

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0550 of 7 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system Chemická kotva vinylester bez styrenu for concrete

Bonded Anchor with Anchor rod for use in concrete

Den Braven Czech and Slovak, A.S. Úvalno 353 793 91 ÚVALNO TSCHECHISCHE REPUBLIK

Výrobní závod c. 2

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0550

Page 2 of 27 | 7 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0550

Page 3 of 27 | 7 August 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system Chemická kotva vinylester bez styrenu for concrete" is a bonded anchor consisting of a cartridge with injection mortar Chemická kotva vinylester bez styrenu and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads in non-cracked concrete	See Annex C 1 / C 4 / C 7 / C 10
Characteristic resistance for tension loads in cracked concrete	See Annex C 2 / C 5 / C 8 / C 11
Characteristic resistance for shear loads in cracked and non-cracked concrete	See Annex C 3 / C 6 / C 9 / C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-15/0550

Page 4 of 27 | 7 August 2015

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

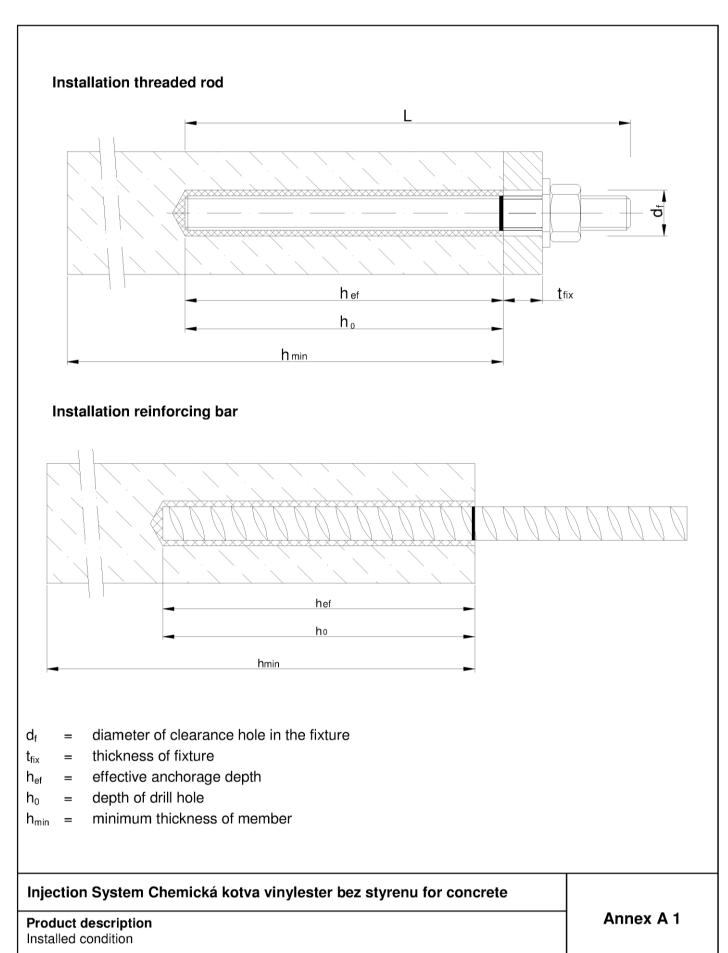
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

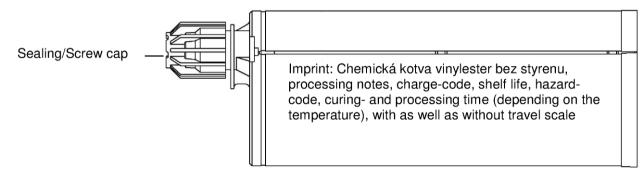
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

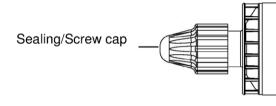
Issued in Berlin on 7 August 2015 by Deutsches Institut für Bautechnik

Uwe Bender
Head of Department

beglaubigt: Baderschneider

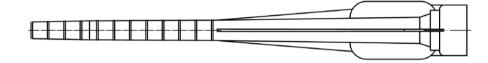

Cartridge: Chemická kotva vinylester bez styrenu

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: Chemická kotva vinylester bez styrenu, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml and 825 ml cartridge (Type: "side-by-side")

