

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0534 of 19 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Mägert 2KTec RED 500 for concrete Product family Bonded anchor with anchor rod for use in concrete to which the construction product belongs Manufacturer Mägert G&C Bautechnik AG Sonnenbergstraße 11 6052 HERGISWIL SCHWEIZ Mägert G&C Bautechnik AG Plant 1 Manufacturing plant This European Technical Assessment 27 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU)

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

No 305/2011.

European Technical Assessment ETA-15/0534

Page 2 of 27 | 19 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 19 August 2015

European Technical Assessment ETA-15/0534 English translation prepared by DIBt

Specific Part

1 Technical description of the product

"Mägert 2KTec RED 500 for concrete" is a bonded anchor consisting of a cartridge with injection mortar 2KTec RED 500 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0534

Page 4 of 27 | 19 August 2015

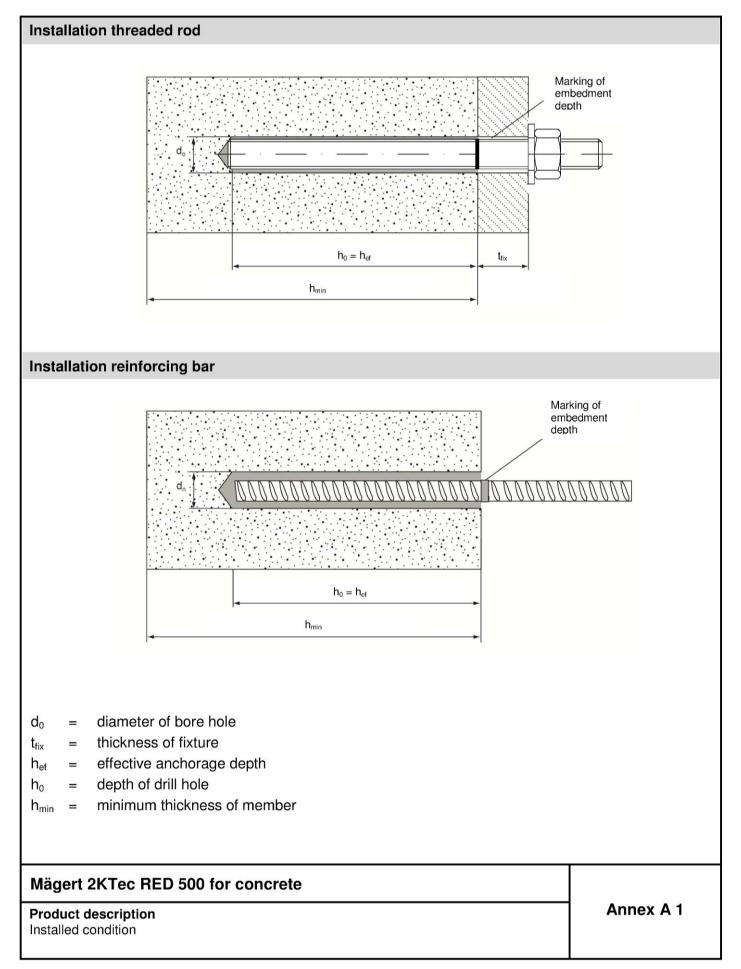
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

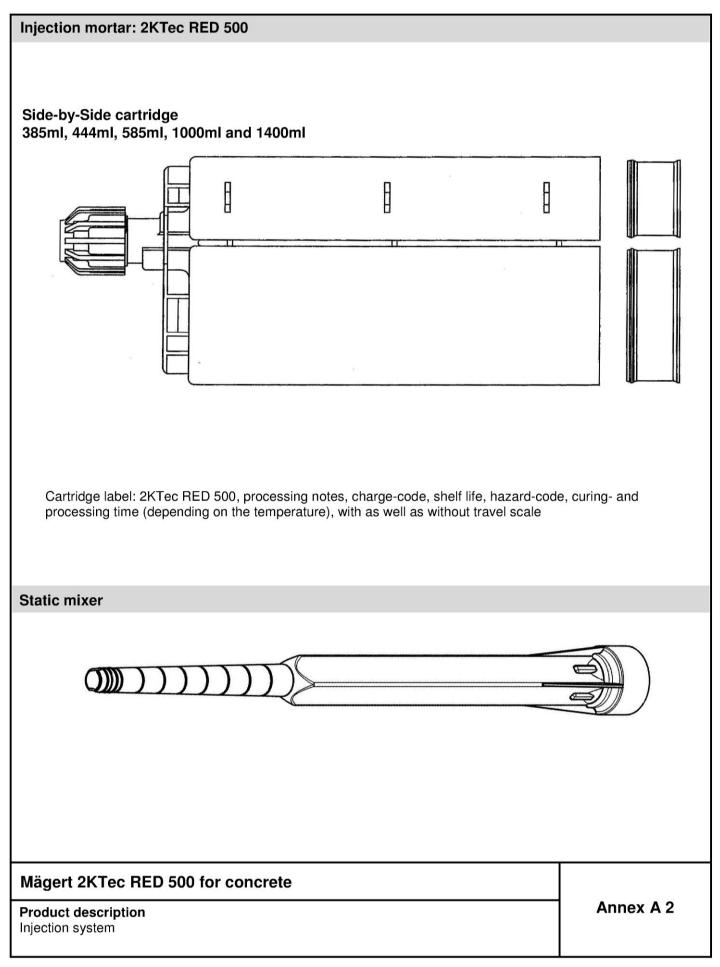
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 19 August 2015 by Deutsches Institut für Bautechnik


