

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0130 of 6 July 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Chemfix 500 for concrete

Bonded anchor with anchor rod for use in concrete

CHEMFIX PRODUCTS LTD
Mill Street East
DEWSBURY, West Yorkshire WF12 9BQ
GROSSBRITANNIEN

Chemfix Plant 2

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-15/0130 issued on 26 March 2015

European Technical Assessment ETA-15/0130

English translation prepared by DIBt

Page 2 of 27 | 6 July 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0130

Page 3 of 27 | 6 July 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System Chemfix 500 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Chemfix 500 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0130

Page 4 of 27 | 6 July 2015

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

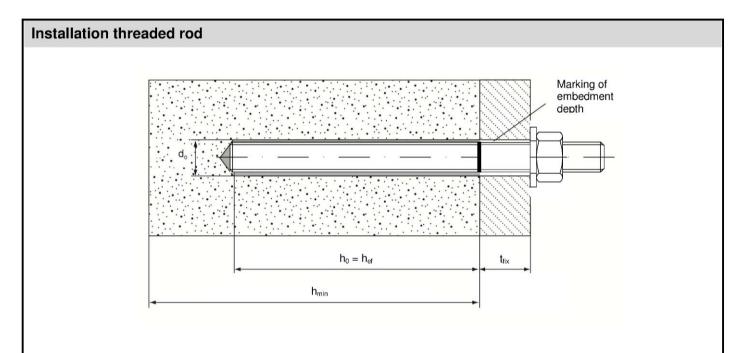
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

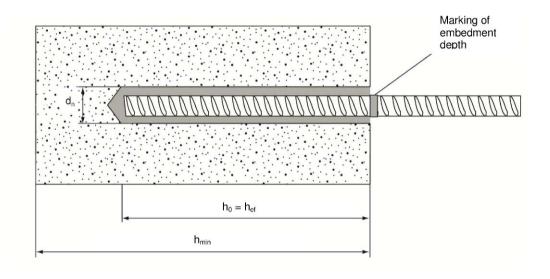
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

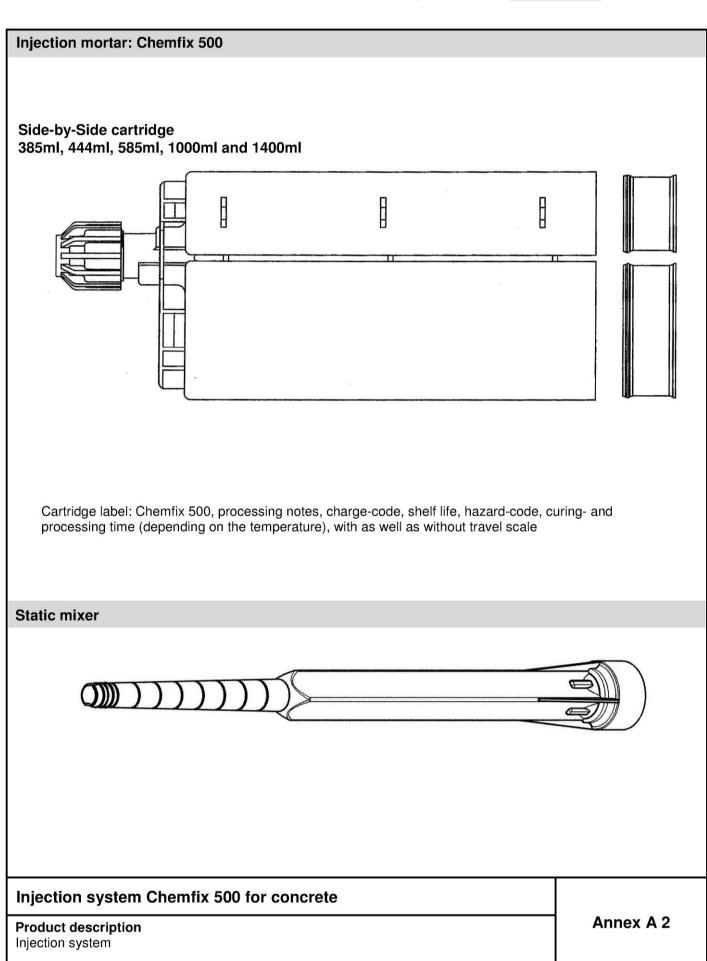

Issued in Berlin on 6 July 2015 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentBaderschneider