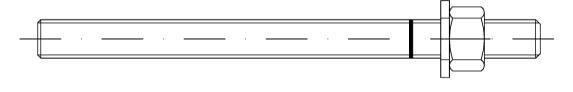


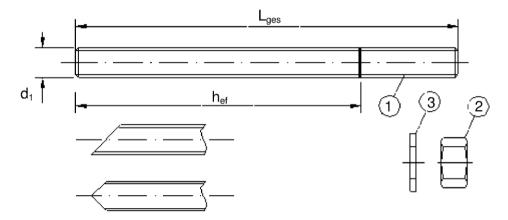
165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: Chemická kotva vinylester bez styrenu, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

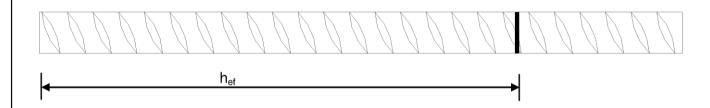
Injection System Chemická kotva vinylester bez styrenu for concrete


Product description


Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Injection System Chemická kotva vinylester bez styrenu for concrete	
Product description Threaded rod and reinforcing bar	Annex A 3

electronic copy of the eta by dibt: eta-15/0550

Part	Designation	Material	
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19		2-0000
1	, hot-dip galvanised ≥ 40 μm acc. to EN IS6 Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-8 A ₅ > 8% fracture elongation	1
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012, SO 898-2:2012,
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised	
Stain	less steel		
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506-1 ≤ M24: Property class 70 EN ISO 3506-1 A ₅ > 8% fracture elongation	1:2009 1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 100 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	d) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	
High	corrosion resistance steel		
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506-1 \leq M24: Property class 70 EN ISO 3506-1 A ₅ > 8% fracture elongation	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	d) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	•
Reinf	forcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013
	ction System Chemická kotva vinylest	er bez styrenu for concrete	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

electronic copy of the eta by dibt: eta-15/0550

- · Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Chemická kotva vinylester bez styrenu for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush		34	37						
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <		1500						
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20				Ø 20	Ø 25	Ø 28	Ø 32			
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Intended Use	Annex B 2
Installation parameters	

Steel brush

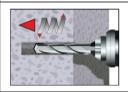
Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d₀ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug			
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)			
M8		10	12	10,5				
M10	8	12	14	12,5				
M12	10	14	16	14,5	No			
	12	16	18	16,5	piston plug required			
M16	14	18	20	18,5	,			
	16	20	22	20,5				
M20	20	24	26	24,5	# 24			
M24		28	30	28,5	# 28			
M27	25	32	34	32,5	# 32			
M30	28	35	37	35,5	# 35			
	32	40	41,5	40,5	# 38			

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

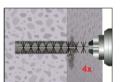
Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm


Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

Injection System Chemická kotva vinylester bez styrenu for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions



1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar

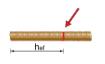
or

or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.


For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.


- 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
- 2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

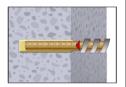
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

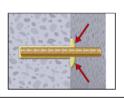
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

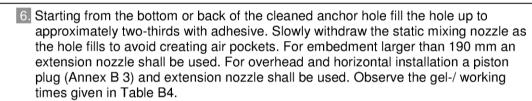
 For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

Injection System Chemická kotva vinylester bez styrenu for concrete

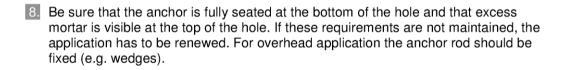

Intended Use


Installation instructions

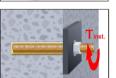

Annex B 4



Installation instructions (continuation)







7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
≥ -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
≥ 0 °C	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ + 10 °C	15 min	80 min
≥ +20 °C	6 min	45 min
≥ + 30 °C	4 min	25 min
≥ + 35 °C	2 min	20 min
≥ + 40 °C	1,5 min	15 min

¹⁾ Cartridge temperature must be at min. +15°C

²⁾ In wet concrete the curing time must be doubled

Injection System Chemická kotva vinylester bez styrenu for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 5

