

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0392 of 3 November 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Bremfix Seismic Epoxy for concrete

Bonded anchor for diamond coring for use in uncracked concrete

Bremick Fasteners Pty Limited Unit F1 62 Maddox Street ALEXANDRIA NSW 2015 AUSTRALIEN

Bremick Plant 1

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-15/0392 issued on 6 July 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0392

Page 2 of 23 | 3 November 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 3 November 2015

Specific Part

1 Technical description of the product

The "Injection System Bremfix Seismic Epoxy for concrete for concrete" is a bonded anchor consisting of a cartridge with injection mortar Bremfix Seismic Epoxy and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for design according to TR 029	See Annex C 1 to C 4		
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 5 to C 8		
Displacements under tension and shear loads	See Annex C 9 to C 10		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-15/0392

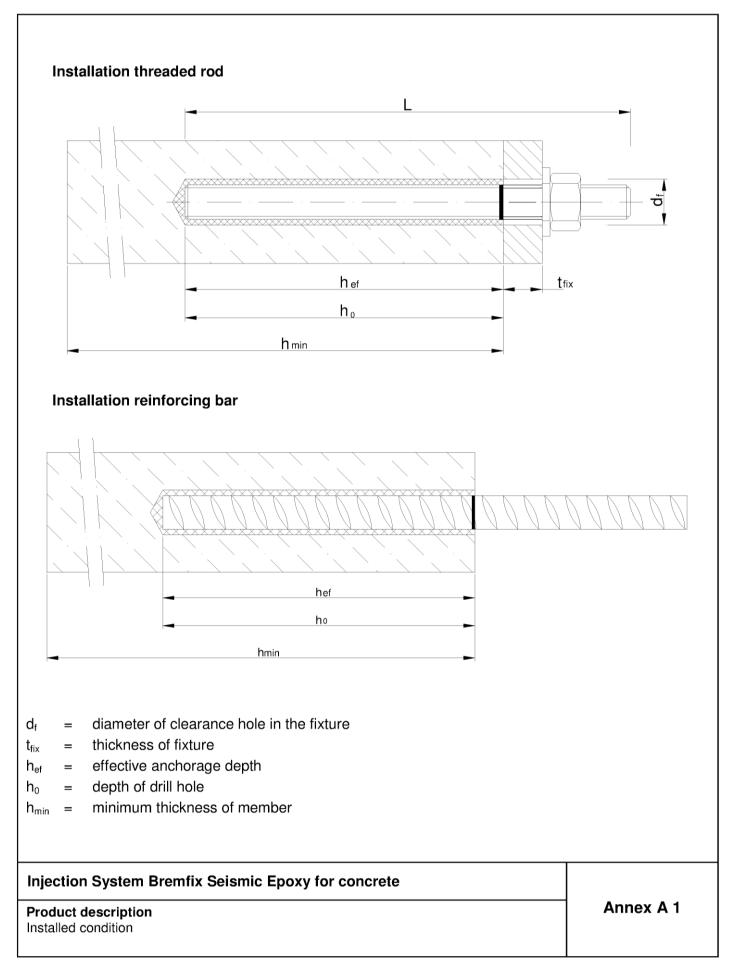
Page 4 of 23 | 3 November 2015

English translation prepared by DIBt

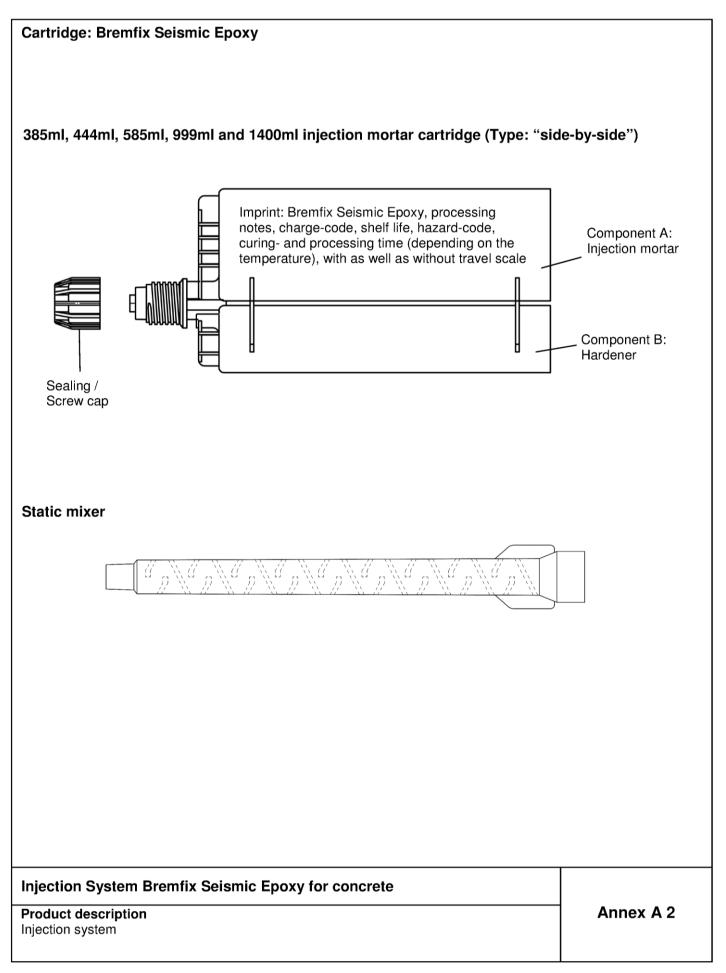
