

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0123 vom 7. Mai 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse

Nachträglich eingemörtelter Bewehrungsanschluss mit dem Speer Injektionssystem Vinyl-Pro

Speer Fixings B. V. Jasmijnstraat 27 2982CK RIDDERKERK NIEDERLANDE

Speer Plant 1

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-15/0123

Seite 2 von 15 | 7. Mai 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z10338.15 8.06.01-347/14

Europäische Technische Bewertung ETA-15/0123

Seite 3 von 15 | 7. Mai 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser ϕ von 8 bis 32 mm und der Injektionsmörtel Speer Vinyl-Pro verwendet. Der Betonstahl wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Bewehrungsanschluss entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Bemessungswerte des Widerstandes gegen Verbundversagen	Siehe Anhang C 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Bewehrungsanschluss erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung festgestellt (KLF)

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

Z10338.15 8.06.01-347/14

Europäische Technische Bewertung ETA-15/0123

Seite 4 von 15 | 7. Mai 2015

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

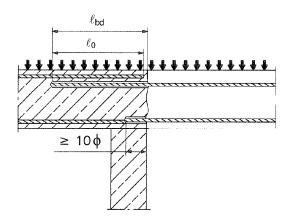
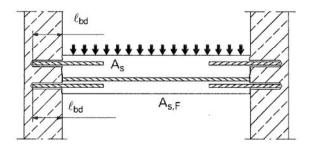
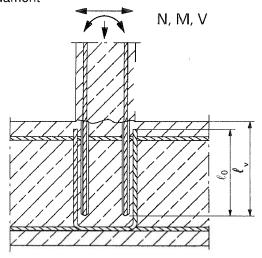
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

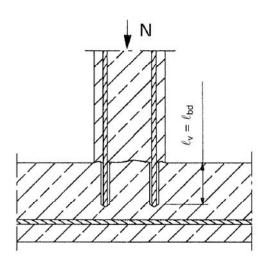
Ausgestellt in Berlin am 7. Mai 2015 vom Deutschen Institut für Bautechnik

Uwe Bender Beglaubigt:
Abteilungsleiter

Z10338.15 8.06.01-347/14

Bild A1: Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken


Bild A3: Endverankerung von Platten oder Balken

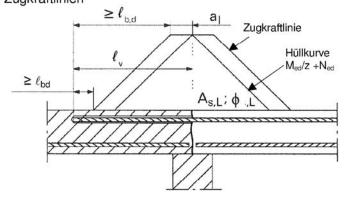

Bild A2: Übergreifungsstoß einer biegebeanspruchten Stütze oder Wand an ein Fundament

Bild A4: Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile

Bild A5: Verankerung von Bewehrung zur Deckung der Zugkraftlinien

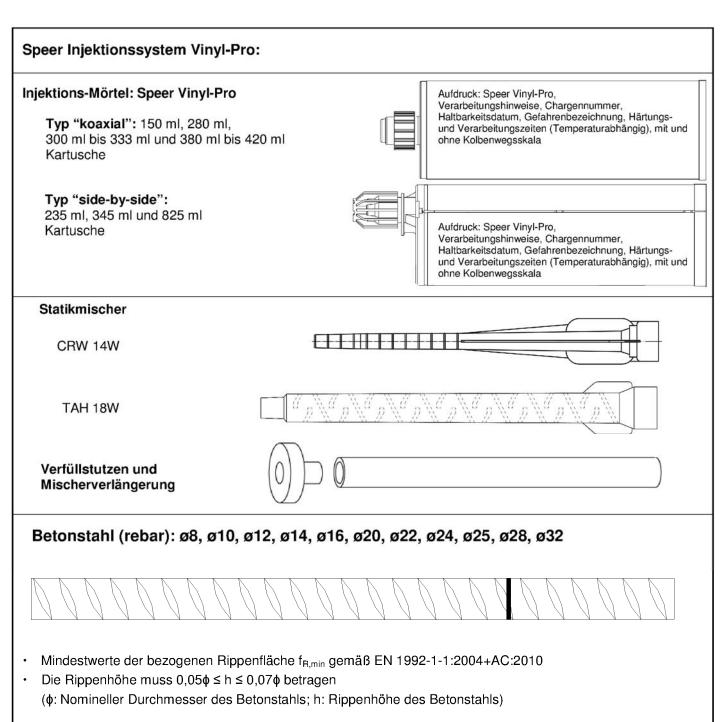
Anmerkung zu Bild A1 bis A5:

In den Bildern ist keine Querbewehrung dargestellt; die nach EN 1992-1-1:2004+AC:2010 erforderliche Querbewehrung muss vorhanden sein.