Andreas Schult p.p. Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-15/0534 of 19 August 2015

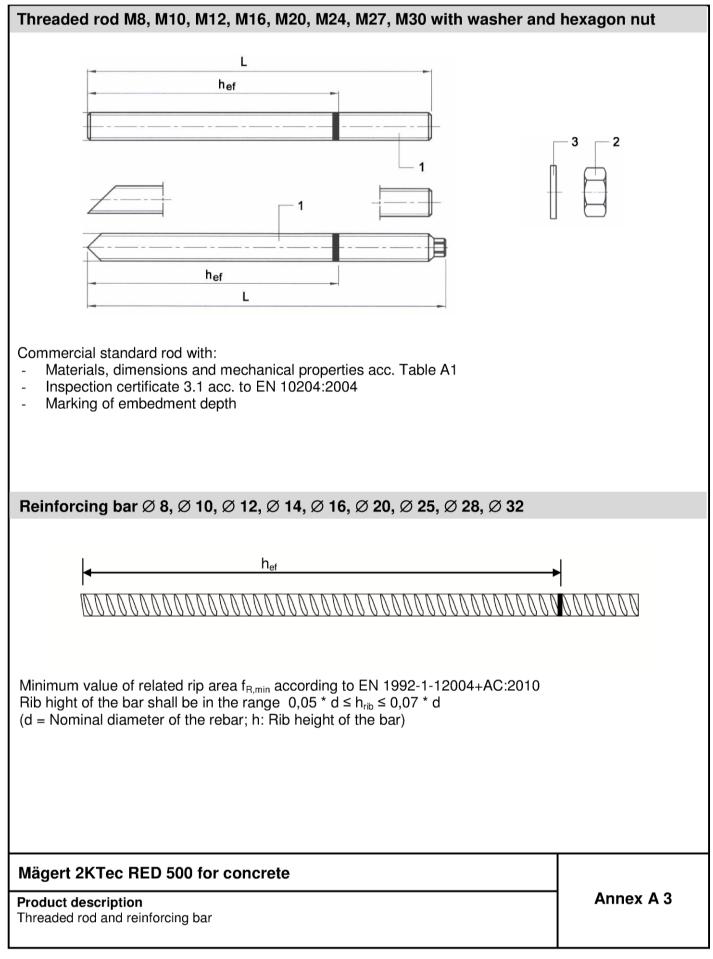


Table A1: Materials

Part	Designation	Material							
	, zinc plated \ge 5 μ m acc. to EN ISO 4042								
hot-d	lip galvanised ≥ 40 μm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009							
		Steel, EN 10087:1998 or EN 10263:2001							
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009							
		$A_5 > 8\%$ fracture elongation							
		Steel acc. to EN 10087:1998 or EN 10263:2001							
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN ISO 898-2:2012,							
-		Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,							
		Property class 8 (for class 8.8 rod) EN ISO 898-2:2012							
_	Washer, EN ISO 887:2006,								
3	EN ISO 7089:2000, EN ISO 7093:2000	Steel, zinc plated or hot-dip galvanised							
	or EN ISO 7094:2000								
Stain	less steel								
		Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,							
	Anahayyand	> M24: Property class 50 EN ISO 3506-1:2009							
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:2009							
		$A_5 > 8\%$ fracture elongation							
		Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,							
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009							
		≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009							
	Washer, EN ISO 887:2006,								
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005							
	or EN ISO 7094:2000								
High	corrosion resistance steel								
		Material 1.4529 / 1.4565, EN 10088-1:2005,							
		> M24: Property class 50 EN ISO 3506-1:2009							
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:2009							
		$A_5 > 8\%$ fracture elongation							
		Material 1.4529 / 1.4565 EN 10088-1:2005,							
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009							
-		\leq M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009							
	Washer, EN ISO 887:2006,								
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4529 / 1.4565, EN 10088-1:2005							
Ū	or EN ISO 7094:2000								
Reinf	orcing bars								
		Bars and de-coiled rods class B or C							
1	Rebar EN 1992-1-1:2004+AC:2010,	f _{vk} and k according to NDP or NCL of EN 1992-1-1/NA:2013							
	Annex C	$f_{uk} = f_{tk} = k \cdot f_{vk}$							