Installation reinforcing bar

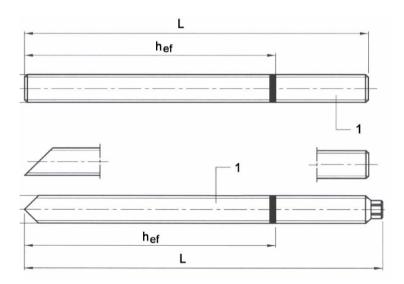
d₀ = diameter of bore hole

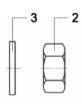
 t_{fix} = thickness of fixture


h_{ef} = effective anchorage depth

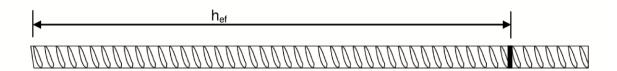
 $h_0 = depth of drill hole$

 h_{min} = minimum thickness of member


Injection system Chemfix 500 for concrete	
Product description Installed condition	Annex A 1



Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-12004+AC:2010 Rib hight of the bar shall be in the range $0.05 * d \le h_{rib} \le 0.07 * d$ (d = Nominal diameter of the rebar; h: Rib height of the bar)

Injection system Chemfix 500 for concrete

Product description
Threaded rod and reinforcing bar

Annex A 3

Table A1: Materials

Part	Designation	Material					
Steel	zinc plated ≥ 5 μm acc. to EN ISO 404	2 or Steel,					
hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009							
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009 A ₅ > 8% fracture elongation					
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stain	less steel						
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation					
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005					
High	corrosion resistance steel						
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation					
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005					
Reinf	orcing bars						
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Injection system Chemfix 500 for concrete	
Product description	Annex A 4
Materials	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- · Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

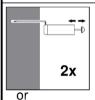
Injection system Chemfix 500 for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective and because death	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
t _{fix,min} [n		0							
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

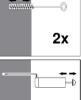
Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max}$ [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160


Injection system Chemfix 500 for concrete	
Intended Use Installation parameters	Annex B 2

Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).


Attention! Standing water in the bore hole must be removed before cleaning.

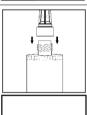
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

--2x

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

2b. Check brush diameter (Table B4) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B4).



2c. Finally blow the hole clean again with compressed air or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar.

In-flowing water must not contaminate the bore hole again.

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent colour.

Injection system Chemfix 500 for concrete	
Intended Use Installation instructions	Annex B 3

Z48634.15 8 06 01-207/15

Installation instructions (continuation)

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than Ø 20 mm a piston plug and extension nozzle (Annex B 5) shall be used. Observe the gel-/ working times given in Table B3.

7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

Injection system Chemfix 500 for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 4

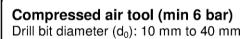


Table B4: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug			
	M8	10,0	12,0	10,5				
	M10	12,0	14,0	12,5	Not necessary			
Threaded	M12	14,0	16,0	14,5	Not necessary			
Rod	M16	18,0	20,0	18,5				
Z :	M20	24,0	26,0	24,5	#24			
7	M24	28,0	30,0	28,5	#28			
	M27	32,0	34,0	32,5	#32			
	M30	35,0	37,0	35,5	#35			
	Ø8	12,0	14,0	12,5				
	Ø10	14,0	16,0	14,5				
	Ø12	16,0	18,0	16,5	Not necessary			
Rebar	Ø14	18,0	20,0	18,5				
	Ø16	20,0	22,0	20,5				
99999999999999	Ø20	24,0	26,0	24,5	#24			
	Ø25	32,0	34,0	32,5	#32			
	Ø28	35,0	37,0	35,5	#35			
	Ø32	40,0	41,5	38,5	#38			

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Injection	system	Chemfix	500 for	concrete	

