

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0245 of 7 May 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system BIT-500 (TOP) for concrete

Bonded anchor with anchor rod for use in concrete

BIT United Ltd 5 London Road SW17 9JR LONDON . GROSSBRITANNIEN

UK FACTORY PLANT 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0245

Page 2 of 27 | 7 May 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0245

Page 3 of 27 | 7 May 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System BIT-500 (TOP) for concrete" is a bonded anchor consisting of a cartridge with injection mortar BIT-500 (TOP) and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

European Technical Assessment ETA-15/0245

Page 4 of 27 | 7 May 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

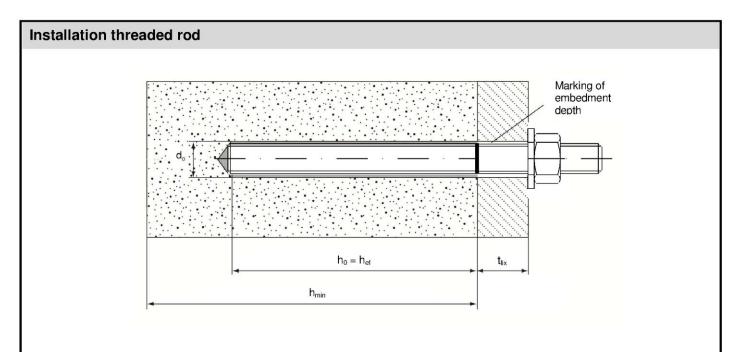
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

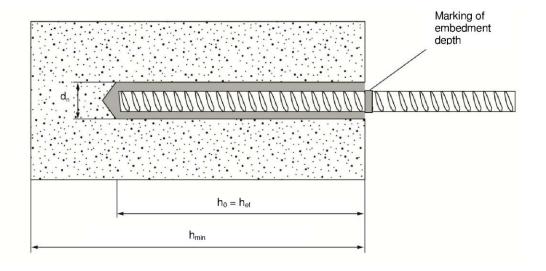
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

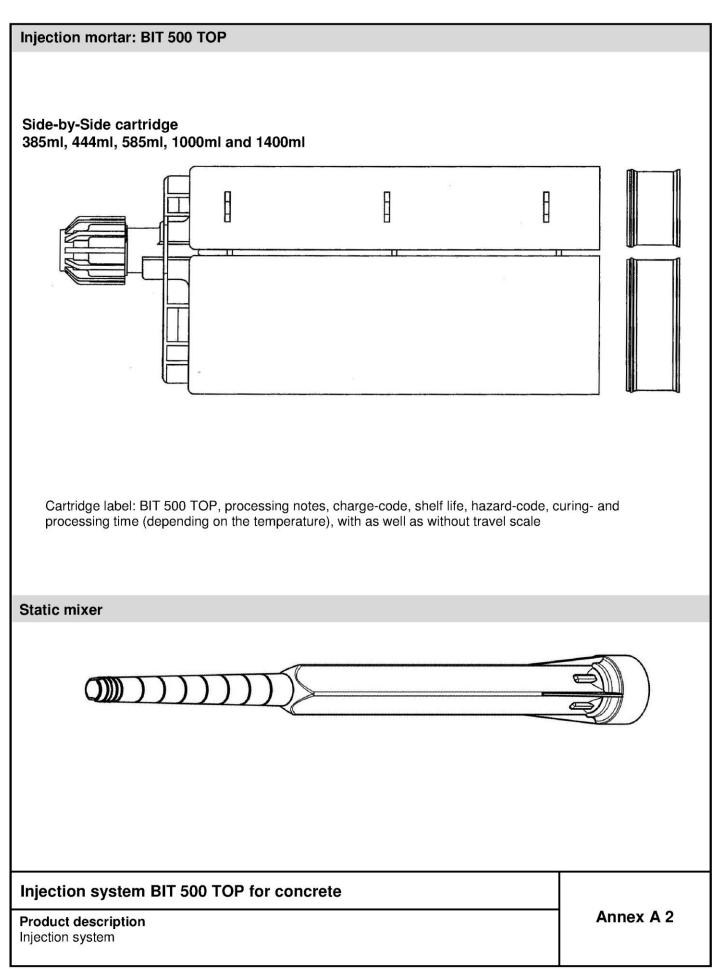
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 7 May 2015 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentBaderschneider

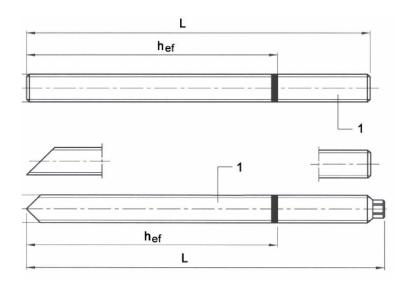
Installation reinforcing bar

 d_0 = diameter of bore hole

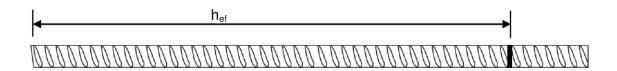

 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole


Injection system BIT 500 TOP for concrete	
Product description Installed condition	Annex A 1

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-12004+AC:2010 Rib hight of the bar shall be in the range $0.05 * d \le h_{rib} \le 0.07 * d$ (d = Nominal diameter of the rebar; h: Rib height of the bar)

Injection system BIT 500 TOP for concrete Product description Threaded rod and reinforcing bar Annex A 3

Z25821.15

electronic copy of the eta by dibt: eta-15/0245

Table A1: Materials

Part	Designation	Material					
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel,							
hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009							
Steel, EN 10087:1998 or EN 10263:2001							
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009					
		A ₅ > 8% fracture elongation					
		Steel acc. to EN 10087:1998 or EN 10263:2001					
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN ISO 898-2:2012,					
_	Tronagen mai, Entree needleend	Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,					
	W. J. 51100 007 0000	Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
0	Washer, EN ISO 887:2006,	Charlesing plated as bot discount and					
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
<u> </u>							
Stain	less steel						
		Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,					
1	Anchor rod	> M24: Property class 50 EN ISO 3506-1:2009					
'	7 TIONOT TO	≤ M24: Property class 70 EN ISO 3506-1:2009					
A ₅ > 8% fracture elongation							
_	l	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,					
2 Hexagon nut, EN ISO 4032:2012		> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009					
		≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
_	Washer, EN ISO 887:2006,	M					
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005					
High	corrosion resistance steel						
		Material 1.4529 / 1.4565, EN 10088-1:2005,					
1	Anchor rod	> M24: Property class 50 EN ISO 3506-1:2009					
'	Alichor rod	≤ M24: Property class 70 EN ISO 3506-1:2009					
		A ₅ > 8% fracture elongation					
		Material 1.4529 / 1.4565 EN 10088-1:2005,					
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009					
		≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4529 / 1.4565, EN 10088-1:2005					
	or EN ISO 7094:2000						
Rein	forcing bars						
	Rebar EN 1992-1-1:2004+AC:2010,	Bars and de-coiled rods class B or C					
1	Annex C	f _{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013					
	/ WITTON 3	$\int f_{uk} = f_{tk} = k \cdot f_{vk}$					

Injection system BIT 500 TOP for concrete	
Product description	Annex A 4
Materials	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: -40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system BIT 500 TOP for concrete	
Intended Use Specifications	Annex B 1

Z25821.15 8.06.01-58/15

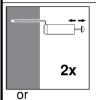
electronic copy of the eta by dibt: eta-15/0245

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
E(f):	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
t _{fix,min} [mm] >		. 0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective analysis of authority	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160


Injection system BIT 500 TOP for concrete	
Intended Use Installation parameters	Annex B 2
	l

Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

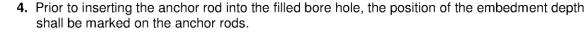
6 Bar 2X

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.

2b. Check brush diameter (Table B4) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B4).



2c. Finally blow the hole clean again with compressed air or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar.

In-flowing water must not contaminate the bore hole again.

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent colour.

Injection system BIT 500 TOP for concrete	
Intended Use Installation instructions	Annex B 3

Installation instructions (continuation)

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than Ø 20 mm a piston plug and extension nozzle (Annex B 5) shall be used. Observe the gel-/ working times given in Table B3.