Mägert :	2KTec	RED	500	for	concrete
----------	-------	-----	------------	-----	----------

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Mägert 2KTec RED 500 for concrete

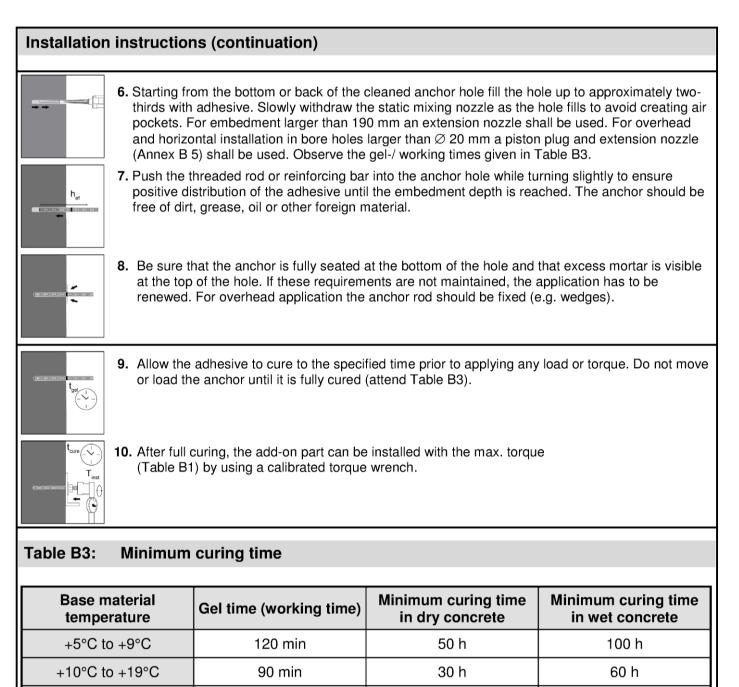
Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	parameters fo	or threa	aded ro	d						
			-			-				
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Enective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thickness of fixture	t _{fix,min} [mm] >	0								
Thickness of fixture	t _{fix,max} [mm] <				15	00				
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40	
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128	
Effective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384	
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5	
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160	
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160	


Mägert 2KTec RED 500 for concrete

Intended Use Installation parameters Annex B 2

Installation instructions		
	hole into the base material to the size and emb (Table B1 or Table B2).	edment depth required
Attention! Standing wat	er in the bore hole must be removed before c	leaning.
	n or back of the bore hole, blow the hole clean w pump (Annex B 5) a minimum of two times. If the hall be used.	
or The hand-pump can be	used for anchor sizes up to bore hole diameter	20 mm.
For bore holes larger the used.	en 20 mm or deeper 240 mm, compressed air (r	min. 6 bar) <u>must</u> be
screwdriver. Brush the	Table B4) and attach the brush to a drilling mach hole with an appropriate sized wire brush > d _{b,mir} hole ground is not reached with the brush, a bru -).	, (Table B4) a minimum
of two times. If the bore The hand-pump can be	ean again with compressed air or a hand pump (hole ground is not reached an extension shall b used for anchor sizes up to bore hole diameter en 20 mm or deeper 240 mm, compressed air (r	be used. 20 mm.
هه مهم appropriate way, until repeated has to be di	re hole has to be protected against re-contan dispensing the mortar in the bore hole. If ne ectly before dispensing the mortar. not contaminate the bore hole again.	
dispensing tool.	-mixing nozzle to the cartridge and load the cartr ruption longer than the recommended working ti a new static-mixer shall be used.	-
4. Prior to inserting the an shall be marked on the	chor rod into the filled bore hole, the position of t anchor rods.	the embedment depth
	he anchor hole, squeeze out separately a minim Ily mixed adhesive components until the mortar s	
Mägert 2KTec RED 500 for concre	te	
Intended Use Installation instructions		Annex B 3

