

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0274 of 9 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection

Post-installed rebar connection with Injection System IM PURE HX ETA 1 and IM PURE HX ETA 7

TER LAARE VERANKERINGSTECHNIEKEN BV. ZWARTE ZEE 20 3140 MAASSLUIS NIEDERLANDE

Ter Laare Verankeringstechnieken BV Plant 1

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0274

Page 2 of 15 | 9 June 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 15 | 9 June 2015

European Technical Assessment ETA-15/0274 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this approval is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 25 mm according to Annex A 2 and injection mortar IM PURE HX ETA 1 and IM PURE HX ETA 7 are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Design values of the ultimate bond resistance	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

Page 4 of 15 | 9 June 2015

European Technical Assessment

ETA-15/0274

English translation prepared by DIBt

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

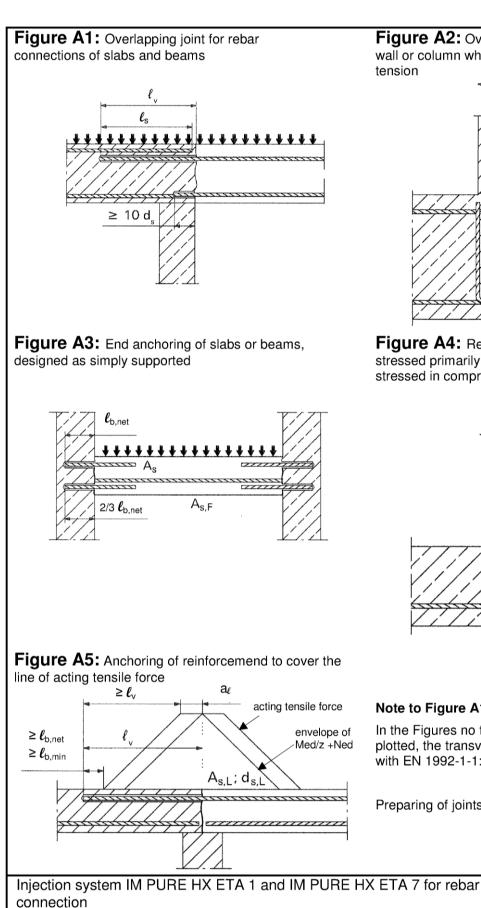
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use(s)	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 June 2015 Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider

Product description Installed condition and examples of use for rebars Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

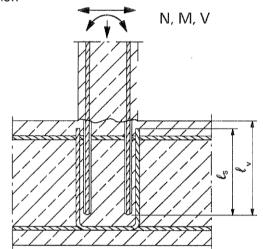
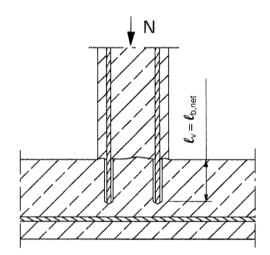



Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

Annex A 1

Product description	and intended us	Se				
Injection mortar: IM PURE HX ETA 1 and IM PURE HX ETA 7 Typ "side-by-side": 385 ml, 585 ml, 1000 ml and 1400 ml	processing notes, ch	ETA 1 and IM PURE HX ETA 7 harge-code, shelf life, hazard-co the temperature), with as well as	de, curing- and processing			
Static Mixer						
Piston plug and mixer extension						
Reinforcing bar (rebar): ø8, ø10, ø12, ø	14, ø16, ø20, ø22, ø24, ø2	25			
		o EN 1992-1-1:2004+AC:2010				
 Rib height of the bar shal (d: Nominal diameter of the state of the st						
Table A1: Materials						
		Motorial				
Designation Rebar EN 1992-1-1:2004+	DesignationMaterialRebar EN 1992-1-1:2004+AC:2010, Annex CBars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$					
Injection system IM PURE connection	HX ETA 1 and IM I	PURE HX ETA 7 for rebar				
Product description Injection mortar / Static mixe Materials	Injection mortar / Static mixer / Rebar					

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ds + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