7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

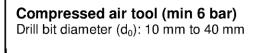
9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

Injection system BIT 500 TOP for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 4


Table B4: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		8		Wille.	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
9999999999999999	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm



Injection system BIT 500 TOP for concrete	
Intended Use Cleaning and setting tools	Annex B 5

Table C1: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

in no	on-cracked co	ncrete	(Design	acco	raing	to IK	029)					
Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension resis Steel, property class 5.8	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension resis Steel, property class 8.8	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a	₹,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and co	oncrete cone failure											
Characteristic bond resista	nce in non-cracked co	ncrete C20/	/25									
Temperature range I: dry and wet concrete		$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12	
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
		C30/37		1,04								
Increasing factors for concr ψ_c	rete	C40/50		1,08								
		C50/60		1,10								
Splitting failure												
		ŀ	n / h _{ef} ≥ 2,0	1	,0 h _{ef}		h _{ef}					
Edge distance	_	2,0 > h	n / h _{et} > 1,3	4,6 h	n _{ef} - 1,8 h	1	,3					
•		ŀ	h / h _{ef} ≤ 1,3		2,26 h _{ef}		1,0·h			c _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]				2 0	er,sp	<u>.,,</u>	ei		
Installation safety factor (dr	y and wet concrete)	γ2			1,2				1,4			
Installation safety factor (flo	ooded bore hole)	γ ₂					1	,4				

Table C2:	Characteristic values of resistance for threaded rods under tension loads
	in cracked concrete (Design according to TR 029 and TR 045)

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	М 30	
Steel failure										
Characteristic tension re Steel, property class 4.6		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8		$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	42	78	122	176	230	280	
Characteristic tension resistance, Steel, property class 8.8		$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	67	125	196	282	368	449	
Characteristic tension re Stainless steel A4 and I property class 50 (>M24	$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	59	110	171	247	230	281		
Combined pull-out and	d concrete cone failure	•								
Characteristic bond resi	stance in cracked concr	ete C20/25								
		τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Performance Determined (NPD)				
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Pe	rformance I	Determined	(NPD)	
		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II:		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Performance Determined (NPD)				
60°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Performance Determined (NI				
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)	
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)	
ncreasing factors for co	oncrete	C30/37				1,0)4			
only static or quasi-stat	tic actions)	C40/50				1,0)8			
Ψc		C50/60		_			0			
nstallation safety factor	(dry and wet concrete)	γ2		1,2			1,4			
Installation safety factor	(flooded bore hole)	γ2	1,4							

Injection system BIT 500 TOP for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045 $\,$

Annex C 2

Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045)

045)											
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88	
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	13	25	No Performance Determined (NPD				
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo	ormance	18	34	53	70	91	111	
	$V_{Rk,s,seis,C2}$	[kN]	Determined (NPD)		17	31	No Per	formance [Determined	(NPD)	
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s,seis,C1}	[kN]		ormance	30	55	85	111	145	177	
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Per	formance [Determined	(NPD)	
Characteristic shear resistance.	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s,seis,C1}	[kN]		No Performance		48	75	98	91	111	
property class 50 (>MZ4) and 70 (\$ MZ4)	V _{Rk,s,seis,C2}	[kN]	Determined (NPD)		24	44	No Performance Determined (NPD)				
Steel failure with lever arm											
Characteristic bending moment, Steel, property class 4.6	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900	
	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance (Determined	I (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]									
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]		No Performance Determined (NPD)							
	M ⁰ _{Rk,s,seis,C2}	[Nm]						(=)			
Characteristic handing manner	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance [Determined	I (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]				The Ferral Maries Selection and Civil Sy					
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}				No Per	formance [Determined	I (NPD)			
	M ⁰ _{Rk,s,seis,C2}	[Nm]									
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors			2,0								
Installation safety factor	γ2					1	,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR 02	29 for the design	n of Bond	led Ancho	ors							
Installation safety factor	γ ₂			•		1	,0		•		

Injection system BIT 500 TOP for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045 $\,$

Annex C 3

Installation safety factor (flooded bore hole)

1,4

Anchor size reinforcing b	par			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	N _{Rk,s}	[kN]	A _s x f _{uk}								
Combined pull-out and c	oncrete cone failure											
Characteristic bond resista	nce in non-cracked co	ncrete C20/	25									
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	•	1,04								
Increasing factors for conc ψ_c	rete	C40/50		1,08								
		C50/60		1,10								
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 7					
Edge distance	-	2,0 > h	/ h _{ef} > 1,3	4,6	4,6 h _{ef} - 1,8 h		1,3 -					
	-	h	h / h _{ef} ≤ 1,3		2,26 h _{ef}		1		10.	200		Scr,sp
Axial distance		S _{cr,sp}	[mm]		1,0·h _{ef} 2,26·h _{ef}							
	ry and wet concrete)	γ ₂	[]	2 c _{cr,sp}								