10 h

6 h

4 h

Mägert 2KTec RED 500 for concrete

30 min

20 min

12 min

Installation instructions (continuation) Curing time

+20°C to +29°C

+30°C to +39°C

+40 °C

Annex B 4

20 h

12 h

8 h

Table B4: Parameter cleaning and setting tools										
Anchor	Size (mm)	Nominal drill bit diameter d₀ (mm)	Steel Brush d _♭ (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug					
		2		ann an						
	M8	10,0	12,0	10,5						
	M10	12,0	14,0	12,5	Not necessary					
Threaded	M12	14,0	16,0	14,5	Not necessary					
Rod	M16	18,0	20,0	18,5						
	M20	24,0	26,0	24,5	#24					
	M24	28,0	30,0	28,5	#28					
	M27	32,0	34,0	32,5	#32					
	M30	35,0	37,0	35,5	#35					
	Ø8	12,0	14,0	12,5						
	Ø10	14,0	16,0	14,5						
	Ø12	16,0	18,0	16,5	Not necessary					
Rebar	Ø14	18,0	20,0	18,5						
	Ø16	20,0	22,0	20,5						
199949911991999999111	Ø20	24,0	26,0	24,5	#24					
	Ø25	32,0	34,0	32,5	#32					
	Ø28	35,0	37,0	35,5	#35					
	Ø32	40,0	41,5	38,5	#38					

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Mägert 2KTec RED 500 for concrete

Intended Use Cleaning and setting tools

Annex B 5

Anchor size threaded roo	t			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8		N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis Steel, property class 8.8	stance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HCI property class 50 (>M24) a	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c											
Characteristic bond resista	nce in non-cracked co	ncrete C20/	25								
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
I		C30/37					1,	04			
Increasing factors for conc Ψ_c	rete	C40/50					1,	08			
		C50/60					1,	10			
Splitting failure						h/	h _{ef} †				
		h	h / h _{ef} ≥ 2,0		1,0 h _{ef}						
Edan distance	-	0.0. h	/h . 10	4.6.6			,0				
Edge distance	-	2,0 > n	ı / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h		1	,3 -				
		h	ı / h _{ef} ≤ 1,3	2,	26 h _{ef}		1,0 [.] h _{ef}			26∙h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor (d	ry and wet concrete)	γ2			1	,2			1	,4	
Installation safety factor (dry and wet concrete) γ_2 Installation safety factor (flooded bore hole) γ_2				1,4							

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029 $\,$

Steel failure Characteristic tension re Steel, property class 4.6 Characteristic tension re				M 12	M 16	M 20	M24	M 27	M 30
Steel, property class 4.6									
		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224
Steel, property class 5.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension re Steel, property class 8.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension re Stainless steel A4 and H property class 50 (>M24	esistance, ICR,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and		•							
Characteristic bond resis	stance in cracked concr	ete C20/25							
		$\tau_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,2	No Performance Determined (NP			
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,1	No Pe	rformance I	Determined	(NPD)
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Performance Determined (NPD)			
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Pe	rformance I	Determined	(NPD)
		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)
72°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm ²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)
Increasing factors for co	ncrete	C30/37				1,0)4		
(only static or quasi-stati Ψ_c		C40/50				1,0)8		
		C50/60				1,1			
Installation safety factor	(dry and wet concrete)	γ2		1,	2		1	,4	

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C3:Characteristic values of resistance for threaded rods under shear loads in
cracked and non-cracked concrete (Design according to TR 029 and TR
045)

045)												
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Steel failure without lever arm												
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112		
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	ormance	14	27	42	56	72	88		
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance	Determined	d (NPD)		
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	ormance	18	34	53	70	91	111		
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance	Determined	(NPD)		
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	ormance	30	55	85	111	145	177		
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance	Determined	d (NPD)		
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140		
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	No Performance		48	75	98	91	111		
property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C2}$	[kN]	Determined (NPD)		24	44	No Per	No Performance Determined (NPI				
Steel failure with lever arm												
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900		
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]										
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance I	Determined	d (NPD)				
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112		
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]										
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Performance Determi			d (NPD)				
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179		
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]										
	M ⁰ _{Rk,s,seis,C2}	[Nm]	1		No Per	formance I	Determined	ined (NPD)				
Characteristic handing memort	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112		
Characteristic bending moment, Stainless steel A4 and HCR,	M ⁰ _{Rk,s,seis,C1}	[Nm]										
property class 50 (>M24) and 70 (\leq M24)	$M^0_{\rm Rk,s,seis,C2}$	[Nm]	1		No Per	formance [Jetermined	(NPD)				
Concrete pry-out failure												
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2	,0					
Installation safety factor	γ2					1	,0					
Concrete edge failure												
See section 5.2.3.4 of Technical Report TR 0	29 for the desig	n of Bond	ded Ancho	ors								
Installation safety factor	γ2					1	,0					
Mägert 2KTec RED 500 for c	oncrete											
Performances Characteristic values of resistance for th concrete, Design according to TR 029 ar		nder she	ear loads	in crack	ked and	non-crac	ked	An	inex C	3		