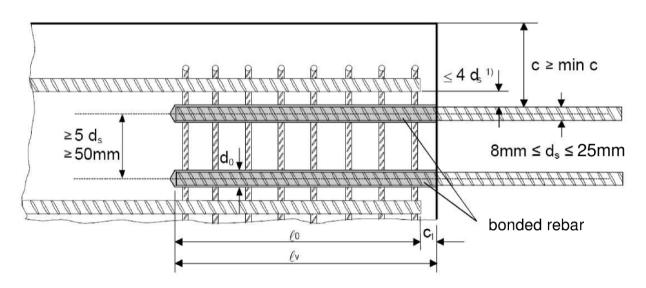
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010 and Annex B 2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- Dry or wet concrete.
- · It must not be installed in flooded holes.
- · Hole drilling by hammer drill or compressed air drill mode.
- The installation of post-installed rebar shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection	
Intended use Specifications	Annex B 1


Page 8 of European Technical Assessment ETA-15/0274 of 9 June 2015

English translation prepared by DIBt

Figure B1: General design rules of construction for post-installed in rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- · The joints for concreting must be roughened to at least such an extent that aggregate protrude.

1) If the clear distance between lapped bars exceeds 4d_s, then the lap length shall be increased by the difference between the clear bar distance and 4d_s.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c₁ concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2 d_s diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

Inie

Injection system IM PURE HX ETA 1	and IM PURE HX ETA 7 for rebar
connection	

Intended use

General construction rules for post-installed rebars

	ng method			
Drilling method	Rebar diameter	Without drilli	ng aid	With drilling aid
Le ver en el d'Ultre el	< 25 mm	30 mm + 0,06 · ℓ_v	≥ 2 d _s 3	$30 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2$
lammer drilling	= 25 mm	40 mm + 0,06 · ℓ_v	≥ 2 d _s 4	40 mm + 0,02 · $\ell_{v} ≥ 2$
	< 25 mm	50 mm + 0,08 · ℓ_v	Ę	50 mm + 0,02 · ℓ _v
Compressed air drilling	= 25 mm	$60 \text{ mm} + 0.08 \cdot \ell_v$	e	60 mm + 0,02 · ℓ _v
able B2: Maximum ins	Italiation length I _{ma}	x		
igotimes d _s				
8 mm	1000			
10 mm	1000	_		
12 mm 14 mm	<u>1200</u> 1400	_		
16 mm	1400	-		
20 mm	2000	-		
22 mm	2000			
24 mm	2000			
25 mm	2000			
Concrete temp		ling time and curi - / working time ¹⁾	Minimum c	uring time in ncrete ²⁾
			Minimum co dry co	uring time in ncrete ²⁾ _{e,dry}
	perature Gelling	- / working time ¹⁾	Minimum cu dry co t _{cur}	ncrete ²⁾
Concrete tem	perature Gelling 9°C	- / working time ¹⁾ t _{gel}	Minimum co dry co t _{cur} 50	ncrete ²⁾ _{e,dry}
Concrete temp +5°C to +4	9°C 19°C	- / working time ¹⁾ t _{gel} 120 min	Minimum co dry co t _{cur} 50	ncrete ²⁾ _{e,dry}) h
Concrete temp +5°C to + +10°C to +	perature Gelling 9°C 19°C 29°C	- / working time ¹⁾ t _{gel} 120 min 90 min	Minimum cr dry co t _{cur} 50 30 10	ncrete ²⁾ _{e,dry}) h) h
Concrete temp +5°C to + +10°C to + +20°C to +	perature Gelling 9°C 19°C 29°C 29°C 39°C	- / working time ¹⁾ t _{gel} 120 min 90 min 30 min	Minimum cr dry co t _{cur} 50 30 10 6	ncrete ²⁾ e,dry) h) h) h

Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for reba connection

Intended use
Minimum concrete cover
Maximum embedment depth / working time and curing times