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 3 November 2015 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-15/0392 of 3 November 2015

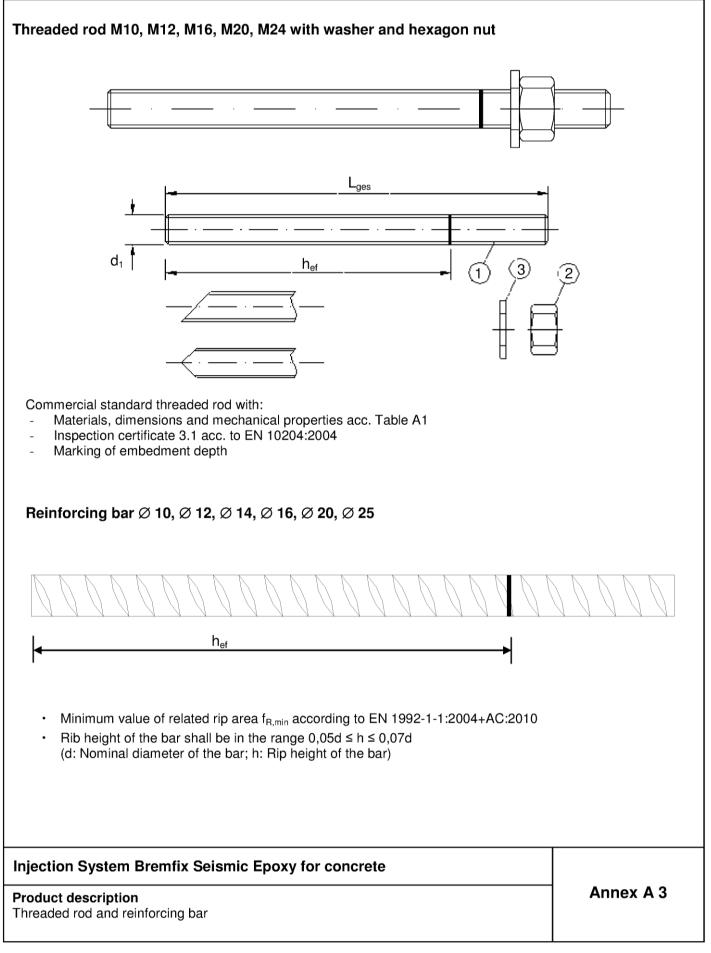


Table A1: Materials

Part	Designation	Material					
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 μm acc. to EN ISO		C:2009				
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-8					
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stain	less steel						
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 ≤ M24: Property class 70 EN ISO 3506-					
2	Hexagon nut, EN ISO 4032:2012		Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005					
High	corrosion resistance steel						
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, ≤ M24: Property class 70 EN ISO 3506-1:2009					
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005				
Reinf	orcing bars						
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013				
	ction System Bremfix Seismic Epoxy f	or concrete	Anney A.4				
Prod	luct description		Annex A 4				

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M10 to M24, Rebar Ø10 to Ø25.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M10 to M24, Rebar Ø10 to Ø25.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Bremfix Seismic Epoxy for concrete