Anchor size reinforcing b	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure						·	· · · · · · · · · · · · · · · · · · ·	•	•	·	·	
Characteristic tension resis	stance	N _{Rk,s}	[kN]					$A_s \ge f_{uk}$				
Combined pull-out and c	oncrete cone failure	<u> </u>										
Characteristic bond resista	nce in non-cracked co	ncrete C20	/25									
Temperature range I:	dry and wet concrete	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
· · · · · · · · · · · · · · · · · · ·		C30/37	-					1,04				
Increasing factors for conc Ψ_c	ncreasing factors for concrete		C40/50					1,08				
T •		C50/60						1,10				
Splitting failure												
		h / h _{ef} ≥ 2,0		1,0 h _{ef}								
Edge distance	-	2,0 > 1	h / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h 1,3								
	-		h / h _{ef} ≤ 1,3	2,26 h _{ef}			+		1,0∙h _{ef}	2,26	·h.r	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}	r,o ner	2,20	er	
Installation safety factor (d	ry and wet concrete)	γ2				1,2				1	,4	
		γ2		1,4								

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029

	racteristic val ked concrete							oads i	n		
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]	A _s x f _{uk}							
Combined pull-out and	concrete cone failure										
Characteristic bond resist	ance in cracked concre	ete C20/25									
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°Ċ/24°C		$ au_{Rk,cr}$	[N/mm ²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	$ au_{\text{Rk,seis,C1}}$	[N/mm ²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:	concrete	$ au_{\text{Rk,seis,C1}}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°Ċ/43°C		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°C/43°C	flanded have hele	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
						1,04					
Increasing factors for concrete (only static or quasi-static actions) C40/50							1,08				
Ψc		1,10									
Installation safety factor (γ2		1,2 1,4							
Installation safety factor (f		1,4									

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C6: Characteristic and non-crack											d
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	[kN]	$0,50 \times A_s \times f_{uk}$									
Characteristic shear resistance	[kN]		mance mined			0,4	44 x A _s x	f _{uk}			
Steel failure with lever arm											
Characteristic bending moment	М ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	ort						2,0				
Installation safety factor	γ2						1,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR	029 for the de	esign of I	Bonded A	Anchors							
Installation safety factor						1,0					

Z62701.15

Anchor size threaded roo	t			M 8	M 10	M 12	M 16	M 20	M24	M 27	м зо
Steel failure											
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis Steel, property class 8.8	stance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HC property class 50 (>M24) a	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c											
Characteristic bond resista	nce in non-cracked concrete	C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°Ċ/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:			[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Increasing factors for conc	rete	C30/37					,	04			
Ψc		C40/50 C50/60		1,08							
Factor according to CEN/T	S 1992-4-5 Section 6.2.2.3	k ₈	[-]				,),1			
Concrete cone failure											
Factor according to CEN/T	S 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure											
		ł	n / h _{ef} ≥ 2,0	1,(0 h _{ef}		1/h _{ef}				
Edge distance		2,0 > h	n / h _{ef} > 1,3	4,6 h _e	_f - 1,8 h		1,3				
		ł	n / h _{ef} ≤ 1,3	2,2	26 h _{ef}			1,0∙h,	1 2,26		r,sp
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation safety factor (d	ry and wet concrete)	γ inst			1	,2			1	,4	
Installation safety factor (fle	ooded bore hole)	γinst					1	,4			