Vorbereitung der Fugen gemäß Anhang B 2

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse

Produktbeschreibung


Einbauzustand und Anwendungsbeispiele für Bewehrungsanschlüsse mit Betonstahl

Anhang A 1

8.06.01-347/14

Z28586.15

Tabelle A1: Werkstoffe

Benennung	Werkstoff	
Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$	

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Produktbeschreibung Injektionsmörtel / Statikmischer / Betonstahl Werkstoffe	Anhang A 2

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasi-statische Lasten.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206-1:2000.
- Maximal zulässiger Chloridgehalt im Beton von 0.40 % (CL 0.40) bezogen auf den Zementgehalt gemäß EN 206-1:2000.
- Nicht karbonisiertem Beton.

Note: Bei einer karbonatisierten Oberfläche des bestehenden Betons ist die karbonatisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von $\phi + 60$ mm zu entfernen.

Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992-1-1:2004+AC:2010 entsprechen.

Dies entfällt bei neuen, nicht karbonatisierten Bauteilen und bei Bauteilen in trockener Umgebung.

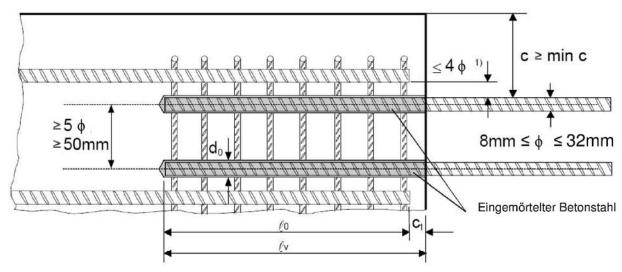
Temperaturbereich:

- 40°C bis +80°C (max. Kurzzeit-Temperatur +80°C und max. Langzeit-Temperatur +50°C).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Bemessung gemäß EN 1992-1-1:2004+AC:2010 und Anhang B 2.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Einbau:


- · Trockener oder nasser Beton.
- Installation in wassergefüllte Bohrlöcher ist nicht erlaubt.
- Bohrlochherstellung durch Hammer- oder Pressluftbohren.
- Der Einbau von nachträglich eingemörtelten Bewehrungsstäben ist durch entsprechend geschultes Personal und unter Überwachung auf der Baustelle vorzunehmen; die Bedingungen für die entsprechende Schulung des Baustellenpersonals und für die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird.
- Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrungsstäbe nicht ersichtlich ist, müssen diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden).

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck Spezifikationen	Anhang B 1

Bild B1: Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist gemäß EN 1992-1-1:2004+AC:2010 nachzuweisen.
- · Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen.

Ist der lichte Abstand der gestoßenen Stäbe größer als 4φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand und 4φ vergrößert werden.

Folgende Abkürzungen und Hinweise gelten für Abbildung B1:

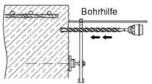
c Betondeckung des eingemörtelten Betonstahl

c₁ Betonabdeckung an der Stirnseite des einbetonierten Stabes

min c Mindestbetondeckung gemäß Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2

Durchmesser des eingemörtelten Betonstahls

 ℓ_0 Länge des Übergreifungsstoßes gemäß der EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3


 ℓ_{v} wirksame Setztiefe, $\geq \ell_{0} + c_{1}$

d₀ Bohrernenndurchmesser, siehe Anhang B 6

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl	Anhang B 2

Tabelle B1: Mindestbetondeckung min c¹⁾ des eingemörtelten Bewehrungsstabes in Abhängigkeit vom Bohrverfahren