Intended Use Specifications

Anchor size		M 10	M 12	M 16	M 20	M 24	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96	
hole depth	h _{ef,max} [mm] =	200	240	320	400	480	
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14	18	22	26	
Diameter of steel brush	d _b [mm] ≥	14	16	20	26	30	
Torque moment	T _{inst} [Nm]	20	40	80	120	160	
Thickness of fixture	t _{fix,min} [mm] >	0					
Thickness of fixture	t _{fix,max} [mm] <	1500					
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀					
Minimum spacing	s _{min} [mm]	50	60	80	100	120	
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	

Table B2: Installation parameters for rebar

Rebar size	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	32
Embedment depth and bore	h _{ef,min} [mm] =	60	70	75	80	90	100
hole depth	h _{ef,max} [mm] =	200	240	280	320	400	500
Diameter of steel brush	d _⊳ [mm] ≥	16	18	20	22	26	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	70	80	100	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	125

Injection System Bremfix Seismic Epoxy for concrete

Intended Use Installation parameters

Steel brush Table B3: Parameter cleaning and setting tools $\mathbf{d}_{\mathsf{b},\mathsf{min}}$ Piston Threaded \mathbf{d}_0 d_{b} Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm) (mm) (mm) (mm) (mm) (No.) M10 12 14 12,5 M12 10 14 16 14,5 No 12 16 18 16,5 piston plug required M16 14 20 18 18,5 22 16 20 20,5 20 M20 24 26 24,5 # 24 M24 28 30 # 28 28,5 25 32 34 32,5 # 32

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

Injection System Bremfix Seismic Epoxy for concrete

Intended Use

Cleaning and setting tools

Installation in	structions							
	1b. Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth						
	2a. Rinsing with water until clear water comes out.							
<u>********</u> ** 2x	2b. Check brush diameter acc. Table B3 and attach the brush to a drilling machine or a batter screwdriver. Brush the hole with an appropriate sized wire brush > d _{b,min} (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).							
÷.	2c. Rinsing again with water until clear water comes out.							
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.						
2x	2d. Starting from the bottom or back of the bore hole, blow the hole cle. (Annex B3) (min. 6 bar) a minimum of two times. If the bore hole gr extension shall be used.							
<u>*************************************</u>	 22. Check brush diameter acc. Table B3 and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3). 21. Finally blow the hole clean again with compressed air acc. Annex B3 (min. 6 bar) a minimum of two times. If the bore hole ground is not reached an extension shall be used. After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again. 							
	Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	Ū						
	Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment						
min. 3 full stroke	5 Prior to dispensing into the anchor hole, squeeze out separately a n strokes and discard non-uniformly mixed adhesive components unti consistent grey colour. For foil tube cartridges is must be discarded strokes.	I the mortar shows a						
Injection Systen	Bremfix Seismic Epoxy for concrete							
Intended Use		Annex B 4						

Installation instructions

Installation inst	Installation instructions (continuation)								
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4.								
	7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.								
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).								
20°C e.g.	 Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4). 								
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench. 								