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension resist Steel, property class 5.8	ance,	$N_{\rm Rk,s} = N_{\rm Rk,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension resist Steel, property class 8.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	ł,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and co	oncrete failure								
Characteristic bond resistar	nce in cracked concrete C2	20/25							
		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,2	No Per	ormance [Determine	d (NPD
40°Ċ/24°C		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,1	No Per	ormance [Determine	d (NPD
		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
dry and wet		ℓ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Per	ormance [Determine	d (NPD
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	ℓ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,4	1,4	No Per	ormance [Determine	d (NPD
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	ℓ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Femperature range III:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance [Determine	d (NPD
72°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance I	Determine	d (NPD
ncreasing factors for concre	ata	C30/37				1,	04		
only static or quasi-static a		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 5.2.2.3	6 1992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 5.2.3.1	6 1992-4-5 Section	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]				h _{ef}		
Installation safety factor (dry	y and wet concrete)	γinst		1	,2	1,4			
Installation safety factor (flo		Υinst Yinst			1,4				

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Table C9: Characteristic valu cracked and non-o (Design according	racked c	oncre	te			ds un	der sh	near Io	ads ir	ר
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm			I							
	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88
	$V_{Rk,s,seis,C2}$	[kN]		ed (NPD)	13	25	No Per	formance E	Determined	(NPD)
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	18	34	53	70	91	111
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance [Determined	(NPD)
Characteristic share assistance	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
	V _{Rk,s,seis,C2}	[kN]		ed (NPD)	27	50	No Per	formance [(NPD)
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C1}$	[kN]		ormance ed (NPD)	26	48	75	98	91	111
Ductility factor according to	V _{Rk,s,seis,C2}	[kN]	Determin		24	44	No Per	formance [Determined	(NPD)
CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8			
Steel failure with lever arm								•		
Characteristic handing memory	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s,seis,C1	[Nm]			No Perfo	ormance D	Determine	ed (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1} M ⁰ _{Rk,s,seis,C2}	[Nm] [Nm]	-		No Perfo	ormance [Determine	ed (NPD)		
	M ⁰ _{Rk.s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment,	M ⁰ _{Rk,s,seis,C1}	[Nm]							1000	1101
Steel, property class 8.8	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Perfo	ormance [Determine	ed (NPD)		
Characteristic handing moment	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Characteristic bending moment, Stainless steel A4 and HCR,	M ⁰ _{Rk,s,seis,C1}	[Nm]								
property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Perfo	ormance L	Determine	ed (NPD)		
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	,0			
Installation safety factor	γinst					1,	,0			
Concrete edge failure										
Effective length of anchor	k	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	,0			
Mägert 2KTec RED 500 for co Performances Characteristic values of resistance for three		dor cho	ar loada		d and n		rod	An	nex C	9

concrete, Design according to CEN/TS 1992-4 and TR 045

	Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)												
Anchor size reinforcing b	bar			Ø	Ø I	0	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					-								
Characteristic tension resis	stance	N _{Rk,s}	[kN]						$A_s \ge f_{uk}$				
Combined pull-out and c	oncrete failure												
Characteristic bond resista	nce in non-cracked concr	ete C20/	25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²] 14	14		13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²] 14	13		11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²] 8,5	8,5	;	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°Ċ/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²] 8,5	8,5	;	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm	2] 7,5	7,5		7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°Ċ/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²] 7,5	7,5		7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37			-				1,04		•		
Increasing factors for conc Ψ_c	rete	C40/50						1,08					
		C50/60			1,10								
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]		10,1								
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]						10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure													
		ł	n / h _{ef} ≥ 2,	0	1,0 h _e	f		h/h _{ef}					
							_	2,0			< T		
Edge distance		2,0 > h	n / h _{ef} > 1,	3 4	6 h _{ef} - 1	,8 h		1,3					
		ł	n / h _{ef} ≤ 1,	3	2,26 h	əf		+					C _{cr,sp}
Axial distance		S _{cr,sp}	[mm	1					2 c _{cr,sp}	1,0 h _{ef}	2,26	∙n _{ef}	
Installation safety factor (di	ry and wet concrete)	γinst					1,2		01,39		1	,4	
Installation safety factor (flo	,	γinst					,		1,4			,	
Mägert 2KTec RE	D 500 for conci	rete											

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Table C11: Cha crac	racteristic val ked concrete									
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension resi	stance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_{s} \ge f_{uk}$			
Combined pull-out and o	concrete failure	· • • • • • • • • • • • • • • • • • • •	I							
Characteristic bond resista	ance in cracked concre	ete C20/25								
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{Rk,seis,C1}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	$\tau_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$\tau_{Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$\tau_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	flooded bore hole	$\tau_{Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	$\tau_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	$\tau_{Rk,seis,C1}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing factors for cond	crete	C30/37			•	•	1,04	•		
(only static or quasi-static		C40/50					1,08			
Ψc		C50/60					1,10			
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Installation safety factor (c	dry and wet concrete)	γinst			1,2			1	,4	
Installation safety factor (f		1,4								