Bohrverfahren	Stabduchrmesser	Ohne Bohrhilfe	Mit Bohrhilfe
Hammerbohren (HD)	< 25 mm	30 mm + 0,06 · ℓ _ν ≥ 2 φ	30 mm + 0,02 · ℓ _ν ≥ 2 φ
	≥ 25 mm	40 mm + 0,06 · ℓ_{v} ≥ 2 ϕ	40 mm + 0,02 · ℓ_{v} ≥ 2 ϕ
Dragolufthahran (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v
Pressluftbohren (CD)	≤ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ _v

siehe Anhang B2, Bild B1 Anmerkung: Die Mindestbetondeckung gemäß EN 1992-1-1:2004+AC:2010 ist einzuhalten

Tabelle B2: maximale Setztiefe $\ell_{v,max}$

Betonstahl		
Øф	$\ell_{v,max}$ [mm]	
8 mm	1000	
10 mm	1000	
12 mm	1200	
14 mm	1400	
16 mm	1600	
20 mm	2000	
22 mm	2000	
24 mm	2000	
25 mm	2000	
28 mm	1000	
32 mm	1000	

Tabelle B3: Untergrundtemperatur, Verarbeitungszeit und Aushärtezeit

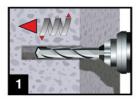
Beton Temperatur		nperatur	Verarbeitungszeit ¹⁾	Mindest-Aushärtezeit in trockenem Beton ⁵⁾
			t _{gel}	t _{cure,dry}
-10°C	bis	-6°C	90 min ²⁾	24 h
-5°C	bis	-1°C	90 min ³⁾	14 h
0°C	bis	+4°C	45 min ³⁾	7 h
+5°C	bis	+9°C	25 min ³⁾	2 h
+10°C	bis	+19°C	15 min ³⁾	80 min
+20°C	bis	+24°C	6 min ³⁾	45 min
+25°C	bis	+29°C	4 min ³⁾	25 min
+30°C	bis	+40°C	2,5 min ⁴⁾	15 min

¹⁾ t_{gel}: Maximale Zeit vom Injizieren des Mörtels bis zum Ende des Setzvorgangs. ²⁾ Kartuschentemperatur <u>muss</u> mindestens +15°C betragen

⁴⁾ Kartuschentemperatur <u>muss</u> unter +20°C liegen 5) In feuchtem Beton sind die Aushärtezeiten t_{cure,dry} zu verdoppeln

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck Mindestbetondeckung Maximale Setztiefe / Verarbeitungs- und Aushärtezeiten	Anhang B 3

³⁾ Kartuschentemperatur <u>muss</u> zwischen +5°C und +25°C liegen


Tabelle B4: Auspressgeräte

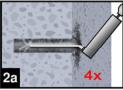
Kartusche Typ/Größe	Manuell		Druckluftbetrieben
Koaxiale Kartuschen 150, 280, 300 bis 330 ml	R		7
	z.B. Typ H	I 297 or H244C	z.B. Typ TS 492 X
Koaxiale Kartuschen 380 bis 420 ml		7	
_	z.B. Typ CCM 380/10	z.B. Typ H 285 or H244C	z.B. Typ TS 485 LX
Side-by-side Kartuschen 235, 345 ml		R	
	z.B. Typ CBM 330A	z.B. Typ H 260	z.B. Typ TS 477 LX
Side-by-side Kartuschen 825 ml	-	-	
			z.B. Typ TS 498X

Alle Kartuschen können ebenso mit einer Akkupistole ausgepresst werden.

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck Auspressgeräte	Anhang B 4

Bohrloch bohren

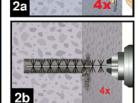
1. Bohrloch mit dem Durchmesser und der Bohrlochtiefe entsprechend des gewählten Bewehrungseisens mit Hammerbohrer (HD) oder Druckluftbohrer (CD) in den Untergrund bohren. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

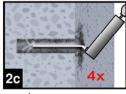


Hammerbohrer (HD)

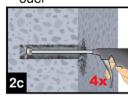
Druckluftbohrer (CD)

Stab - Ø	Bohr - Ø
ф	[mm]
8 mm	12
10 mm	14
12 mm	16
14 mm	18
16 mm	20
20 mm	25
22 mm	28
24 mm	32
25 mm	32
28 mm	35
32 mm	40


B) Bohrlochreinigung



2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit Druckluft (min. 6 bar) oder Handpumpe ausblasen. Bei tiefen Bohrlöchern sind geeignete Verlängerungen zu verwenden.