Anchor size threaded rod					M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure					•							
Characteristic tension resisteel, property class 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension resisteel, property class 5.8	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension resisteel, property class 8.8	stance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resi Stainless steel A4 and HC property class 50 (>M24) a	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and o	oncrete cone failure											
Characteristic bond resista	ance in non-cracked con	crete C20/2	25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	11	10	9	
40°C/24°C flooded bore hole		$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5		not adr	nissible		
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5	
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	not admissible				
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0		not adr	nissible		
Increasing factors for cond	roto	C30/37					1,	04				
Ψ _c	1616	C40/50		1,08								
		C50/60					1,	10				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$					n _{ef}			
Axial distance		S _{cr,sp}	[mm]	2 C _{cr,sp}								
Installation safety factor (d	ry and wet concrete)	γ2		1,0 1,2								
Installation safety factor (flooded bore hole)				1,4 not adm			nissible					

Injection System Chemická kotva vinylester bez styrenu for concrete	_
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 1

	(=							** 00
od			M 12	M 16	M 20	M24	M 27	M 30
	T							
Characteristic tension resistance, Steel, property class 4.6		[kN]	34	63	98	141	184	224
sistance,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	42	78	122	176	230	280
sistance,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		[kN]	59	110	171	247	230	281
concrete cone failure								
tance in cracked concrete	C20/25							
	τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,5	5,5	6,5	6,5
dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C		[N/mm²]	5,5	5,5		not adr	nissible	
nooded bore noie		[N/mm²]	3,7	3,7	not admissible			
	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0	4,0	4,0	4,5	4,5
dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	2,7	2,8	3,1	3,1
flandad barra bala	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0		not adr	nissible	
flooded bore note	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7		not adr	nissible	
	τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0	3,0	3,5	3,5
dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,0	2,0	2,0	2,1	2,4	2,4
flacated base had	$ au_{Rk,cr}$	[N/mm²]	3,0	3,0		not adr	nissible	
flooded bore hole		[N/mm²]	2,0	2,0		not adr	nissible	
ocrete	C30/37				1,	04		
actions)	C40/50				1,	08		
	C50/60		1,10					
(dry and wet concrete)	γ ₂		1,2					
Installation safety factor (flooded bore hole)					not admissible			
	sistance, sistance, sistance, sistance, CR, and 70 (≤ M24) concrete cone failure tance in cracked concrete dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete cracked concrete	sistance, $N_{RK,s}=N_{RK,s,seis}$ sistance, N_{R	sistance, $N_{Rk,s}=N_{Rk,s,seis}$ [kN] concrete cone failure stance in cracked concrete C20/25 $\frac{1}{10000000000000000000000000000000000$	sistance, $N_{Rk,s}=N_{Rk,s,soils}$ $[kN]$ 34 sistance, $N_{Rk,s}=N_{Rk,s,soils}$ $[kN]$ 42 sistance, $N_{Rk,s}=N_{Rk,s,soils}$ $[kN]$ 67 sistance, $N_{Rk,s}=N_{Rk,s,soils}$ $[kN]$ 67 sistance, $N_{Rk,s}=N_{Rk,s,soils}$ $[kN]$ 59 and 70 (\leq M24) concrete cone failure tance in cracked concrete C20/25 dry and wet concrete $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{3,7}{3,7}$ flooded bore hole $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{3,7}{3,7}$ dry and wet concrete $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{4,0}{4,0}$ flooded bore hole $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{4,0}{3,0}$ dry and wet concrete $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{3,0}{3,0}$ flooded bore hole $\frac{\tau_{Rk,cr}}{\tau_{Rk,soils}} \frac{[N/mm^2]}{[N/mm^2]} \frac{3,0}{3,0}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M 12 M 16 M 20	Sistance N _{Rk,s} = N _{Rk,s,sois} [kN] 34 63 98 141	M 12 M 16 M 20 M 24 M 27 M 25 M 26 M 20 M 24 M 27 M 25 M 26 M 26 M 27 M 26 M 27

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to TR 029 and TR 045)	Annex C 2

Table C3:	Characteristic values of resistance for threaded rods under shear loads in
	cracked and non-cracked concrete (Design according to TR 029 and TR
	045)