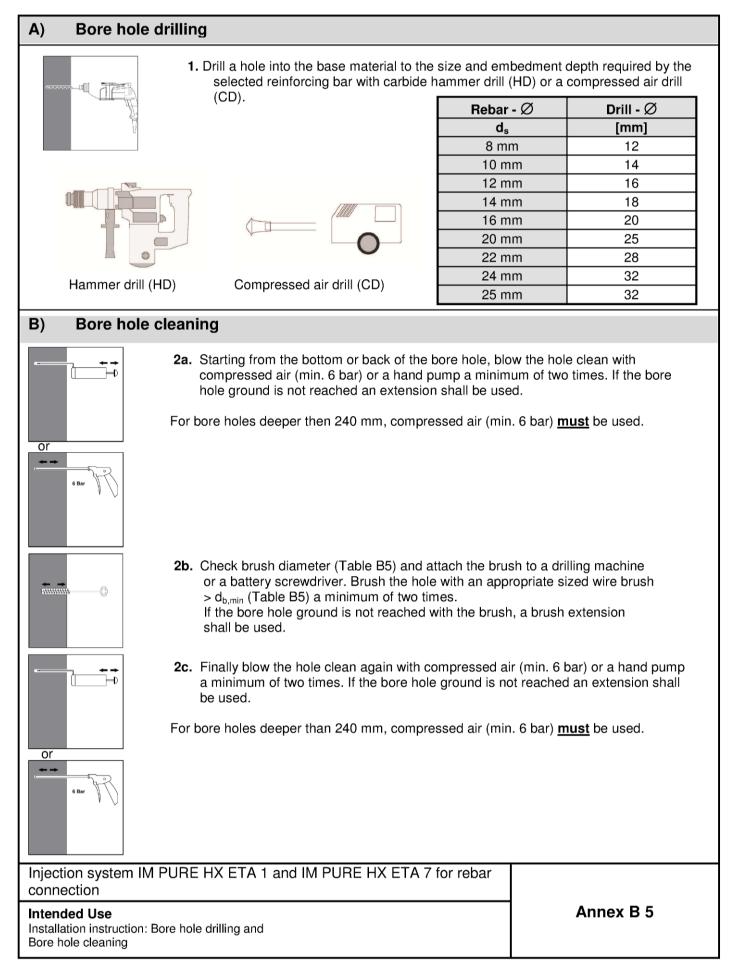
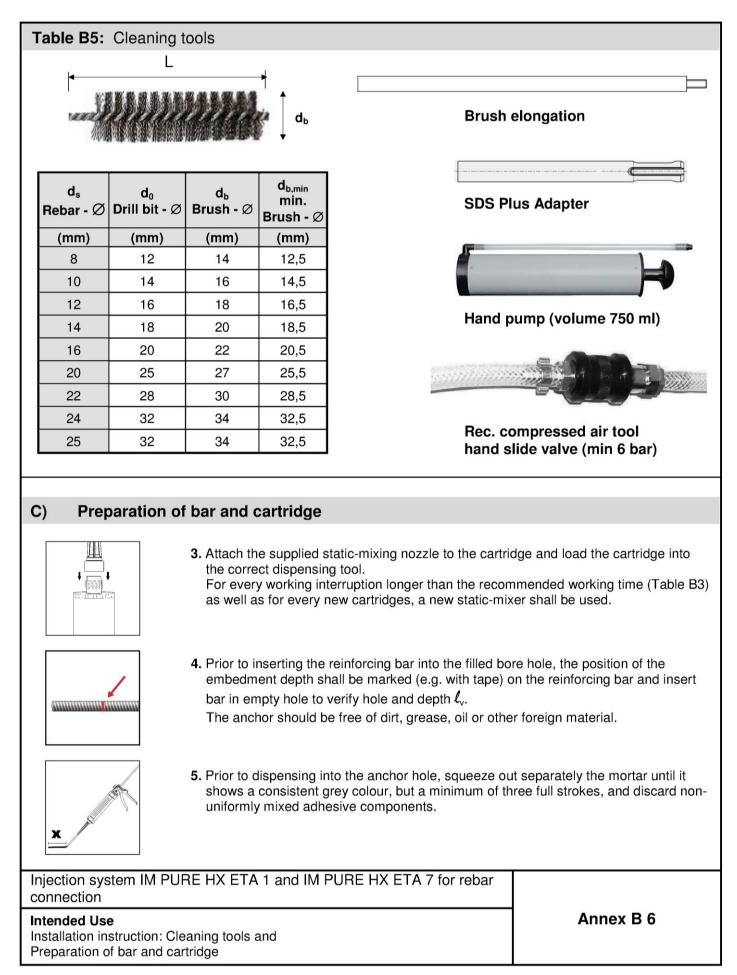