Bohrlöcher tiefer 240 mm müssen mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

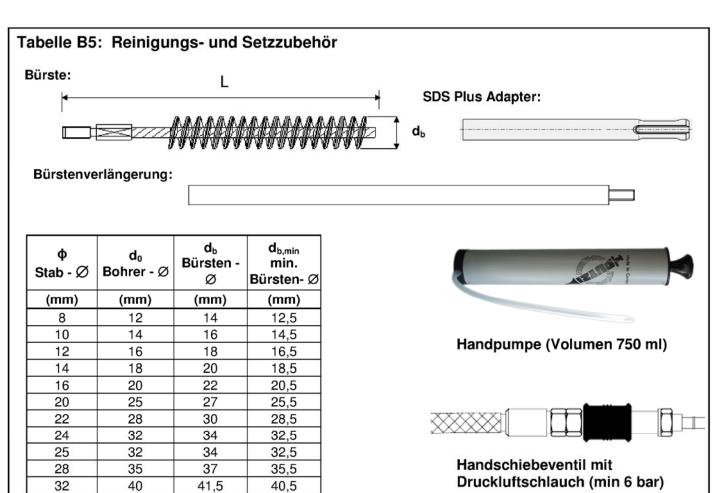
2b. Bohrloch mit geeigneter Drahtbürste gem. Tabelle B5 (minimaler Bürstendurchmesser d_{b.min} ist einzuhalten und zu überprüfen) 4x mittels eines Akkuschraubers oder einer Bohrmaschine ausbürsten. Bei tiefen Bohrlöchern ist eine geeignete Bürstenverlängerung zu benutzen.

oder

2c. Anschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit Druckluft (min. 6 bar) oder Handpumpe ausblasen. Bei tiefen Bohrlöchern sind geeignete Verlängerungen zu verwenden.

Bohrlöcher tiefer 240 mm müssen mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

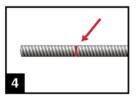
Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse


Verwendungszweck

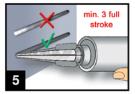
Setzanweisung: Bohrloch bohren

Bohrlochreinigung

Anhang B 5



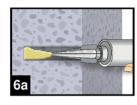
C) Vorbereiten von Kartusche und Bewehrungsstab


3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen.

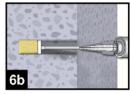
Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B3) und bei jeder neuen Kartusche ist der Statikmischer auszutauschen.

4. Vor dem Injizieren des Mörtels ist die Setztiefe auf dem Bewehrungsstab zu markieren (z.B. mit Klebeband). Danach den Bewehrungsstab in das leere Bohrloch einführen, um die korrekte Bohrlochtiefe $\ell_{\rm v}$ zu überprüfen.

Der Bewehrungsstab sollte schmutz-, fett-, und ölfrei sein.

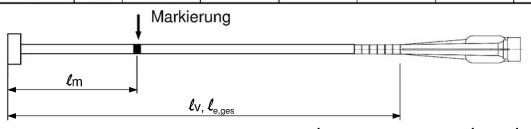


5. Der Mörtelvorlauf ist nicht zur Befestigung des Bewehrungseisens geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.


Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck	Anhang B 6
Setzanweisung: Reinigungswerkzeuge	
Vorbereiten von Kartusche und Bewehrungsstab	

D) Befüllen des Bohrlochs

6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Für Setztiefen größer 190 mm passende Mischerverlängerung verwenden.

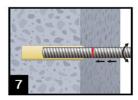


Für die Horizontal- oder Überkopfmontage sowie bei Bohrlöchern tiefer als 240mm sind Verfüllstutzen zu verwenden.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B3) sind zu beachten