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Table C12: Characteristic valu and non-cracked c											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				0,5	i0 x A _s x	t f _{uk}			
Characteristic shear resistance	[kN]	No Performance Determined (NPD) 0,44 x A _s x f _{uk}									
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1						0,8					
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst	1,0									
Concrete edge failure											
Effective length of anchor	[mm]				$I_f = m$	in(h _{ef} ; 8	d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor						1,0					

Mägert 2KTec RED 500 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Anchor size thre	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Ion-cracked cor	ncrete C20/25 unde	r static and qu	asi-stati	c actior	n							
1000/0100	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03		
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14		
2000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04		
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16		
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04		
72°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16		
racked concret	e C20/25 under sta	tic, quasi-stati	c and se	eismic C	C1 actio	n						
	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05		
40°C/24°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]	1		0,21	0,21	0,21	0,21	0,21	0,2		
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,043	0,049	0,055	0,061	0,06		
60°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,2		
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	1		0,037	0,043	0,049	0,055	0,061	0,06		
72°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]	1		0,24	0,24	0,24	0,24	0,24	0,24		
racked concret	e C20/25 under sei	smic C2 action	I							•		
40%0/04%0	$\delta_{\text{N,seis}(\text{DLS})} - factor$	[mm/(N/mm ²)]			0,03	0,05						
40°C/24°C	$\delta_{\text{N,seis}(\text{ULS})} - factor$	[mm/(N/mm ²)]	1		0,06	0,09						
60°0/42°0	$\delta_{N,seis(DLS)}-factor$	[mm/(N/mm ²)]		ormance mined	0,03	0,05	 No Performance Determined 					
60°C/43°C	$\delta_{\text{N},\text{seis}(\text{ULS})} - factor$	[mm/(N/mm ²)]		PD)	0,06	0,09						
7000/4000	$\delta_{\text{N},\text{seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm ²)]			0,03	0,05						
						0.00						
¹⁾ Calculation of th δυα = δυα factor	•	$\left[[mm/(N/mm^2)] \right]$	ctor . τ'		0,06	0,09						
¹⁾ Calculation of th	he displacement · τ; δ _{N,seis(} · · τ; δ _{N,seis(} isplacements u	$\label{eq:dls} \begin{split} & \text{DLS}) = \delta_{\text{N},\text{seis}(\text{DLS})}\text{-}\text{fa} \\ & \text{ULS}) = \delta_{\text{N},\text{seis}(\text{ULS})}\text{-}\text{fa} \end{split}$	ctor · τ; oad ¹⁾ (1	thread	iion bonc ed roc	strength		M24	M 27	М 3		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor able C14: D anchor size thre	he displacement · τ; δ _{N,seis(} · τ; δ _{N,seis(} isplacements u aded rod	DLS) = $\delta_{N,seis(DLS)}$ -fa ULS) = $\delta_{N,seis(ULS)}$ -fa nder shear l	ictor · τ; oad ¹⁾ (1 M 8	thread M 10	ion bonc ed roc M 12	l strength I) M 16	M 20	M24	M 27	М 3		
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} $ -factor $ δ_{N\infty} = δ_{N\infty} $ -factor Table C14: D anchor size thre lon-cracked and	he displacement · τ; δ _{N,seis(} · · τ; δ _{N,seis(} isplacements u	DLS) = $\delta_{N,seis(DLS)}$ -fa ULS) = $\delta_{N,seis(ULS)}$ -fa nder shear l	ictor · τ; oad ¹⁾ (1 M 8	thread M 10	ion bonc ed roc M 12	l strength I) M 16	M 20		M 27 0,03	M 3		
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} -factor δ_{N\infty} = δ_{N\infty} -factor able C14: Dachor size thre$	he displacement $\tau; \delta_{N,seis(}$ $\tau; \delta_{N,seis(}$ isplacements u aded rod d cracked concrete	$D_{LS} = \delta_{N,seis(DLS)} - fa$ $D_{LS} = \delta_{N,seis(ULS)} - fa$ $nder shear l$ $C20/25 under$	ctor - τ; oad ¹⁾ (1 M 8 static, q	thread M 10 uasi-sta	ion bonc ed roc M 12 atic and	l strength I) M 16 I seismi	M 20 c C1 ac	tion				