045)			•	J		J					
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Steel, property class 4.6	$V_{Rk,s,seis}$	[kN]	-	-	12	22	34	50	65	78	
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Steel, property class 5.8	$V_{Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98	
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Steel, property class 8.8	$V_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157	
Characteristic shear resistance, Stainless steel A4 and HCR,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
property class 50 (>M24) and 70 (≤ M24)	$V_{Rk,s,seis}$	[kN]	-	-	21	39	60	87	81	98	
Steel failure with lever arm											
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
	M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
Steel, property class 5.8	M ⁰ _{Rk,s,seis}	[Nm]			No Perf	ormance I	Determine	ed (NPD)			
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Steel, property class 8.8	M ⁰ _{Rk,s,seis}	[Nm]			No Perf	ormance I	Determine	ed (NPD)			
Characteristic bending moment, Stainless steel A4 and HCR,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]	2,0								
Installation safety factor	γ2	1,0									
Concrete edge failure											
Installation safety factor	γ2					1	,0				

Injection System Chemická kotva vinylester bez styrenu for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to TR 029 and TR 045)

Annex C 3

	racteristic val							nsion	loac	ls in		
Anchor size reinforcing bar					Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure				•								
Characteristic tension resis	tance	N _{Rk,s}	[kN]	A _s • f _{uk}								
Combined pull-out and co	oncrete cone failure	•										
Characteristic bond resistar	nce in non-cracked cor	ncrete C20/2	5									
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	$^{\circ}\text{C}/24^{\circ}\text{C}$ flooded bore hole $\tau_{\text{Rk},\text{ucr}}$			7,5	8,5	8,5	8,5	8,5		not adı	missible	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	not admissible			
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adı	missible	
In for the state of the st	-1-	C30/37						1,04				
Increasing factors for concr ψ_c	ete	C40/50		1,08								
		C50/60		1,10								
Splitting failure												
Edge distance $c_{cr,sp}$ [mm]			$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$									
Axial distance s _{cr,sp} [mm]				2 C _{Cr,sp}								
Installation safety factor (dr	y and wet concrete)	γ2	•	1,0 1,2								
Installation safety factor (flo	ooded bore hole)	γ2		1,4 not admissible								

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 4

	acked concrete	(Design acc	oraling to									
Anchor size reinforcing	g bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic tension re	sistance	N _{Rk,s} =N _{Rk,s,seis}	[kN]	$A_s \cdot f_{uk}$								
Combined pull-out and	l concrete cone failure											
Characteristic bond resis	stance in cracked concrete	e C20/25										
		τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5		
Temperature range I:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
40°C/24°C		τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,5	not admiss		ıdmissible			
	flooded bore hole	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7	not admissible					
Temperature range II:	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5		
		$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	2,7	2,7	2,8	3,1	3,1		
80°C/50°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0	not admissible					
	flooded bore hole	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	2,7	not admissible					
		τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0	3,0	3,0	3,5	3,5		
Temperature range III:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
120°C/72°C		τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0		not adr	nissible			
	flooded bore hole	$ au_{Rk,seis}$	[N/mm²]	2,0	2,0	2,0		not adr	nissible			
		C30/37					1,04					
Increasing factors for co (only static or quasi-stati		C40/50		1,08								
Ψο		C50/60					1,10					
Installation safety factor	(dry and wet concrete)	γ2					1,2					
Installation safety factor	(flooded bore hole)	γ ₂			1,4			not adn	nissible			

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to TR 029 and TR 045)	Annex C 5

Table C6: Characterist and non-cra											d
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	[kN]	0,50 • A _s • f _{uk}									
Characteristic shear resistance	V _{Rk,s,seis}	[kN]	0,35 • A _s • f _{uk}								
Steel failure with lever arm											
Observation to the board to a second	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)		
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]	2,0								
Installation safety factor	γ ₂		1,0								
Concrete edge failure											
Installation safety factor	γ ₂		1,0								

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to TR 029 and TR 045)	Annex C 6

