

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0208 vom 28. April 2015

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Carbon Fix

Kunststoff-Schlagdübel zur Befestigung von außenseitigen Wärmedämm-Verbundsystemen mit Putzschicht auf Beton und Mauerwerk

Deutsche Amphibolin Werke, DAW Robert-Murjahn Stiftung GmbH & Co. KG Roßdörfer Straße 50 64372 Ober-Ramstadt DEUTSCHLAND

DAW Herstellwerk 10183 DAW manufacturing plant 10183

13 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Kunststoffdübel zur Befestigung von außenseitigen Wärmedämm-Verbundsystemen in Putzschichten" ETAG 014, Fassung Februar 2011, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-15/0208

Seite 2 von 13 | 28. April 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0208

Seite 3 von 13 | 28. April 2015

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schlagdübel Carbon Fix besteht aus einer Dübelhülse mit aufgeweitetem Schaftbereich, sich anschließender Spreizzone, einem Dämmstoffhalteteller aus Polyethylen und einem Spezialnagel aus galvanisch verzinktem Stahl mit einer Umspritzung aus Polyamid. Das geriffelte Spreizteil der Dübelhülse ist geschlitzt.

Der Dübel darf zusätzlich mit den Dübeltellern SBL 140 plus und VT 90 kombiniert werden. Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 25 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Die wesentlichen Merkmale bezüglich mechanischer Festigkeit und Standsicherheit sind unter der Grundanforderung Sicherheit bei der Nutzung erfasst.

3.2 Brandschutz (BWR 2)

Nicht zutreffend.

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung	
Charakteristische Werte für Zugbeanspruchung	siehe Anhang C 1	
Rand- und Achsabstände	siehe Anhang B 2	
Punktbezogener Wärmedurchgangskoeffizient	siehe Anhang C 2	
Tellersteifigkeit	siehe Anhang C 2	
Verschiebungsverhalten	siehe Anhang C 2	

Europäische Technische Bewertung ETA-15/0208

Seite 4 von 13 | 28. April 2015

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die Nachhaltige Nutzung der natürlichen Ressourcen wurde für dieses Produkt nicht untersucht.

3.8 Allgemeine Aspekte

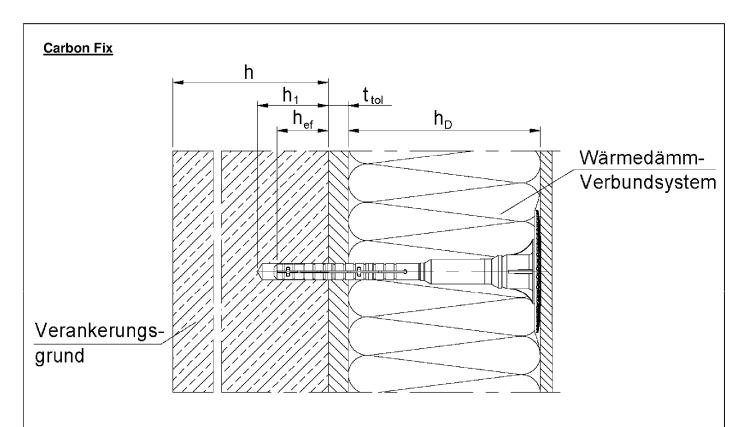
Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die besonderen Bestimmungen zum Verwendungszweck gemäß Anhang B eingehalten werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung 97/463/EG der Kommission vom 27. Juni 1997 (ABI L 198 vom 25.07.1997 S. 31-32) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V und Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Eigenschaften	Stufe oder Klasse	System
Kunststoffdübel zur Verwendung in Beton und Mauerwerk	zur Verwendung in Systemen, wie z.B. Fassadensystemen, zur Befestigung oder Verankerung von Elementen, die zur Stabilität der Systeme beitragen		2+

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind im Prüfplan angegeben, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 28. April 2015 vom Deutschen Institut für Bautechnik

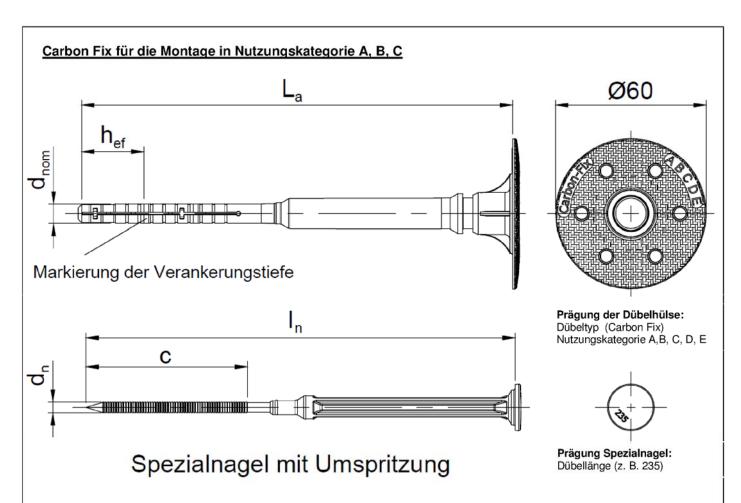
Andreas Kummerow i. V. Abteilungsleiter

Beglaubigt

Anwendungsbereich

- Verankerung von WDVS in Beton und verschiedenen Mauerwerksarten
- Verankerung von WDVS in Porenbeton