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029	Annex C 4

γ2

electronic copy of the eta by dibt: eta-15/0245

Table C5: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to TR 029 and TR 045)

	<u>_</u>				$\dot{-}$	$\overline{}$		$\overline{}$			
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension resi	istance	$N_{Rk,s} = \\ N_{Rk,s,seis,C1}$	[kN]				$A_s \times f_{uk}$				
Combined pull-out and	concrete cone failure	,									
Characteristic bond resist	ance in cracked concre	ete C20/25									
	dry and wet	τ _{Rk,cr}	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	concrete	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
		τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:		τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°C/43°C	flooded have hale	τ _{Rk,cr}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°C/43°C	fireded bara bala	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
		C30/37		1,04							
Increasing factors for cond (only static or quasi-static	crete actions)	C40/50					1,08				
Ψc		C50/60		1,10							
Installation safety factor (d	dry and wet concrete)	γ2		1,2 1,4				,4			
Installation safety factor (f	ilooded bore hole)	γ2					1,4				

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045	Annex C 5

Table C6: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm													
	$V_{Rk,s}$	[kN]	$0.50 \times A_s \times f_{uk}$										
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	No Performance Determined (NPD)					0,44 x A _s x f _{uk}				
Steel failure with lever arm													
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1.2 ·W _{el} · f _{uk}										
	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)										
Concrete pry-out failure													
Factor k in equation (5.7) of Technical Rep TR 029 for the design of bonded anchors	ort		2,0										
Installation safety factor	γ2		1,0										
Concrete edge failure													
See section 5.2.3.4 of Technical Report TR	R 029 for the de	esign of I	Bonded A	Anchors									
Installation safety factor	γ2		1,0										

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045	Annex C 6

Table C7:	Characteristic values of resistance for threaded rods under tension loads
	in non-cracked concrete (Design according to CEN/TS 1992-4)

ın non-c	racked concre	ete (Des	sign acc	cordii	ng to	CEN/	TS 19	92-4)				
Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
Characteristic tension resistance	,	N _{Rk.s}	[kN]	15	23	34	63	98	141	184	224	
Steel, property class 4.6 Characteristic tension resistance		1,-				- 10						
Steel, property class 5.8		N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension resistance Steel, property class 8.8	,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and concre												
Characteristic bond resistance in	non-cracked concrete	C20/25										
dw. and wat apparate		τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12	
400C/040C		+ -	-					_			_	
1100	oded bore hole	τ _{Rk,ucr}	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0	
remperature range II.	and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C floo	oded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
remperature range in.	and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C floo	oded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
Ingrapoling footors for concrete		C30/37		1,04								
Increasing factors for concrete Ψ _c		C40/50		1,08								
<u> </u>		C50/60		1,10								
Factor according to CEN/TS 199	2-4-5 Section 6.2.2.3	k ₈	[-]				10),1				
Concrete cone failure												
Factor according to CEN/TS 199	2-4-5 Section 6.2.3.1	k _{ucr}	[-]				10),1				
Edge distance		C _{cr,N}	[mm]				1,5	i h _{ef}				
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}								
Splitting failure												
		h	/ h _{ef} ≥ 2,0	1,6	0 h _{ef}		n/h _{ef}					
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6 h _e	_f - 1,8 h	2,0						
		h / h _{el} ≤ 1,3		2,26 h _{el}		1,0·h _{ef} 2,26·h _{ef}				r,sp		
Axial distance		S _{cr,sp}	[mm]			1	2 0	cr,sp	, Z,ZC	' l'ef		
Installation safety factor (dry and	wet concrete)	γinst			1,	,2			1	,4		
Installation safety factor (flooded	bore hole)	γinst					1	,4				