Anchor size threaded rod					M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure													
Characteristic tension resista Steel, property class 4.6	ance,	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension resistance,		N _{Rk.s}	[kN]	18	29	42	78	122	176	230	280		
Steel, property class 5.8 Characteristic tension resistance,		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449		
Steel, property class 8.8 Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and co	•				ı					l			
Characteristic bond resistan	ce in non-cracked concrete	e C20/25											
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	10	12	12	12	12	11	10	9		
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5	not admissible					
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5		
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5		not adr	nissible			
Temperature range III: 120°C/72°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0		
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	n²] 4,0 5,0 5,0 5,0				not adr	not admissible				
	•	C30/37	C30/37			1,04							
Increasing factors for concre Ψ_c	ete	C40/50		1,08									
10		C50/60		1,10									
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	[-]				10),1					
Concrete cone failure			•										
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	K _{ucr}	[-]	10,1									
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}					
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}					
Splitting failure													
Edge distance			[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$									
Axial distance			[mm]	2 C _{cr,sp}									
Installation safety factor (dry	and wet concrete)	γinst		1,0 1,2									
Installation safety factor (flooded bore hole)				1,4 not admissible			nissible						

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 7

Deutsches Institut für Bautechnik

Table C8:	Characteristic values of resistance for threaded rods under tension loads in
	cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	34	63	98	141	184	224	
Characteristic tension resistance, Steel, property class 5.8		N _{Rk,s} =N _{Rk,s,seis}	[kN]	42	78	122	176	230	280	
Characteristic tension resis Steel, property class 8.8	tance,	N _{Rk,s} =N _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281	
Combined pull-out and co	•		_							
Characteristic bond resistar	nce in cracked concrete C2	0/25								
1		$ au_{Rk,cr}$	[N/mm²]	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	5,5	5,5	not admissible				
	nooded bore note	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	not admissible				
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0	not admissible				
	nooded bore note	$ au_{Rk,seis}$	[N/mm²]	2,7	2,7	not admissible				
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range III:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	3,0	3,0		not adr	nissible		
	llooded bore note	τ _{Rk,seis}	[N/mm²]	2,0	2,0		not adr	nissible		
Increasing factors for concr	ete	C30/37				1,	04			
(only static or quasi-static a		C40/50				1,	08			
Ψc		C50/60				1,	10			
Factor according to CEN/TS 1992-4-5 Section (6.2.2.3	k ₈	[-]			7	,2			
Concrete cone failure		<u>'</u>	<u>'</u>							
Factor according to CEN/TS 1992-4-5 Section 6	6.2.3.1	k _{cr}	[-]			7	,2			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0 h _{ef}				
Installation safety factor (dr	y and wet concrete)	Yinst			1,2					
Installation safety factor (flo	oded bore hole)	γinst		1	,4		not adr	nissible		

Injection System	n Chemická	kotva vinylester	bez styrenu	for concrete
------------------	------------	------------------	-------------	--------------

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Annex C 8

Z61461.15 8.06.01-254/15

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Steel, property class 4.6	$V_{Rk,s,seis}$	[kN]	-	-	12	22	34	50	65	78
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Steel, property class 5.8	$V_{Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel, property class 8.8	$V_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	$V_{Rk,s,seis}$	[kN]	-	-	21	39	60	87	81	98
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8							
Steel failure with lever arm	'									
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	$M^0_{Rk,s,seis}$	[Nm]	No Performance Determined (NPD)							
Characteristic bending moment,	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	112
Steel, property class 5.8	$M^0_{Rk,s,seis}$	[Nm]	No Performance Determined (NPD)							
Characteristic bending moment,	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	179
Steel, property class 8.8	$M^0_{Rk,s,seis}$	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined	(NPD)		
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,0				
Installation safety factor	γinst					1,0				
Concrete edge failure ³⁾										
Effective length of anchor	l _f	[mm]			I _f =	min(h _{ef} ; 8	B d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_{\rm inst}$					1,0				

Injection System Chemická kotva vinylester bez styrenu for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)

Annex C 9

	racteristic value									ls in		
Anchor size reinforcing b	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resistance N _{Rk,s} [kN]				A _s • f _{uk}								
Combined pull-out and co	oncrete failure		•									
Characteristic bond resistar	nce in non-cracked concre	ete C20/25	5									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5	not admissible			
Temperature range II: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	not admissible			
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
		C30/37	•					1,04				
Increasing factors for concrete Ψ_c	ete	C40/50		1,08								
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section 6	5.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Installation safety factor (dr	y and wet concrete)	γinst		1.0				1	,2			
Installation safety factor (flo	oded bore hole)	γinst				1,4				not adr	nissible	