Table B4: Minimum curing time

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

Injection System Bremfix Seismic Epoxy for concrete

Intended Use Installation instructions (continuation) Curing time

d			M 10	M 12	M 16	M 20	M24	
Characteristic tension resistance, Steel, property class 4.6			23	34	63	98	141	
stance,	N _{Rk,s}	[kN]	29	42	78	122	176	
stance,	N _{Rk,s}	[kN]	46	67	125	196	282	
stance, R,	N _{Rk,s}	[kN]	41	59	110	171	247	
oncrete cone failure					•		-	
ance in non-cracked concr	ete C20/2	5						
dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11	10	10	9,5	9,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	9,5	9,5	8,5	
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,0	6,0	5,5	
dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0	
						1,04		
	050/60				1,10			
	C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$			h _{ef}		
	S _{cr,sp}	[mm]		2 C _{cr,sp}				
	γ2		1,0	1,2				
			I	I				
	stance, stance, stance, stance, stance, R, concrete cone failure ance in non-cracked concreant dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete	stance, NRk,s st	stance, NRk,s [KN] stance, Inon-cracked concrete C20/25 flooded bore hole TRk,uer [N/mm²] flooded bore hole TRk,uer [N/m²] ctao/301 Cao/31 Cao/31 <td>stance, NRk,s [kN] 23 stance, NRk,s [kN] 29 stance, NRk,s [kN] 46 stance, NRk,s [kN] 41 stance, NRk,s [kN] 41 oncrete cone failure NRk,s [kN] 41 oncrete cone failure TRk,ucr [N/mm²] 11 flooded bore hole TRk,ucr [N/mm²] 9,0 dry and wet concrete TRk,ucr [N/mm²] 9,0 flooded bore hole TRk,ucr [N/mm²] 5,5 dry and wet concrete TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 C30/37 C40/50 C C Cor,sp [mm] 1,0 s_{or,sp} [mm] 1,0</td> <td>stance, NRk,s [kN] 23 34 stance, NRk,s [kN] 29 42 stance, NRk,s [kN] 46 67 stance, NRk,s [kN] 41 59 oncrete cone failure NRk,s [kN] 41 59 oncrete cone failure TRk,uer [N/mm²] 11 10 flooded bore hole TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 5,5 6,5 flooded bore hole TRk,uer [N/mm²] 5,0 6,0 Cor,sp [mm] <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<></td>	stance, NRk,s [kN] 23 stance, NRk,s [kN] 29 stance, NRk,s [kN] 46 stance, NRk,s [kN] 41 stance, NRk,s [kN] 41 oncrete cone failure NRk,s [kN] 41 oncrete cone failure TRk,ucr [N/mm²] 11 flooded bore hole TRk,ucr [N/mm²] 9,0 dry and wet concrete TRk,ucr [N/mm²] 9,0 flooded bore hole TRk,ucr [N/mm²] 5,5 dry and wet concrete TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 flooded bore hole TRk,ucr [N/mm²] 5,0 C30/37 C40/50 C C Cor,sp [mm] 1,0 s _{or,sp} [mm] 1,0	stance, NRk,s [kN] 23 34 stance, NRk,s [kN] 29 42 stance, NRk,s [kN] 46 67 stance, NRk,s [kN] 41 59 oncrete cone failure NRk,s [kN] 41 59 oncrete cone failure TRk,uer [N/mm²] 11 10 flooded bore hole TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 9,0 10 dry and wet concrete TRk,uer [N/mm²] 5,5 6,5 flooded bore hole TRk,uer [N/mm²] 5,0 6,0 Cor,sp [mm] <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

Table C2: Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete (Design according to TR 029)

Anchor size threaded rod	M 10	M 12	M 16	M 20	M24		
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	$M^0_{Rk,s}$	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	$M^0_{Rk,s}$	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]	2,0				
Installation safety factor	γ2		1,0				
Concrete edge failure							
Installation safety factor	γ2				1,0		

Injection System Bremfix Seismic Epoxy for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

	naracteristic value						ion load	ls in	
Anchor size reinford	ing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									1
Characteristic tension	resistance	N _{Rk,s}	[kN]			As	• f _{uk}		
Combined pullout a	nd concrete cone failur	e	1	1					
Characteristic bond re	esistance in non-cracked	concrete	C20/25						
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II: 60°C/43°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,5	5,5	5,0	5,0
Increasing factor		C30/37			•		04	•	
ψ_c		C40/50	240/50				08 10		
Splitting failure		0.00/00	5			١,	10		
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation safety fact	or	γ2		1,0 1,2					
	n Bremfix Seismic	Ероху	for conc	rete					•
Performances								Annex	C 3

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)