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} -factor δ_{N\infty} = δ_{N\infty} -factor Table C14: DSunchor size threIon-cracked andIl temperatures$	he displacement $\tau; \delta_{N,seis(}$ $\tau; \delta_{N,seis(}$ Displacements u aded rod d cracked concrete δ_{V0} – factor	$\begin{aligned} & D_{LS} = \delta_{N,seis(DLS)} - fa \\ & D_{LS} = \delta_{N,seis(ULS)} - fa \\ & nder shear l \\ & C20/25 under \\ & [mm/(kN)] \\ & [mm/(kN)] \end{aligned}$	ctor · τ; oad ¹⁾ (i M 8 static, q 0,06 0,09	thread M 10 uasi-sta	tion bonc ed roc M 12 atic and 0,05	M 16 0,04	M 20 c C1 ac 0,04	tion 0,03	0,03	0,03		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: D Cable C14: D 	he displacement τ ; $\delta_{N,seis}$ τ ; $\delta_{N,seis}$ hisplacements u aded rod d cracked concrete δ_{V0} – factor $\delta_{V\infty}$ – factor e C20/25 under sei	$\begin{aligned} & D_{LS} = \delta_{N,seis(DLS)} - fa \\ & D_{LS} = \delta_{N,seis(ULS)} - fa \\ & nder shear l \\ & C20/25 under \\ & [mm/(kN)] \\ & [mm/(kN)] \end{aligned}$	ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	thread M 10 uasi-sta 0,06 0,08	tion bonc ed roc M 12 atic and 0,05	M 16 0,04	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	0,00 0,08		
¹⁾ Calculation of th $ δ_{N0} = δ_{N0} -factor δ_{N\infty} = δ_{N\infty} -factor Table C14: DInchor size threIon-cracked andIl temperatures$	he displacement $\tau;$ $\delta_{N,seis(}$ $\tau;$ $\delta_{N,seis(}$ bisplacements u aded rod d cracked concrete δ_{V0} – factor $\delta_{V\infty}$ – factor	$b_{\text{LS}} = \delta_{\text{N,seis}(\text{DLS})} - fa$ $b_{\text{ULS}} = \delta_{\text{N,seis}(\text{ULS})} - fa$ $c20/25 \text{ under}$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$	ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	M 10 Uasi-sta 0,06 0,08	tion bonc ed roc M 12 atic and 0,05 0,08	M 16 Seismi 0,04 0,06	M 20 c C1 ac 0,04 0,06	tion 0,03	0,03 0,05	0,00 0,08		
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor able C14: D nchor size thre on-cracked and Il temperatures racked concret	he displacement τ ; $\delta_{N,seis}$ τ ; $\delta_{N,seis}$ hisplacements u aded rod d cracked concrete δ_{V0} – factor $\delta_{V\infty}$ – factor e C20/25 under sei $\delta_{V,seis(ULS)}$ – factor $\delta_{V,seis(ULS)}$ – factor he displacement \cdot V; $\delta_{V,seis}$	$\begin{aligned} & \text{DLS} = \delta_{\text{N,seis}(\text{DLS})} - \text{fa} \\ & \text{nder shear l} \\ & \text{nder shear l} \\ & \text{C20/25 under} \\ & & [mm/(kN)] \\ & & [mm/(kN)] \\ & & \text{smic C2 action} \\ & & [mm/kN] \end{aligned}$	ctor τ; oad ¹⁾ (i M 8 static, q 0,06 0,09 No Perfe Detern (NF cactor - V	M 10 Uasi-sta 0,06 0,08	tion bonc ed roc M 12 atic and 0,05 0,08	M 16 Seismi 0,04 0,06 0,1 0,1	M 20 c C1 ac 0,04 0,06	tion 0,03 0,05	0,03 0,05	0,00 0,08		

Anchor size	reinforcing b	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	concrete C2	20/25 under sta	atic and	quasi-s	tatic act	ion					
40°C/24°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°0/24°0	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°0/43°0	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked con	crete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	tion				
40°C/24°C	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,06
40°C/24°C	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]]		0,21	0,21	0,21	0,21	0,21	0,21	0,21
C00C/400C	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]]		0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

(τ: action bond strength)

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau;$ $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size re	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
For concrete C20/25 under static, quasi-static and seismic C1 action													
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03		
$\begin{array}{c c} All & \hline &$		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} - factor \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty} - factor \cdot V; \end{split}$$
(V: action shear load)

Mägert 2KTec RED 500 for concrete

Performances Displacements (rebar)