Tabelle B6: Verfüllstutzen, max. Verankerungstiefe und Mischerverlängerungen

	Date				Kartus Alle Fo	Kartuschen: side-by-side (825 ml)					
Chala (X	Bohr - Ø		Verfüll- stutzen		Hand- oder Akku- Pistole Druckluftpistole		Drucklu	ıftpistole			
Stab -Ø ф	HD	PD		$I_{v,max}$	Mischer- verlängerung	I _{v,max}	Mischer- verlängerung	I _{v,max}	Mischer- verlängerung		
(mm)	(m	m)	No.	(cm)		(cm)		(cm)			
8	12	-	-			80		80	\/L 10/0.7E		
10	14	_	#14					100	VL 10/0,75		
12	1	6	#16	70		100		120			
14	1	8	#18			100		140			
16	2	:0	#20					160			
20	25	26	#25		VL 10/0,75	70	70 VL 10/0,75				
22	2	.8	#28		200	50		200	VL 16/1,8		
24	3	2	#32	Ε0							200
25	3	2	#32	50			50				
32	3	5	#35					100			
40	4	0	#40					100			


Auf Mischer und Mischerverlängerung müssen Mörtel-Füllmarke $\ell_{\rm m}$ und Verankerungstiefe $\ell_{\rm v}$ bzw. $\ell_{\rm e,ges}$ mit einem Klebeband oder Textmarker markiert werden. Grobe Abschätzung: $\ell_{\rm m}=1/3\cdot\ell_{\rm v}$ Solange das Bohrloch mit Mörtel befüllen, bis die Mörtel-Füllmarke Markierung $\ell_{\rm m}$ sichtbar wird.

Optimales Mörtelvolumen: $\ell_{\text{m}} = \ell_{\text{v}} \text{ resp. } \ell_{\text{e,ges}} \cdot \left(1,2 \cdot \frac{\phi^2}{d_0^2} - 0,2\right) \text{ [mm]}$

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Verwendungszweck Setzanweisung: Befüllen des Bohrlochs	Anhang B 7

E) Einführen des Bewehrungsstabes

7 Bewehrungsstab mit leichter Drehbewegung (zur Verbesserung der Mörtelverteilung) bis zur Setztiefemarkierung in das Bohrloch einführen

Der Bewehrungsstab sollte schmutz-, fett-, und ölfrei sein.

8. Nach Installation des Bewehrungsstabs sicherstellen, dass sich die Setztiefenmarkierung an der Bohrlochoberfläche befindet und der Ringspalt komplett mit Mörtel ausgefüllt ist. Tritt keine Masse nach Erreichen der Setztiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist der Bewehrungsstab zu fixieren (z.B. Holzkeile).

Die angegebene Verarbeitungszeit t_{gel} muss eingehalten werden. Achtung: die Verarbeitungszeit kann auf Grund von unterschiedlichen Untergrund-Temperaturen variieren (siehe Tabelle B3). Es ist verboten, den Bewehrungsstab vor Ablauf der Verarbeitungszeit t_{gel} zu bewegen.

Bevor der Bewehrungsstab belastet werden kann muss die entsprechende Aushärtezeit t_{cure} erreicht sein. Der Bewehrungsstab darf vor Erreichen der Aushärtezeit (siehe Tabelle B3) weder bewegt, noch belastet werden.

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse

Verwendungszweck
Setzanweisung: Setzen der Ankerstange

Anhang B 8

Minimale Verankerungslänge und minimale Übergreifungslänge

Die minimale Verankerungslänge $\ell_{b,min}$ und die minimale Übergreifungslänge $\ell_{0,min}$ gemäß EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ nach Gl. 8.6 und Gl. 8.7 und $\ell_{0,min}$ nach Gl. 8.11) müssen mit dem Faktor nach Tabelle C1 multipliziert werden.

Tabelle C1: Faktor in Abhängigkeit der Betonfestigkeitsklasse und Bohrverfahren

Betonfestigkeitsklasse	Bohrverfahren	Faktor
C12/15 bis C50/60	Hammerbohren oder Pressluftbohren	1,0

Tabelle C2: Bemessungswerte für die Verbundspannung f_{bd} in N/mm² für alle Bohrverfahren für gute Verbundbedingungen

gemäß EN 1992-1-1:2004+AC:2010 für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit 0,7 zu multiplizieren)

Stab - Ø	Betonfestigkeitsklasse								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 25 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
28 bis 32 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7

Speer Injektionssystem Vinyl-Pro für Bewehrungsanschlüsse	
Leistungen Minimale Verankerungslänge und minimale Übergreifungslänge Bemessungswerte der Verbundspannungen f _{bd}	Anhang C 1