Intended Use

Cleaning and setting tools

Annex B 5

Table C1: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

i oradiida do	iicicic	(Design	acco	unig	io in	029)				
			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
									•	
ance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
ance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resistance, Steel, property class 8.8		[kN]	29	46	67	125	196	282	368	449
ance, d 70 (≤ M24)	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
ncrete cone failure										
ce in non-cracked co	ncrete C20)/25								
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12
flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
	C30/37		1,04							
te	C40/50		1,08							
	C50/60					1,	,10			
		h / h _{ef} ≥ 2,0	1	,0 h _{ef}						
	2,0 >	h / h _{ef} > 1,3	4,6 h	n _{ef} - 1,8 h	1	,3				
		h / h _{ef} ≤ 1,3		2,26 h _{ef}			1 O·h	L. 2 1	26·h	C _{cr,sp}
	S _{cr,sp}	[mm]				2 0		ei -,4	· · ei	
and wet concrete)	γ ₂			1	,2			1	,4	
oded bore hole)	γ ₂					1	,4			
	ance, ance, ance, ance, ance, arcete cone failure are in non-cracked co dry and wet concrete flooded bore hole are and wet concrete flooded bore hole are and wet and wet and wet and wet concrete	ance, $N_{Rk,s}$ and wet concrete cone failure The in non-cracked concrete C2C The dry and wet concrete and $T_{Rk,ucr}$ The concrete and $T_{Rk,ucr}$	ance, $N_{Rk,s}$ $[kN]$ ance $N_{Rk,s}$	matrice, $N_{Rik,s}$ $[kN]$ 15 mince, $N_{Rik,s}$ $[kN]$ 18 mince, $N_{Rik,s}$ $[kN]$ 29 mince, $N_{Rik,s}$ $[kN]$ 26 mince, $N_{Rik,s}$ $[kN]$ 27 mince, $N_{Rik,s}$ $[kN]$ 28 mince, $N_{Rik,s}$ $[kN]$ 29 mince, $N_{Rik,s}$ $[kN]$ 29 mince, $N_{Rik,s}$ $[kN]$ 26 mince, $N_{Rik,s}$ $[kN]$ 26 mince, $N_{Rik,s}$ $[kN]$ 26 mince, $N_{Rik,s}$ $[kN]$ 27 mince, $N_{Rik,s}$ $[kN]$ 29 mince, $N_{Rik,s}$ $[kN]$ 20 mince, $N_{Rik,s}$ $[kN]$ 21 mince, N_{R	mance, $N_{Rk,s}$ [kN] 15 23 ance, $N_{Rk,s}$ [kN] 18 29 46 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 27 46 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 27 46 ance, $N_{Rk,s}$ [kN] 27 46 ance, $N_{Rk,s}$ [kN] 28 41 ance, $N_{Rk,s}$ [kN] 29 46 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 27 46 ance, $N_{Rk,s}$ [kN] 28 46 ance, $N_{Rk,s}$ [kN] 29 46 ance, $N_{Rk,s}$ [kN] 29 46 ance, $N_{Rk,s}$ [kN] 29 46 ance, $N_{Rk,s}$ [kN] 26 41 ance, $N_{Rk,s}$ [kN] 29 46 ance, $N_{Rk,s}$ [kN] 29 5 4 ance, N_{Rk,s	mance, $N_{Rk,s}$ $[kN]$ 15 23 34 ance, $N_{Rk,s}$ $[kN]$ 18 29 42 ance, $N_{Rk,s}$ $[kN]$ 29 46 67 ance, $N_{Rk,s}$ $[kN]$ 26 41 59 acrete cone failure are in non-cracked concrete C20/25 and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 15 15 15 15 and $\tau_{Rk,ucr}$ $[N/mm^2]$ 15 14 13 and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,5 9,5 9,0 and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,5 9,5 9,0 and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 8,5 8,5 8,0 and $\tau_{Rk,ucr}$ $[N/mm^2]$ 8,7 8,9 8,9 and $\tau_{Rk,ucr}$ $[N/mm^2]$ 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9	Ince, $N_{Rik,s}$ $[kN]$ 15 23 34 63 ance, $N_{Rik,s}$ $[kN]$ 18 29 42 78 ance, $N_{Rik,s}$ $[kN]$ 29 46 67 125 ance, $N_{Rik,s}$ $[kN]$ 26 41 59 110 ancested concrete C20/25 and wet concrete C20/25 and wet concrete $T_{Rik,ucr}$ $[N/mm^2]$ 15 15 15 14 13 10 and wet concrete $T_{Rik,ucr}$ $[N/mm^2]$ 15 14 13 10 and wet concrete $T_{Rik,ucr}$ $[N/mm^2]$ 9,5 9,5 9,0 8,5 flooded bore hole $T_{Rik,ucr}$ $[N/mm^2]$ 9,5 9,5 9,0 8,5 and $T_{Rik,ucr}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029