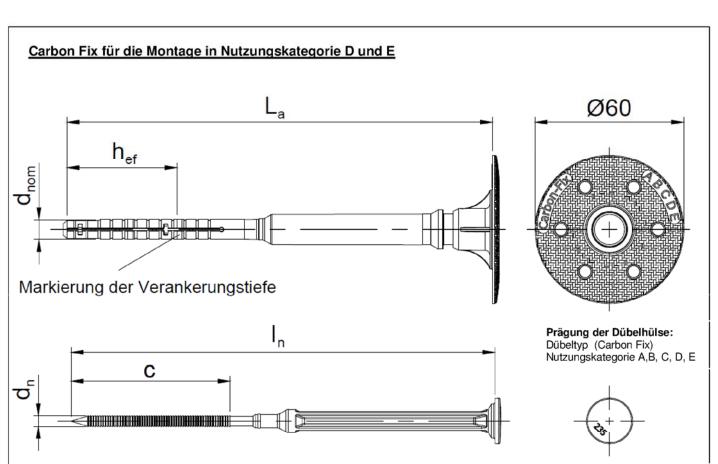
Legende: $h_D = D\ddot{a}mmstoffdicke$


 h_{ef} = effektive Verankerungstiefe

h = vorhandene Dicke des Bauteils (Wand)
 h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

 $\dot{t_{tol}}$ = Toleranzausgleich oder nichttragende Deckschicht

Carbon Fix	
Produktbeschreibung Einbauzustand	Anhang A 1


Tabelle A1: Abmes	ssungen						
			Dübelhülse			Spezialna	gel
Dübeltyp	Farbe	d _{nom}	h _{ef}	min L _a max L _a	d _n	С	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Carbon Fix	anthrazit / grau	8	25	95	4,13	60	95
				295			295

Bestimmung der max. Dämmstoffdicke h_D [mm] für Carbon Fix:

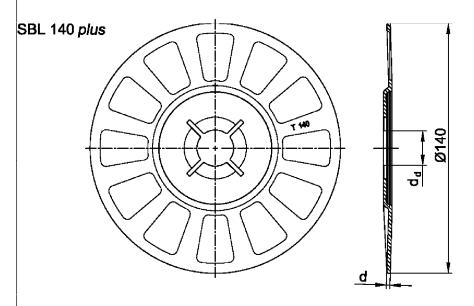
$$\begin{array}{lll} & h_D &= L_a - t_{tol} - h_{ef} & (L_a = z.B.\ 155;\ t_{tol} = 10) \\ z.B. & h_D &= 155 - 10 - 25 \\ & h_{Dmax} &= 120 \end{array}$$

Carbon Fix	
Produktbeschreibung Markierung und Abmessung der Dübelhülse, Nutzungskategorie A, B, C Spezialnagel	Anhang A 2

Tabelle A2: Abmessungen Dübelhülse Spezialnagel h_{ef} d_n d_{nom} min La min I_n Dübeltyp Farbe max La max In [mm] [mm] [mm] [mm] [mm] [mm] Carbon Fix anthrazit / grau 8 45 95 4,13 60 95 295 295

Bestimmung der max. Dämmstoffdicke h_D [mm] für Carbon Fix:

Spezialnagel mit Umspritzung


$$\begin{array}{lll} & & & & & & \\ h_D & & & = L_a - t_{tol} - h_{ef} & (L_a = z.B.~155; \, t_{tol} = 10) \\ z.B. & & & h_D & & = 155 - 10 - 45 \\ & & & h_{Dmax} & & = 100 \end{array}$$

Carbon Fix	
Produktbeschreibung Markierung und Abmessung der Dübelhülse, Nutzungskategorie D und E Spezialnagel	Anhang A 3

Prägung Spezialnagel: Dübellänge (z. B. 235)

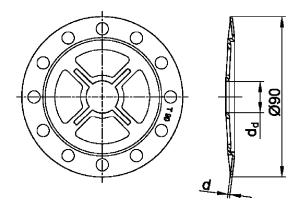


Tabelle A3: Werkstoffe		
Benennung	Werkstoff	-
Dübelhülse	Polyethylen, PE-HD, Farbe: anthrazit / grau	_
Umspritzung Spezialnagel	Polyamid, PA GF 50	
Spezialnagel	Stahl, galvanisch verzinkt ≥ 5 µm nach EN ISO 4042:2001,	_
	blau passiviert, f _{yk} ≥ 670 N/mm²	