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 10

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic tension resi	stance	N _{Rk,s} =N _{Rk,s,seis}	[kN]	A _s • f _{uk}								
Combined pull-out and o	concrete failure	l										
Characteristic bond resista	ance in cracked concrete	C20/25										
	<u> </u>	$ au_{Rk,cr}$	[N/mm²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5		
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	5,5	5,5	5,5		not adr	nissible	•		
	flooded bore hole	$ au_{Rk,seis}$	[N/mm²]	3,7	3,7	3,7	not admissible					
	d	$ au_{ m Rk,cr}$	[N/mm²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5		
Temperature range II:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	2,7	2,7	2,7	2,7	2,8	3,1	3,1		
80°C/50°C		$ au_{ m Rk,cr}$	[N/mm²]	4,0	4,0	4,0		not adr	nissible			
	flooded bore hole	τ _{Rk,seis}	[N/mm²]	2,7	2,7	2,7	not admissible					
		$ au_{ m Rk,cr}$	[N/mm²]	3,0	3,0	3,0	3,0	3,0	3,5	3,5		
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
120°C/72°C		$ au_{Rk,cr}$	[N/mm²]	3,0	3,0	3,0		not adr	nissible			
	flooded bore hole	$ au_{ m Rk,seis}$	[N/mm²]	2,0	2,0	2,0		not adr	nissible			
Increasing factors for cond	crete	C30/37					1,04					
(only static or quasi-static		C40/50					1,08					
Ψc		C50/60					1,10					
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				7,2					
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]				7,2					
Edge distance	0.2.0.1	C _{cr,N}	[mm]				1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}					
Installation safety factor (c	lry and wet concrete)	γinst					1,2					
Installation safety factor (flooded bore hole)		γinst		1,4 not admissible								

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)	Annex C 11

electronic copy of the eta by dibt: eta-15/0550

Installation safety factor

1,0

Table C12: Characteristic valu and non-cracked c											5)		
Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Steel failure without lever arm													
Characteristic shear resistance	V _{Rk,s} [kN]				0,50 ⋅ A _s ⋅ f _{uk}								
Characteristic shear resistance	V ⁰ _{Rk,s,seis}	[kN]		0,35 ⋅ A _s ⋅ f _{uk}									
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	•	0,8										
Steel failure with lever arm													
Chancetonistic handing records	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}										
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]		No Performance Determined (NPD)									
Concrete pry-out failure	•	•											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0										
Installation safety factor	γinst		1,0										
Concrete edge failure	•												
Effective length of anchor	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$										
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32		

γinst

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)	Annex C 12

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25	,	•	•	•		•		•	
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]			0,070					
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]		•	0,105					
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]		0,170						
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		•	0,245					
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]		0,170						
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]		-			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked o	oncrete C20)/25								
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked concrete C20/25										
All temperature ranges	δ _{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07
	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	_		0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances	Annex C 13
Displacements (threaded rods)	

electronic copy of the eta by dibt: eta-15/0550

English translation prepared by DIBt

Anchor size reinfo	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked cond	crete C20/	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	nm/(N/mm²)] 0,070								
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]] '	•				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]] '	•				0,245			
Temperature range III:	$\delta_{\text{No}}\text{-factor}$	[mm/(N/mm²)]						0,170			
120°C/72°Č	δ _{N∞} -factor	[mm/(N/mm²)]] '	•				0,245			

 $^{^{1)}}$ Calculation of the displacement $\delta_{N0}=\delta_{N0}\text{-factor}\ \cdot \tau;$

Table C16: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	-		0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]			0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $[\]begin{array}{l} ^{1)} \ Calculation \ of the \ displacement \\ \delta_{V0} = \delta_{V0} \hbox{-factor} \ \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty} \hbox{-factor} \ \cdot \ V; \end{array}$

Injection System Chemická kotva vinylester bez styrenu for concrete	
Performances Displacements (rebar)	Annex C 14

 $[\]delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$