						ear load	ls in non	-	
forcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
out lever arm									
ear resistance	$V_{Rk,s}$	[kN]			0,50 ·	A _s ∙ f _{uk}			
lever arm									
nding moment	${\sf M}^0{}_{\sf Rk,s}$	[Nm]			1.2 • V	V _{el} ∙ f _{uk}			
t failure									
on (5.7) of TR 029 for the anchors	k	[-]	2,0						
factor	γ2		1,0						
ailure									
factor	γ2				1	,0			
	cracked co forcing bar out lever arm ear resistance lever arm ading moment t failure on (5.7) of TR 029 for the anchors factor ailure	Cracked concrete (Definition of the provided in the	cracked concrete (Design according to the series of the	cracked concrete (Design accordingforcing barØ 10out lever arm 0 10out lever arm[kN]ar resistance $V_{Rk,s}$ [kN]lever arm $M^0_{Rk,s}$ [Nm]ading moment $M^0_{Rk,s}$ [Nm]t failure 1 1 on (5.7) of TR 029 for the anchorsk[-]factor γ_2 1 ailure 1 1	cracked concrete (Design according to TR 02 forcing bar Ø 10 Ø 12 out lever arm [kN] Image: Concrete arm ear resistance $V_{Rk,s}$ [kN] Image: Concrete arm bar resistance $V_{Rk,s}$ [kN] Image: Concrete arm bar resistance $V_{Rk,s}$ [kN] Image: Concrete arm bar lever arm Image: Concrete arm Image: Concrete arm Image: Concrete arm bar ding moment $M^0_{Rk,s}$ [Nm] Image: Concrete arm Image: Concrete arm bar on (5.7) of TR 029 for the anchors k [-] Image: Concrete arm Image: Concrete arm bar on (5.7) of TR 029 for the anchors k [-] Image: Concrete arm Image: Concrete arm Image: Concrete arm bar on (5.7) of TR 029 for the anchors k [-] Image: Concrete arm Image: Concrete	cracked concrete (Design according to TR 029)forcing bar \emptyset 10 \emptyset 12 \emptyset 14out lever armbar resistance $V_{Rk,s}$ $[KN]$ $0,50 \cdot$ lever armnding moment $M^0_{Rk,s}$ $[Nm]$ $1.2 \cdot V$ t failureon (5.7) of TR 029 for the anchorsk $[-]$ 2 factor γ_2 11ailure	cracked concrete (Design according to TR 029)forcing barØ 10Ø 12Ø 14Ø 16out lever armbar resistance $V_{Rk,s}$ $[kN]$ $0,50 \cdot A_s \cdot f_{uk}$ lever armnding moment $M^0_{Rk,s}$ $[Nm]$ $1.2 \cdot W_{el} \cdot f_{uk}$ t failureon (5.7) of TR 029 for the anchorsk $[-]$ $2,0$ 1,0adiure	forcing bar Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 out lever arm	

Injection System Bremfix Seismic Epoxy for concrete

Performances Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to TR 029)