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 7

Table C8: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

	•	<u> </u>	<u> </u>				,			
Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resist Steel, property class 4.6	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	34	63	98	141	184	224	
Characteristic tension resist Steel, property class 5.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	42	78	122	176	230	280	
Characteristic tension resist Steel, property class 8.8	ance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449	
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	,	$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	59	110	171	247	230	281	
Combined pull-out and co	ncrete failure									
Characteristic bond resistan	ce in cracked concrete C	20/25								
		τ _{Rk,cr}	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Peri	formance l	Determine	d (NPD)	
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Performance Determined (N				
		$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II: 60°C/43°C		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Peri	formance I	Determine	d (NPD	
		$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Performance Determined (N				
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range III:		τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	No Peri	formance I	Determine	d (NPD	
72°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	176 230 24 282 368 44 247 230 25 5,5 5,5 5,5 5,5 5,5 5 erformance Determined (NF) 4,5 4,0 4 4,5 4,0 4 4,5 4,0 4 4,5 3,5 3,5 3 3,5 3,5 3,5 3 3,6 3,5 3,5 3 3,6 3,5 3,5 3 3,7 3,7 3,7 3 3,7 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,8 3,7 3,7 3 3,7 3,7 3 3,7 3,7 3,7 3 3,7 3 3,7 3,7 3 3,	3,0		
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3.0		3,0		
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Peri		6 230 28 2 368 44 7 230 28 5 5,5 5, 6 5,5 5, 6 5,5 5, 6 4,0 4, 6 4,0 4, 6 4,0 4, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3, 6 3,5 3,5 3,	, ,	
	-1-	C30/37		-,-	- ,-	1.	04		(
Increasing factors for concre (only static or quasi-static ac		C40/50								
ψ_c	,	C50/60								
Factor according to CEN/TS	3 1992-4-5 Section	k ₈	[-]							
Concrete cone failure										
Factor according to CEN/TS 6.2.3.1	3 1992-4-5 Section	k _{cr}	[-]	7,2						
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0) h _{ef}			
Installation safety factor (dry	and wet concrete)	γinst		1	,2		1	,4		
Installation safety factor (flo	oded bore hole)	Yinst				1	,4			

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045	Annex C 8

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod			М8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	14	27	42	56	72	88
closi, property stabbline	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	13	25	No Performance Determined (NPD)			
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	18	34 53 70 91				
, , , , , , , , , , , , , , , ,	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	17 31 No Performance Determined (NPD				
O	$V_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk,s,seis,C1}}$	[kN]		ormance	30	55	85	111	145	177
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50 No Performance Determined (NF				
Characteristic shear resistance.	$V_{\text{Rk,s}}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s,seis,C2}	[kN]	Determined (NPD)		24	No Performance Determined (NPD)				
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8			
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
	$M^0_{Rk,s,seis,C1}$	[Nm]	No Performance Determined (NPD)							
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Observatoristis banding and	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)							
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]						No Performance Determined (NF 98		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
property diases so (>MZ+) and 70 (= MZ+)	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]				l _t = min(h	ef; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	0			

Injection system BIT 500 TOP for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045 $\,$

Annex C 9

Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)

Anchor size reinforcing b	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure													
Characteristic tension resis	tance	$N_{Rk,s}$	[kN]	$A_s \times f_{uk}$									
Combined pull-out and concrete failure													
Characteristic bond resistar	nce in non-cracked concr	ete C20/2	25										
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11	
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0	
Temperature range II:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5	
60°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0	
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0	
72°C/43°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5	
	ncreasing factors for concrete							1,04				•	
Increasing factors for concr Ψ _c								1,08					
Ψс		C50/60		1,10									
Factor according to CEN/TS 1992-4-5 Section 6	5.2.2.3	k ₈	[-]	10,1									
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{ucr}	[-]					10,1					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting failure													
		h	ı / h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 2,0						
Edge distance	_	2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3						
		h	ı / h _{ef} ≤ 1,3	2,26 h _{ef}					1,0·h _{ef}	2,26	-h _{ef}	C _{cr,sp}	
Axial distance		S _{cr,sp}	[mm]					$2\;c_{\text{cr,sp}}$					
Installation safety factor (dr	y and wet concrete)	γinst				1,2				1	,4		
Installation safety factor (flo	oded bore hole)	γinst						1,4					