SBL 140 plus		
Far	be	natur
d_d	[mm]	20,0
d	[mm]	2,0
Werkstoff		1) 2)

VT 90		
Farbe	natur	
d _d [mm]	17,5	
d [mm]	1,2	
Werkstoff	1) 2)	

¹⁾ Polyamid, PA 6 ²⁾ Polyamid, PA GF 50

²⁾ Polyamid, PA GF 50

Carbon Fix	
Produktbeschreibung	Anhang A 4
Werkstoffe,	
Dübelteller in Kombination mit Carbon Fix	

Spezifizierungen des Verwendungszwecks

Beanspruchung der Verankerung:

 Der Dübel darf nur zur Übertragung von Windsoglasten und nicht zur Übertragung der Eigenlasten des Wärmedämm-Verbundsystems herangezogen werden.

Verankerungsgrund:

- Normalbeton (Nutzungskategorie A) nach Anhang C 1.
- Vollstein Mauerwerk (Nutzungskategorie B) nach Anhang C 1.
- · Hohl- oder Lochsteine (Nutzungskategorie C) nach Anhang C 1.
- Haufwerksporiger Leichtbeton (Nutzungskategorie D) nach Anhang C 1.
- Porenbeton (Nutzungskategorie E) nach Anhang C 1.
- Bei anderen Steinen der Nutzungskategorie A, B, C, D und E darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach ETAG 014 Fassung Februar 2011, Anhang D ermittelt werden.

Temperaturbereich:

• 0°C to +40°C (max. Kurzzeit-Temperatur +40°C and max. Langzeit-Temperatur +24°C)

Bemessung:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 014 Fassung Februar 2011 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Die Befestigungen sind nur zur Mehrfachbefestigung von WDVS zu verwenden.

Einbau:

- Beachtung des Bohrlochverfahrens nach Anhang C 1.
- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Temperatur beim Setzen des Dübels von 0°C bis +40°C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten, d.h. unverputzten Dübels ≤ 6 Wochen

Carbon Fix

Verwendungszweck
Spezifikationen

Anhang B 1

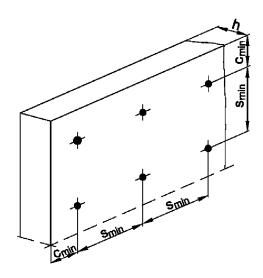
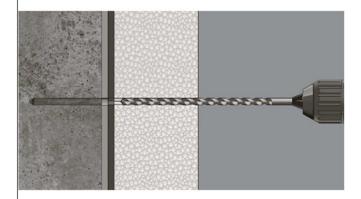
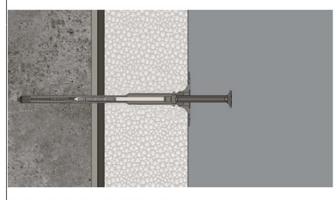


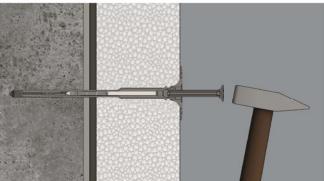
Tabelle B1: Montagekennwerte				
Dübeltyp		Carbor	ı Fix	
		Nutzungsk	ategorie	
		A, B, C	D und E	
Bohrernenndurchmesser	$d_0[mm] =$	8	8	
Bohrerschneidendurchmesser	d _{cut} [mm] ≤	8,45	8,45	
Tiefe des Bohrlochs bis zum tiefsten Punkt	h₁ [mm] ≥	35	55	
effektive Verankerungstiefe 1)	h _{ef} [mm] ≥	25	45	

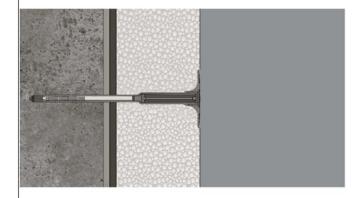
¹⁾ Größere Verankerungstiefen sind grundsätzlich möglich.

Tabelle B2: Dübelabstände und Bauteilabmessungen			
Dübeltyp		Carbon Fix	
minimaler zulässiger Achsabstand	s _{min} ≥ [mm]	100	
minimaler zulässiger Randabstand	$c_{min} \geq [mm]$	100	
Mindestbauteildicke	h ≥ [mm]	100	
Mindestbauteildicke dünne Betonplatten	h ≥ [mm]	40	


Schema der Dübelabstände


Carbon Fix	
Verwendungszweck Montagekennwerte, Minimale Bauteildicke, Achs- und Randabstände	Anhang B 2


Montageanleitung


Bohrloch senkrecht zur Oberfläche des Untergrundes erstellen. Reinigung des Bohrlochs 3x.