Steel, property class 4.6NRk,s[NN]23346394Characteristic tension resistance, Steel, property class 5.8NRk,s[KN]29427812Characteristic tension resistance, Steel, property class 8.8NRk,s[KN]466712519Characteristic tension resistance, Stainless steel A4 and HCR, property class 70NRk,s[KN]415911017Combined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concreteC20/25Temperature range I: 40°C/24°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]11109,flooded bore hole $\tau_{Rk,uer}$ [N/mm²]7,06,56,06,60°C/43°Cflooded bore hole $\tau_{Rk,uer}$ [N/mm²]5,56,56,06,Temperature range II: 60°C/43°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]5,06,05,55,Temperature range III: 72°C/43°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]5,06,05,55,Temperature range III: 72°C/43°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]5,06,05,55,Temperature range III: 72°C/43°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]5,06,05,05,Temperature range III: 72°C/43°Cdry and wet concrete $\tau_{Rk,uer}$ [N/mm²]5,06,05,05,Temperature range III: 72°		98 122 196 171	78 125	42		[kN]			0		
Steel, property class 4.6NRk,s[NN]23346394Characteristic tension resistance, Steel, property class 5.8NRk,s[KN]29427812Characteristic tension resistance, Steel, property class 8.8NRk,s[KN]466712519Characteristic tension resistance, Stainless steel A4 and HCR, property class 70NRk,s[KN]415911017Combined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concrete C20/25Temperature range I: 40°C/24°Cdry and wet concrete flooded bore hole $\tau_{Rk,uer}$ [N/mm²]11109,60°C/43°Cdry and wet concrete flooded bore hole $\tau_{Rk,uer}$ [N/mm²]5,56,56,06,Temperature range II: 60°C/43°Cdry and wet concrete flooded bore hole $\tau_{Rk,uer}$ [N/mm²]5,56,56,06,Temperature range III: 72°C/43°Cdry and wet concrete flooded bore hole $\tau_{Rk,uer}$ [N/mm²]5,06,05,55,Temperature range III: 72°C/43°Cdry and wet concrete 	282	122 196	78 125	42		[kN]			Steel failure		
Characteristic tension resistance, Steel, property class 5.8 $N_{Rk,s}$ $[kN]$ 29427812Characteristic tension resistance, Steel, property class 8.8 $N_{Rk,s}$ $[kN]$ 466712519Characteristic tension resistance, Stainless steel A4 and HCR, property class 70 $N_{Rk,s}$ $[kN]$ 415911017Combined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concrete C20/25Temperature range I: 40°C/24°Cdry and wet concrete flooded bore hole $\tau_{Rk,uer}$ $[N/mm^2]$ 11109,9,Temperature range II: 	282	196	125		00		N _{Rk,s}	Characteristic tension resistance, Steel, property class 4.6			
Characteristic tension resistance, Steel, property class 8.8 $N_{Rk,s}$ $[kN]$ 466712519Characteristic tension resistance, Stainless steel A4 and HCR, property class 70 $N_{Rk,s}$ $[kN]$ 415911017Combined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concrete C20/25Temperature range I: 	247			67	29	[kN]	N _{Rk,s}	Characteristic tension resistance,			
Characteristic tension resistance, Stainless steel A4 and HCR, property class 70 $N_{Rk,s}$ $[kN]$ 415911017Combined pullout and concrete cone failureCombined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concrete C20/25Temperature range I: 40°C/24°Cdry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 1110109,Temperature range II: 60°C/43°Cdry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 7,06,56,06,Temperature range II: flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,56,06,Temperature range III: flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,55,Temperature range III: flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,Temperature range III: flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,Temperature range III: flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,C30/371,04		171	110	67	46	[kN]	N _{Rk,s}	Characteristic tension resistance,			
Combined pullout and concrete cone failureCharacteristic bond resistance in non-cracked concrete C20/25Temperature range I: $40^{\circ}C/24^{\circ}C$ dry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 1110109,Temperature range II: $60^{\circ}C/43^{\circ}C$ dry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,0109,59,Temperature range III: $60^{\circ}C/43^{\circ}C$ dry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,56,06,0Temperature range III: $72^{\circ}C/43^{\circ}C$ dry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,06,05,55,5Temperature range III: $72^{\circ}C/43^{\circ}C$ dry and wet concrete flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,5C30/371,04	9,0			59	41	[kN]	N _{Rk,s}	Characteristic tension resistance, Stainless steel A4 and HCR, property class 70			
Temperature range I: 40°C/24°Cdry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 1110109,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,0109,59,Temperature range II: $60°C/43°C$ dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 7,06,56,06,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,56,06,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,06,05,55,Temperature range III: $72°C/43°C$ dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,06,05,55,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,5,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,	9,0							oncrete cone failure			
Temperature range I: Image: Temperature range II: Image: Temperature range III: Temperature range II	9,0						ete C20/25	ance in non-cracked conci	Characteristic bond resistar		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9,5	10	10	11	[N/mm²]	τ _{Rk,ucr}	iperature range I:			
Temperature range II: $60^{\circ}C/43^{\circ}C$ flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,56,06,0Temperature range III: $72^{\circ}C/43^{\circ}C$ dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,06,05,55,7flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,7flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,7(1000) $\tau_{Rk,ucr}$ $T_{Rk,ucr}$ $T_{Rk,ucr}$ $T_{Rk,ucr}$ $T_{Rk,ucr}$ $T_{Rk,ucr}$	8,5	9,5	9,5	10	9,0	[N/mm²]	τ _{Rk,ucr}	flooded bore hole			
$60^{\circ}C/43^{\circ}C$ flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,56,06,0Temperature range III: $72^{\circ}C/43^{\circ}C$ dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,06,05,55,5flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,0 $T_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,0 $T_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,0 $T_{Rk,ucr}$ $[N/mm^2]$ 5,06,05,05,0	5,5	6,0	6,0	6,5	7,0	[N/mm²]	τ _{Rk,ucr}	dry and wet concrete	Temperature range II:		
Temperature range III: Temperature range III: $72^{\circ}C/43^{\circ}C$ flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ $5,0$ $5,0$ $5,0$ $5,0$ $1,04$	5,5	6,0	6,0	6,5	5,5	[N/mm²]	τ _{Rk,ucr}	flooded bore hole			
72°C/43°C flooded bore hole τ _{Rk,ucr} [N/mm²] 5,0 6,0 5,0 5, C30/37 1,04	5,0	5,0	5,5	6,0	6,0	[N/mm²]	TRk,ucr	dry and wet concrete			
Increasing factor	5,0	5,0	5,0	6,0	5,0	[N/mm²]	τ _{Rk,ucr}	flooded bore hole			
Increasing factor			1,04				C30/37				
C40/50 1,08		1,08					C40/50		-		
C50/60 1,10	1,10						C50/60				
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3k8[-]10,1		10,1			[-]	k ₈	6.2.2.3	Factor according to CEN/TS 1992-4-5 Section 6			
Concrete cone failure									Concrete cone failure		
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1kucr[-]10,1			10,1			[-]	k _{ucr}	6.2.3.1	Factor according to CEN/TS 1992-4-5 Section 6		
Edge distance c _{cr,N} [mm] 1,5 h _{ef}		1,5 h _{ef}				[mm]	C _{cr,N}		Edge distance		
Axial distance s _{cr,N} [mm] 3,0 h _{ef}		3,0 h _{ef}					S _{cr,N}		Axial distance		
Splitting failure									Splitting failure		
Edge distance $c_{cr,sp}$ $[mm]$ $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le$,4 · h _{ef}	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$			[mm]	C _{cr,sp}		Edge distance			
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$			2 c _{cr,sp}			[mm]	S _{cr,sp}		Axial distance		
Installation safety factor 1,0 1,2		,2	1,		1,0		γinst		Installation safety factor		