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 10

English translation prepared by DIBt

Table C11: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

		,					1		,			
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic tension res	istance	$N_{Rk,s} = N_{Rk,s,seis,C1}$	[kN]	$A_s \times f_{uk}$								
Combined pull-out and	concrete failure											
Characteristic bond resist	ance in cracked concr	ete C20/25										
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5		
Temperature range I:	concrete	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5		
40°C/24°C	flooded bore hole	$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0		
	llooded bore flore	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0		
	dry and wet concrete	$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5		
Temperature range II: 60°C/43°C		τ _{Rk,seis,} C1	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5		
	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0		
		τ _{Rk,seis,} C1	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0		
	dry and wet concrete	$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
Temperature range III:		τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0		
72°C/43°C		$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0		
Increasing factors for con-	crete	C30/37		1,04								
(only static or quasi-static	actions)	C40/50					1,08					
Ψc		C50/60		1,10								
Factor according to CEN/TS 1992-4-5 Section	1 6.2.2.3	k ₈	[-]				7,2					
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{cr}	[-]				7,2					
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]	3,0 h _{et}								
Installation safety factor (d	dry and wet concrete)	γinst	Yinst			1,2 1,4						
Installation safety factor (f	looded bore hole)	γinst	1,4									

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045	Annex C 11

electronic copy of the eta by dibt: eta-15/0245

Table C12: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,5	50 x A _s x	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	No Performance Determined (NPD) 0,44 x A _s x f _{uk}					(f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0								
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]				I _f = m	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	γinst						1,0				

Injection system BIT 500 TOP for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045	Annex C 12

Table C13: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size thre	eaded rod	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked concrete C20/25 under static and quasi-static action										
40°C/24°C	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40 0/24 0	$\delta_{N_{\infty}} factor$	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60 C/43 C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72 0/43 0	$\delta_{N_\infty} - \text{factor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concret	te C20/25 und	er static, quasi-statio	and se	eismic (C1 actio	n				
40°C/24°C	δ_{N0} – factor	[mm/(N/mm²)]	No Performance Determined		0,032	0,037	0,042	0,048	0,053	0,058
	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
60 G/43 G	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
72 0/43 C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24
Cracked concret	te C20/25 und	er seismic C2 action								
40°C/24°C	$\delta_{\text{N,seis}(\text{DLS})}$	[mm/(N/mm²)]			0,03	0,05				
40 0/24 0	$\delta_{\text{N,seis(ULS)}}$	[mm/(N/mm²)]			0,06	0,09]			
60°C/43°C	$\delta_{\text{N,seis}(\text{DLS})}$	[mm/(N/mm²)]	No Performance Determined (NPD)		0,03	0,05	No Performance Determined (N			'Y (NIDD)
00 C/43 C	$\delta_{\text{N,seis(ULS)}}$	[mm/(N/mm²)]			0,06	0,09				u (NFD)
72°C/43°C	$\delta_{\text{N,seis}(\text{DLS})}$	[mm/(N/mm²)]			0,03	0,05	1			
72.0/43.0	$\delta_{\text{N,seis(ULS)}}$	[mm/(N/mm²)]			0,06	0,09				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} - factor \cdot \tau$;

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action											
All tomporatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
All temperatures	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C20/25 under seismic C2 action											
All tomporatures	$\delta_{\text{V,seis}(\text{DLS})}$	[mm/kN]	No Performance Determined		0,2	0,1	,1 No Parformanaa Datarmi		Octormino	and (NDD)	
All temperatures	$\delta_{\text{V,seis}(\text{ULS})}$	[mm/kN]		PD)	0,2	0,1	No Performance Determined (N			u (INPD)	

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0} - factor \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty} - factor \cdot V; \end{split}$$

stem BIT 500 TOP for concrete	
Anne	x C 13
nreaded rods)	
	11116

Anchor size	reinforcing b	oar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action											
4000/0400	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	δ _{N∞} – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
6000/4000	δ _{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked cor	ncrete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	ion				
4000/0400	δ_{N0} – factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	δ _{N∞} – factor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]		ormance	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	Determined (NPD)		0,24	0,24	0,24	0,24	0,24	0,24	0,24
7000/4000	δ _{N0} – factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - factor \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} - factor \cdot \tau;$

Table C16: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} - \text{factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty} - \text{factor} \cdot V; \end{split}$$

Injection system BIT 500 TOP for concrete	
Application with reinforcing bar Displacements	Annex C 14

8.06.01-58/15 Z25821.15