Annex C 1

Table C2: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to TR 029 and TR 045)

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30
Steel failure									
Characteristic tension re Steel, property class 4.6	3	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension re Steel, property class 5.8	·	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension re Steel, property class 8.8	3	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension re Stainless steel A4 and F property class 50 (>M24	HCR,	$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	59	110	171	247	230	281
Combined pull-out and	d concrete cone failure	•							
Characteristic bond resi	stance in cracked concr	ete C20/25							
		τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Performance Determined (NP			
40°C/24°C		τ _{Rk,cr}	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Pei	formance (Determined	(NPD)
		τ _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Femperature range II:		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Performance Determined (NPD			
60°C/43°C		τ _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Pei	formance [Determined	(NPD)
		$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Femperature range III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pei	formance [Determined	(NPD)
72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pei	formance [Determined	(NPD)
ncreasing factors for co	oncrete	C30/37				1,0)4		
only static or quasi-stat	ic actions)	C40/50				1,0)8		
V c		C50/60				1,10			
nstallation safety factor	(dry and wet concrete)	γ2	1,2			1,4			
Installation safety factor	(flooded bore hole)	γ2				1,	4		

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045 $\,$

Annex C 2

Table C3:	Characteristic values of resistance for threaded rods under shear loads in
	cracked and non-cracked concrete (Design according to TR 029 and TR
	045)

045)											
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	14	27	42	56	72	88	
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Performance Determined (NP				
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo	ormance	18	34	53	70	91	111	
71 1 2	$V_{\text{Rk,s,seis,C2}}$	[kN]	Determin	ed (NPD)	17	31	No Performance Determined (NPI				
	$V_{Rk,s}$	[kN]	15	15 23		63	98	141	184	224	
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk,s,seis,C1}}$	[kN]	No Performance		30	55	85	111	145	177	
	$V_{\text{Rk,s,seis,C2}}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance [Determined	(NPD)	
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	$V_{\text{Rk,s,seis,C1}}$	[kN]		ormance	26	48	75	98	91	111	
property class 50 (>IM24) and 70 (\(\sime\) IM24)	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	24	44	No Per	formance [Determined	(NPD)	
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Characteristic bending moment, Steel, property class 4.6	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			No Per	formance [) etermined	I (NPD)			
	$M^0_{Rk,s,seis,C2}$	[Nm]			140161	iormance L	o eterrimie o	(((()))			
Oh avaata sistia la andina saasaa	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123	
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
	M ⁰ _{Rk,s,seis,C2}	[Nm]		No Feliamance Determined (NPD)							
Characteristic handing mamont	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance [Determined	I (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]									
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}				No Per	formance [Determined	(NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]									
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2,	,0				
Installation safety factor	γ2					1,	,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR 02	29 for the design	n of Bond	led Ancho	ors							
			I			1,					

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045 $\,$

Annex C 3

electronic copy of the eta by dibt: eta-15/0130

Installation safety factor (flooded bore hole)

English translation prepared by DIBt

1,4

Anchor size reinforcing b	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	tance	N _{Rk,s}	[kN]					$A_s \times f_{uk}$				
Combined pull-out and co	oncrete cone failure											
Characteristic bond resistar	nce in non-cracked co	ncrete C20/	25									
Temperature range I:	dry and wet concrete	TRk,ucr	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ ext{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{ ext{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37						1,04				
Increasing factors for concr $\psi_{\text{\tiny C}}$	ete	C40/50						1,08				
		C50/60						1,10				
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}					
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		h	ı / h _{ef} ≤ 1,3	2	2,26 h _{ef}		1		1,0·h _{ef}	2 26		C _{cr,sp}
Avial distance s [mm]			[mm]	1,0·h _{ef} 2,26·h _{ef}								
Axial distance s _{cr,sp} [mm]			1,2 1,4									

Injection system Chemfix 500 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029	Annex C 4