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k2						
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0				
Installation safety factor	γinst		1,0				
Concrete edge failure							
Effective length of anchor	l _f	[mm]		l _f :	= min(h _{ef} ; 8 d _n	om)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor	γinst				1,0		

Injection System Bremfix Seismic Epoxy for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Table C7: Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)										
Anchor size reinforcing	bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Steel failure										
Characteristic tension res	istance	N _{Rk,s}	[kN]	A _s • f _{uk}						
Combined pullout and c	concrete cone failure	•								
Characteristic bond resist	ance in non-cracked	concrete	C20/25							
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5	
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0	
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0	
Increasing factor	C30/37	7			1,	04				
Increasing factor ψ_c		C40/50					08			
Factor according to	C50/60 1,10				10					
CEN/TS 1992-4-5 Section	k ₈ [-] 10,1),1					
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.3.1	k _{ucr}	[-]	[-] 10,1						
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}						
Axial distance		S _{cr,N}	[mm]	mm] 3,0 h _{ef}						
Splitting failure		-								
Edge distance		C _{cr,sp}	[mm]	[mm] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} (2,5 - 1)$			$\left(5 - \frac{h}{h_{ef}}\right) \le$	$-\frac{h}{h_{ef}} \le 2,4 \cdot h_{ef}$		
Axial distance		S _{cr,sp}	[mm]			2 c	C _{cr,sp}			
Installation safety factor		γinst		1,0	0 1,2					
Injection System B	remfix Seismic I	Ероху	for conci	rete				Annex	C 7	

Table C8: Characteristic concrete (Des						ar loads	in non-o	racked
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure without lever arm								
Characteristic shear resistance $V_{Rk,s}$ [kN] $0,50 \cdot A_s \cdot f_{uk}$								
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8					
Steel failure with lever arm		I						
Characteristic bending moment	[Nm]			1.2 • V	V _{el} ∙ f _{uk}			
Concrete pry-out failure								
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	2,0							
Installation safety factor γ _{inst} 1,0								
Concrete edge failure								
Effective length of anchor	l _f	[mm]					-	_
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	16	20	25
Installation safety factor	γinst				1	,0		

Injection System Bremfix Seismic Epoxy for concrete

Performances

Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Table C9: Displacements under tension load ¹⁾ (threaded rod)											
Anchor size threa	M 10	M 12	M 16	M 20	M24						
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029				
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114				
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033				
Displacement	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond strength

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod		M 10	M 12	M 16	M 20	M24	
Displacement	δ_{v_0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad V; \end{split}$$
V: action shear load

Injection System Bremfix Seismic Epoxy for concrete

Performances Displacements (threaded rods)

Table C11: Displacements under tension load ¹⁾ (rebar)											
Anchor size re	inforcing ba	ar	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25			
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030			
Displacement	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118			
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,020	0,023	0,028	0,034			
Displacement	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \quad \tau; \qquad \quad \tau: \text{ action bond strength}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹⁾ (rebar)

Anchor size reinforcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Displacement	δ_{V0} -factor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δ _{v∞} -factor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty} \text{-factor} \quad V;$

Injection System Bremfix Seismic Epoxy for concrete

Performances Displacements (rebar)