Cr,sp}$ $[mm]$ $2 \cdot r_{R}$ $2 \cdot h$	Concrete cone failure tance in non-cracked concrete C20/25 dry and wet concrete TRK,uer [N/mm²] 11 10 10 9,5 dry and wet concrete TRK,uer [N/mm²] 9,0 10 10 9,5 dry and wet concrete TRK,uer [N/mm²] 7,0 6,5 6,5 6,0 dry and wet concrete TRK,uer [N/mm²] 5,5 6,6 6,5 6,0 dry and wet concrete TRK,uer [N/mm²] 5,0 6,0 6,0 5,5 flooded bore hole TRK,uer [N/mm²] 5,0 6,0 5,5 5,5 G30/37 1,04 C40/50 1,08 1,0 1,0 v Cr.sp [mm] 1,0 · h_{ef} ≤ 2 · h_{ef} (2,5 - \frac{h}{h_{ef}}) ≤ 2 scr.sp [mm] 2 c _{er.sp} 2 1,2	dry and wet concrete TRK.uer [N/mm²] 11 10 10 9,5 9,5 drough and wet concrete TRK.uer [N/mm²] 9,0 10 10 9,5 9,5 dry and wet concrete TRK.uer [N/mm²] 9,0 10 10 9,5 9,5 dry and wet concrete TRK.uer [N/mm²] 9,0 6,5 6,5 6,0 6,0 flooded bore hole TRK.uer [N/mm²] 5,5 6,5 6,5 6,0 6,0 dry and wet concrete TRK.uer [N/mm²] 5,0 6,0 5,5 5,0 flooded bore hole TRK.uer [N/mm²] 5,0 6,0 5,5 5,5 5,0 flooded bore hole TRK.uer [N/mm²] 5,0 6,0 5,5 5,5 5,0 Cor.sp [mm] 1,0 · h_{ef} < 2 · h_{ef} (2,5 - \frac{h}{h_{ef}}) $\leq 2.4 \cdot h_{ef}$ Scr.sp [mm] 2 cor.sp 2

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)

Table C4:	Characteristic values of resistance for rebar under shear loads in non- cracked concrete (Design according to TR 029)									
Anchor size rein	forcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25		
Steel failure with	out lever arm									
Characteristic she	ear resistance	$V_{Rk,s}$	[kN]			0,50 ·	A _s ∙ f _{uk}			
Steel failure with	ı lever arm									
Characteristic bending moment M ⁰ _{Rk,s} [Nm]				1.2 • W _{el} • f _{uk}						
Concrete pry-ou	t failure									
Factor k in equati Technical Report design of bonded	TR 029 for the	k	[-]	2,0						
Installation safety	factor	γ2				1,	,0			
Concrete edge fa	ailure									
Installation safety	factor	γ2		1,0						

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to TR 029)

Anchor size threaded roo		M 10	M 12	M 16	M 20	M24		
Steel failure					•			
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	23	34	63	98	141
Characteristic tension resis Steel, property class 5.8	stance,	N _{Rk,s}	[kN]	29	42	78	122	176
Characteristic tension resis Steel, property class 8.8	stance,	N _{Rk,s}	[kN]	46	67	125	196	282
Characteristic tension resistance, Stainless steel A4 and HCR, property class 70			[kN]	41	59	110	171	247
Combined pullout and co	oncrete cone failure		•					
Characteristic bond resista	ance in non-cracked conci	rete C20/2	5					
Temperature range I: dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	11	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	TRk,ucr	[N/mm ²]	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,0	5,0	5,0
la sus science for stars		C30/37				1,04		
Increasing factor Ψ_c		C40/50				1,08		
Factor according to		C50/60				1,10		
CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]			10,1		
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k_{ucr}	[-]			10,1		
Edge distance		C _{cr,N}	[mm]		1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]		3,0 h _{ef}			
Splitting failure								
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$				h _{ef}
Axial distance		S _{cr,sp}	[mm]		2 C _{cr,sp}			
Installation safety factor		γinst		1,0		1	,2	
				1	1			

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂				0,8		
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ Rk,s	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ Rk,s	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃				2,0		
Installation safety factor	γinst				1,0		
Concrete edge failure							
Effective length of anchor	lf	[mm]		I _f :	= min(h _{ef} ; 8 d _n	om)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor	γinst				1,0		

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Table C7: Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)									
Anchor size reinforcing	bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									
Characteristic tension res	istance	N _{Rk,s}	[kN]			As	• f _{uk}		
Combined pullout and c	concrete cone failure	;							
Characteristic bond resist	ance in non-cracked	concrete	C20/25						
Image: Temperature range I: dry and wet concrete Image: O°C/24°C Image: O°C/24°C		τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
Increasing factor		C30/37	7			1,	04		
Ψ_c	Increasing factor Ψ_{c}		C40/50 C50/60				08		
Factor according to)			1,	10		
CEN/TS 1992-4-5 Section	n 6.2.2.3	k ₈	[-]	10,1					
Concrete cone failure		1							
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{ucr}	[-]	10,1					
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		S cr,N	[mm]	3,0 h _{ef}					
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right)$			$5 - \frac{h}{h_{ef}} \le$	≤ 2,4 · h _{ef}	
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation safety factor		γinst		1,0			1,2		
Mägert 2KTec RED Performances Characteristic values of			sion loads i	n non-crac	ked concre	te		Annex	C 7

electronic copy of the eta by dibt: eta-15/0532

(Design according to CEN/TS 1992-4)

Table C8: Characteristic values of resistance for rebar under shear loads in non-cracked concrete (Design according to CEN/TS 1992-4)											
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25			
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]			0,50 ·	A _s ∙ f _{uk}					
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1			0	,8							
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1.2 • V	V _{el} • f _{uk}					
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0								
Installation safety factor	γinst		1,0								
Concrete edge failure											
Effective length of anchor	l _f	[mm]									
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	16	20	25			
Installation safety factor	γinst				1	,0					

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Table C9: Displacements under tension load ¹⁾ (threaded rod)											
Anchor size threa	M 10	M 12	M 16	M 20	M24						
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029				
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114				
Temperature rang	ge 72°C/43°C an	d 60°C/43°C for non-	cracked concret	e C20/25	1						
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033				
Displacement	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond strength

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Displacement	δ_{v_0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad V; \end{split}$$
V: action shear load

Mägert 2KTec RED 500 for concrete

Performances Displacements (threaded rods)

	•	ar	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25		
Temperature range 40°C/24°C for non-cracked concrete C20/25										
Displacement 8	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,024	0,030		
Displacement 8	δ _{N∞} -factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118		
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25										
Displacement 8	δ _{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,020	0,023	0,028	0,034		
Displacement &	δ _{N∞} -factor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136		

Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Displacement	δ_{V0} -factor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δ _{v∞} -factor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

 $v_0 = \delta_{V0}$ -factor \cdot V; V: action shear load

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad V; \end{split}$$

Mägert 2KTec RED 500 for concrete

Performances Displacements (rebar)