γ2

Increasing factors for concrete (only static or quasi-static actions)

Installation safety factor (dry and wet concrete)

Installation safety factor (flooded bore hole)

electronic copy of the eta by dibt: eta-15/0130

1,08

1,10

1,4

1,4

1,2

	racteristic val							oads i	n		
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension res	sistance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]	$A_s \times f_{uk}$							
Combined pull-out and	concrete cone failure	,									
Characteristic bond resist	tance in cracked concr	ete C20/25									
	dry and wet	$ au_{ m Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I: 40°C/24°C	concrete	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
	flandad have bala	$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:	concrete	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°C/43°C	flandad bara bala	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°C/43°C	Carada di baya bala	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
In available factors for any		C30/37					1,04				

Injection system Chemfix 500 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045	Annex C 5

C40/50

C50/60

 γ_2

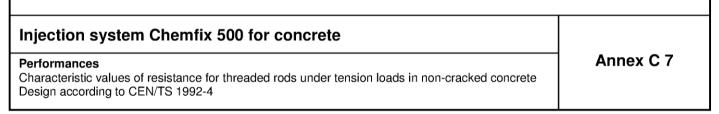
γ2

Table C6: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
	V _{Rk,s}	[kN] $0.50 \times A_s \times f_{uk}$										
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)	$0.44 \times A_s \times f_{uk}$							
Steel failure with lever arm												
Characteristic handing market	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}									
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)									
Concrete pry-out failure												
Factor k in equation (5.7) of Technical Re TR 029 for the design of bonded anchors	port		2,0									
Installation safety factor	γ2						1,0					
Concrete edge failure												
See section 5.2.3.4 of Technical Report T	R 029 for the de	esign of I	Bonded A	Anchors								
Installation safety factor	γ2						1,0					

Injection system	Chemfix	500	for	concrete
------------------	---------	-----	-----	----------

Performances


Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045

Annex C 6

Table C7: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

in no	on-cracked concre	ete (De:	sign acc	cordi	ng to	CEN/	TS 19	992-4)			
Anchor size threaded roo	ı			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure											
Characteristic tension resis	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resis	tonoo		£			-					
Steel, property class 5.8	stance,	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis	stance										_
Steel, property class 8.8	nance,	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis	stance,										
Stainless steel A4 and HCF	₹,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	28
property class 50 (>M24) a	nd 70 (≤ M24)	,-									
Combined pull-out and c	oncrete failure										
Characteristic bond resista	nce in non-cracked concrete	e C20/25									
T	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12
Temperature range I: 40°C/24°C		*FIK,UCI	-								
40 0/24 0	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
		C30/37					1,	04	•		
Increasing factors for conc	rete	C40/50					1.	08			
Ψο		C50/60				1,10					
Factor according to CEN/T	S 1992-4-5 Section 6.2.2.3	k ₈	[-]					0,1			
Concrete cone failure	0 1002 1 0 000,011 0,2,2,2	1.6	1 1,					-,·			
Factor according to CEN/T	S 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]	Ι			10),1			
Edge distance		C _{cr,N}	[mm]					5 h _{ef}			
Axial distance		S _{cr,N}	[mm]) h _{ef}			
Splitting failure		-0.,14									
				Г		T 1	n/h _{ef} †				
		h	n / h _{ef} ≥ 2,0	1,0	0 h _{ef}	Ι.	-/··ef				
							2,0				
Edge distance		20 s h	n / h _{ef} > 1,3	46h	_{ef} - 1,8 h						
				-1,0116	, ,,,,,,,,		1,3				
			/		nc -						
h / h _{et} ≤ 1,3			n / h _{ef} ≤ 1,3	2,2	26 h _{ef}			1,0·h	2.26	ີ່ ເ ∂·h _{ef}	cr,sp
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp	97 2,20	- 1101	
Installation safety factor (di	y and wet concrete)	γinst			1.	,2			1	,4	
	· · ·	1				-			<u> </u>	-	
Installation safety factor (flo	boded bore hole)	γinst		l			1	,4			