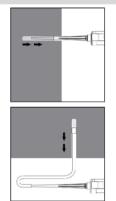
Table B4:	Dispensing tools			
	Cartridge type/size	Hand tool	Pneumatic tool	
	Side-by-side cartridges 385, 585 ml			
		e.g. SA 296C585	e.g. Type TS 444 KX	
	Side-by-side cartridge 1000 ml	-		
			e.g. Type TS 4104	
	Side-by-side cartridge 1400 ml	-	e.g. Type TS 471	

All cartridges could also be extruded by a battery tool.

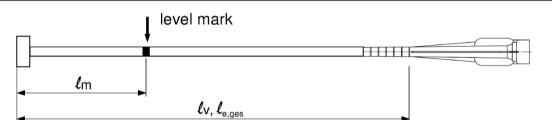
Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection	
Intended Use Dispensing tools	Annex B 4



Page 12 of European Technical Assessment ETA-15/0274 of 9 June 2015

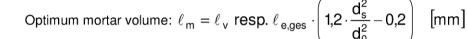

English translation prepared by DIBt

D) Filling the bore hole


6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.


Table B6: Piston plugs, max anchorage depth and mixer extension

Drill bit - Ø Pisto				Cartridge: side-by-side (385, 585, 1000, 1400 ml)			Cartridge: side-by-side (1000, 1400 ml)			
Bar size		plug	Hand or battery tool		Pneumatic tool		Pneumatic tool			
	HD PD		I _{max}	Mixer extension	I _{max}	Mixer extension	I _{max}	Mixer extension		
(mm)	(m	m)	No.	(cm)		(cm)		(cm)		
8	12	-	-	70 VL 10/0,7		80		80	VL 10/0,75	
10	14	I	#14		#16 70				100	VL 10/0,75
12	1	6	#16				100		120	
14	1	8	#18				100		140	
16	2	0	#20		VL 10/0,75		VL 10/0,75	160		
20	25	26	#25			70			VL 16/1,8	
22	2	8	#28	50		70		200		
24	3	2	#32	50		50		200		
25	3	2	#32			50				

Injection tool must be marked by mortar level mark ℓ_m and anchorage depth ℓ_v resp. $\ell_{e,ges}$ with tape or marker. Quick estimation: $\ell_m = 1/3 \cdot \ell_v$

Continue injection until the mortar level mark ℓ_m becomes visible.

Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection

Intended Use

Installation instruction: Filling the bore hole

Page 14 of European Technical Assessment ETA-15/0274 of 9 June 2015

English translation prepared by DIBt

E) Inserting the rebar Push the reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. h_{ef} The bar should be free of dirt, grease, oil or other foreign material. 8. Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation fix embedded part (e.g. wedges). 9. Observe gelling time t_{gel}. Attend that the gelling time can vary according to the base material temperature (see Table B3). It is not allowed to move the bar after geling time t_{gel} has elapsed. Allow the adhesive to cure to the specified time prior to applying any load. Do not move or load the bar until it is fully cured (attend Table B3). After full curing time t_{cure} has elapsed, the add-on part can be installed.

Injection system IM PURE HX ETA	1 and IM P	URE HX ET/	A 7 for rebar
connection			

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 $\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by a factor according to Table C1.

Concrete class	Drilling method	Factor	
C12/15 to C50/60	Hammer drilling and compressed air drilling	1,0	

Table C2: Design values of the ultimate bond resistance f_{bd} in N/mm² for all drilling methods for good conditions

according to EN 1992-1-1:2004+AC:2010 for good bond conditions (for all other bond conditions multiply the values by 0.7)

Rebar - Ø	Concrete class								
ds	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Injection system IM PURE HX ETA 1 and IM PURE HX ETA 7 for rebar connection

$\begin{array}{l} \textbf{Performances} \\ \text{Minimum anchorage length and minimum lap length} \\ \text{Design values of ultimate bond resistance } f_{\text{bd}} \end{array}$

Annex C 1