Dübel in das Bohrloch einsetzen. Die Unterseite des Tellers muss bündig mit dem Wärmedämm-Verbundsystem sein.

Den Spezialnagel mit dem Hammer einschlagen.

Eingebauter Zustand des Carbon Fix.

Carbon Fix	
Verwendungszweck Montageanleitung	Anhang B 3

Dübeltyp					Carbon Fix
Verankerungsgrund	Rohdichte- klasse ρ [kg/dm³]	Mindest- druck- festigkeit f _b [N/mm ²]	Bemerkungen	Bohr- verfahren	N _{Rk}
Beton C16/20 - C50/60		[14/11111]			
EN 206-1:2000				Hammer	0,9
dünne Betonplatten (z.B. Wetterschalen) Beton C12/15 – C50/60 EN 206-1:2000			Dicke der dünnen Betonplatte: 100 mm > h ≥ 40 mm	Hammer	0,9
Mauerziegel, Mz z.B. nach DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,8	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagefläche reduziert	Hammer	0,9
Kalksandvollstein, KS z.B. nach DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagefläche reduziert	Hammer	0,9
Hochlochziegel, HLz z.B. nach DIN 105-100:2012-01 / EN 771-1:2011	≥ 0,8	12	Querschnitt mehr als 15 % und weniger als 50 % durch Lochung senkrecht zur Lagefläche reduziert	Dreh- bohren	0,6 1)
Kalksandlochstein, KSL z.B. nach DIN V 106:2005-10 / EN 771-2:2011	≥ 1,6	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagefläche reduziert	Dreh- bohren	0,9 2)
Haufwerksporiger Leichtbeton, LAC 4 – LAC 25 z.B. nach EN 1520:2011-06 / EN 771-3:2011	≥ 0,7	4		Hammer	0,9
Porenbeton, AAC 4 – AAC 7 z.B. nach DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4		Dreh- bohren	0,5

Der Wert gilt für Außenstegdicken von ≥ 11 mm, ansonsten ist die charakteristische Zugtragfähigkeit durch Ausziehversuche am Bauwerk zu ermitteln.

Carbon Fix	
	Anhang C 1
Leistungen	Aimang 0 1
Charakteristische Zugtragfähigkeit	

Der Wert gilt für Außenstegdicken von ≥ 20 mm, ansonsten ist die charakteristische Zugtragfähigkeit durch Ausziehversuche am Bauwerk zu ermitteln.

Tabelle C2: Punktbezogener Wärmedurchgangskoeffizient gemäß EOTA Technical Report TR 025:2007-06				
Dübeltyp	Dämmstoffdicke	punktbezogener Wärmedurchgangskoeffizient		
, , , , , , , , , , , , , , , , , , ,	h _D [mm]	χ [W/K]		
Carbon Fix	60 – 260	0,001		

Tabelle C3: Tellersteifigkeit gemäß EOTA Technical Report TR 026:2007-06			
Dübeltyp	Durchmesser des Dübeltellers	Tragfähigkeit des Dübeltellers	Tellersteifigkeit
	[mm]	[kN]	[kN/mm]
Carbon Fix	60	1,5	1,17

Verankerungsgrund	Rohdichte- klasse	Mindest- Druckfestigkeit	Zugkraft	Verschiebung
	ρ [kg/dm³]	f _b [N/mm²]	N [kN]	δ(N) [mm]
Beton C16/20 – C50/60			0,3	0,4
EN 206-1:2000				
dünne Betonplatten (z.B. Wetterschalen)				
Beton C12/15 – C50/60			0,3	0,5
EN 206-1:2000				
Mauerziegel, Mz	≥ 1,8	12	0,3	0,5
DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,0	12		0,5
Kalksandvollstein, KS	≥ 1,8	12	0,3	0,3
DIN V 106:2005-10 / EN 771-2:2011		12		0,0
Hochlochziegel, HLz	≥ 0,8	12	0,2	0,5
DIN 105-100:2012-01 / EN 771-1:2011		12		0,0
Kalksandlochstein, KSL	≥ 1,6	12	0,3	0,4
DIN V 106:2005-10 / EN 771-2:2011	_ 1,0	12		0,-
Haufwerksporiger Leichtbeton				
LAC 4 – LAC 25	≥ 0,7	4	0,3	0,5
EN 1520:2011-06 / EN 771-3:2011				
Porenbeton AAC 4 – AAC 7	> 0.55	4	0.15	0.4
DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4	0,15	0,4

Carbon Fix	
Leistungen Punktbezogener Wärmedurchgangskoeffizient, Tellersteifigkeit Verschiebungen	Anhang C 2