Table C8: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resist Steel, property class 4.6	,	$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	34	63	98	141	184	224	
Characteristic tension resist Steel, property class 5.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	42	78	122	176	230	280	
Characteristic tension resist Steel, property class 8.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449	
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	,	$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	59	110	171	247	230	281	
Combined pull-out and co	ncrete failure									
Characteristic bond resistar	nce in cracked concrete Ca	20/25								
		$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Per	formance l	Determined	d (NPD)	
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Per	formance I	Determined	d (NPD)	
		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,4 3,5		3,5	
Temperature range II:		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	No Per	formance I	2 368 2 368	d (NPD)	
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Per	formance I	Determined	d (NPD)	
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Per	formance I	Determined	d (NPD)	
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Per	formance I	Determined	d (NPD)	
Increasing factors for concre	ate	C30/37					04		. ,	
(only static or quasi-static a		C40/50				1,	08			
Ψο		C50/60				1,	10			
Factor according to CEN/TS 6.2.2.3	S 1992-4-5 Section	k ₈	[-]		_	7	,2			
Concrete cone failure										
Factor according to CEN/TS 6.2.3.1	S 1992-4-5 Section	k _{cr}	[-]			7	,2			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}			
Installation safety factor (dry	and wet concrete)	γinst		1	,2		1	5,5 5,5 5 5,5 5,5 5 nance Determined (NP 4,5 4,0 4 4,5 4,0 4 nance Determined (NP 3,5 3,5 3 nance Determined (NP 3,5 3,5 3 nance Determined (NP 3,0 3,0 3 nance Determined (NP		
Installation safety factor (flo	oded bore hole)	γinst				1	3,5 3,5 3,5 formance Determined (NPI 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0			

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Annex C 8

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	14	27	42	56	72	88
otodi, property diago 4.0	$V_{Rk,s,seis,C2}$	[kN]	Determin		13	25	No Perf	ormance [Determined	(NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	18	34	53	70	91	111
, - ,	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Perf	ormance [Determined	(NPD)
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\rm Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Perf	ormance [Determined	(NPD)
Characteristic shear resistance.	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s,seis,C2}	[kN]	[kN] Determined (NPD) 24 44 No Performance Determined						(NPD)	
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8							
Steel failure with lever arm										
	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Porfo	rmanco [Determine	v4 (NDD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Fello	imance i	Jetermine	id (INFD)		
Ohana dadala haralla arana	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]			140 1 0110	THAIRCE L	·	,a (IVI D)		
Characteristic handing manage	M ⁰ _{Rk,\$}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
property class 50 (>10124) and 70 (3 10124)	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	,0			
Installation safety factor	γinst		1,0							
Concrete edge failure										
Effective length of anchor	I _f	[mm]				$l_f = min(h$	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	,0			

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045 $\,$

Annex C 9

Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)

								1				
Anchor size reinforcing I	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	$N_{Rk,s}$	[kN]					$A_s \ x \ f_{uk}$				
Combined pull-out and c	oncrete failure											
Characteristic bond resista	ance in non-cracked concr	ete C20/2	25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37						1,04				
Increasing factors for conc Ψ_c	rete	C40/50						1,08				
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}					
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3					
		h	/ h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0·h _{ef}	2,26	⊹h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation safety factor (d	ry and wet concrete)	γinst				1,2				1	,4	
Installation safety factor (fl	ooded bore hole)	γinst						1,4				

Injection system Chemfix 500 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 10

English translation prepared by DIBt

Table C11: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

		(Design a	- Icooraing		•/	-	<u> </u>		,	
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				A _s x f _{uk}			
Combined pull-out and	concrete failure									
Characteristic bond resist	ance in cracked concre	ete C20/25								
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	flooded being belo	$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	τ _{Rk,cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing factors for con	crete	C30/37	•		•		1,04	•	•	
(only static or quasi-static		C40/50					1,08			
Ψс		C50/60					1,10			
Factor according to CEN/TS 1992-4-5 Section	า 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				$1,5 h_{\text{ef}}$			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Installation safety factor (dry and wet concrete)	γinst			1,2			1	,4	
Installation safety factor (flooded bore hole)	γinst					1,4			

Injection system Chemfix 500 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045	Annex C 11

Table C12: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			<u> </u>		<u> </u>		l				
	$V_{Rk,s}$	[kN]				0,5	50 x A _s x	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)			0,4	14 x A _s x	t f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8								
Steel failure with lever arm											
Characteristic handing mamont	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Pe	erformar	nce Dete	rmined	(NPD)		
Concrete pry-out failure	_										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 14 16 20 24 27							30	
Installation safety factor	γ inst						1,0				

Injection system Chemfix 500 for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045	Annex C 12

Table C13: D	isplacements u	nder tension	load ¹⁾	(threa	aded r	od)				
Anchor size threa	aded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked con	crete C20/25 unde	r static and qua	asi-stati	c actio	n					
40°C/24°C	δ _{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°0/24°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
72°C/43°C	δ _{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°0/43°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete	e C20/25 under sta	tic, quasi-statio	c and se	ismic C	C1 actio	n				
4000/0400	δ _{N0} – factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ _{N0} – factor	[mm/(N/mm²)]	No Perfo	ormance mined	0,037	0,043	0,049	0,055	0,061	0,067
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
72.0/43.0	$\delta_{N\infty} - factor$	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24
Cracked concrete	e C20/25 under sei	smic C2 action								
40°C/24°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]			0,03	0,05				
40 0/24 0	$\delta_{\text{N,seis(ULS)}} - \text{factor}$	[mm/(N/mm²)]			0,06	0,09				
60°C/43°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]	No Perfo	ormance mined	0,03	0,05	No Perf	ormance l	Datarmina	d (NIDD)
00 0/43 0	$\delta_{N,seis(ULS)}-factor$	[mm/(N/mm²)]		PD)	0,06	0,09	NOFEII	omiance i	Jetermine	G (INFD)
72°C/43°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]			0,03	0,05				
72 0/43 0	$\delta_{N,seis(ULS)}-factor$	[mm/(N/mm²)]			0,06	0,09				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;
$$\begin{split} \delta_{\text{N,seis(DLS)}} &= \delta_{\text{N,seis(DLS)}}\text{-factor} \quad \cdot \ \tau; \\ \delta_{\text{N,seis(ULS)}} &= \delta_{\text{N,seis(ULS)}}\text{-factor} \quad \cdot \ \tau; \end{split}$$

(τ: action bond strength) $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action											
All temperatures											
Air temperatures	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete	C20/25 under seismi	c C2 action									
All temperatures	$\delta_{V,seis(DLS)}$ – factor	[mm/kN]	No Perfo		0,2 0,1		No Performance Determined			4 (VIBD)	
Air temperatures	$\delta_{V,seis(ULS)}$ – factor	[mm/kN]	Deteri (NF		0,2	0,1	NO PERIO	Jilliance	Jeterriirie	a (INFD)	

¹⁾ Calculation of the displacement

 $\delta_{\text{V,seis}(\text{DLS})} = \delta_{\text{V,seis}(\text{DLS})}\text{-factor} + \text{V}$ $\delta_{V0} = \delta_{V0}$ -factor · V;

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$ $\delta_{\text{V,seis(ULS)}} = \delta_{\text{V,seis(ULS)}}\text{-factor} \quad \text{V}$ (V: action shear load)

Injection system Chemfix 500 for concrete

Performances

Displacements (threaded rods)

Annex C 13

0,24

0,24

0,24

0,24

0,24

0,24

Table C15:	Displace	ements unde	r tensi	ion loa	d ¹⁾ (ret	oar)					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	concrete C2	20/25 under sta	atic and	quasi-s	tatic act	ion					
40°C/24°C	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete C20/25 under static, quasi-static and seismic C1 action											
40°C/24°C	δ_{N0} – factor	[mm/(N/mm²)]	No Performance Determined (NPD)		0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°0/24°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
00°0/43°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24
7000/4000	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	S (1	[0.04	0.04	0.04	0.04	0.04	0.04	0.04

0,24

 $\delta_{N_\infty}\text{--} factor$

 $\delta_{N0} = \delta_{N0} - factor \cdot \tau;$

(τ: action bond strength)

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot \tau;$

Table C16: Displacement under shear load (rebar)

 $[mm/(N/mm^2)]$

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0} - factor \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty} - factor \cdot V; \end{split}$$

(V: action shear load)

Injection system Chemfix 500 for concrete			
Performances	Annex C 14		
Displacements (rebar)			

¹⁾ Calculation of the displacement