



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



# European Technical Assessment

## ETA-15/0440 of 6 July 2015

English translation prepared by DIBt - Original version in German language

### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

fischer injection system FIS EB

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



## **European Technical Assessment** ETA-15/0440

Page 2 of 27 | 6 July 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 27 | 6 July 2015

### European Technical Assessment ETA-15/0440 English translation prepared by DIBt

### Specific Part

### 1 Technical description of the product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element. The steel element consist of

- a threaded rod with washer and hexagon nut of sizes M8 to M30 or
- a reinforcing bar of sizes  $\phi = 8$  to 40 mm or

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                                                          | Performance           |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements    | See Annex C 1 to C 8  |
| Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements | See Annex C 9 to C 12 |

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | No performance assessed                         |

### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

### 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.



Page 4 of 27 | 6 July 2015

### **European Technical Assessment**

ETA-15/0440

English translation prepared by DIBt

### 3.5 **Protection against noise (BWR 5)**

Not applicable.

- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

### 3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

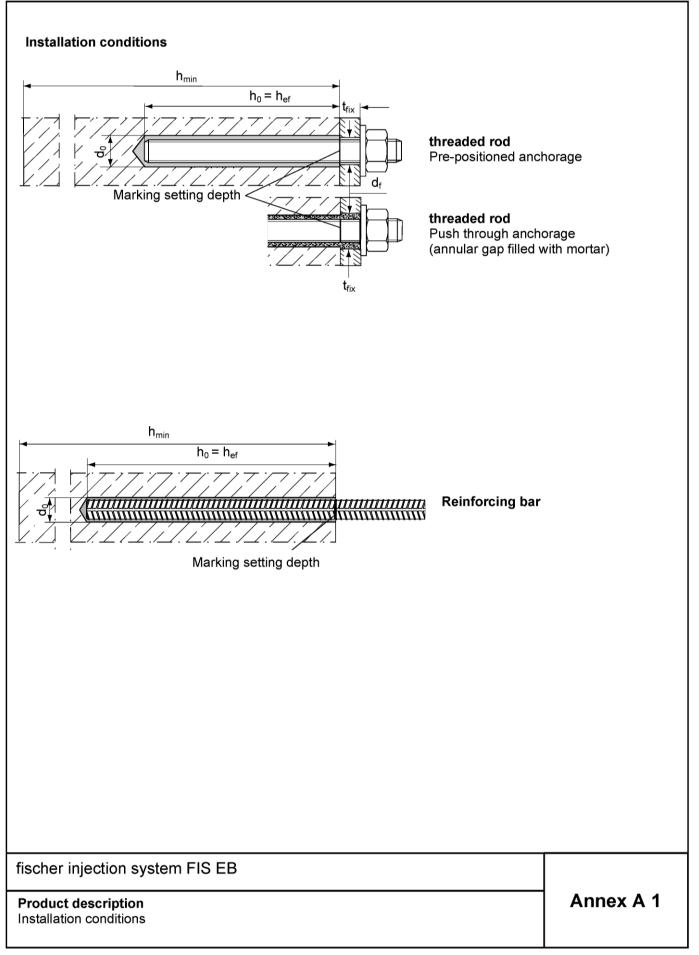
# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                              | Level or class | System |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (heavy-duty type) | For fixing and/or supporting<br>concrete structural elements or<br>heavy units such as cladding and<br>suspended ceilings | _              | 1      |

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 6 July 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

# Page 5 of European Technical Assessment ETA-15/0440 of 6 July 2015

English translation prepared by DIBt





# Page 6 of European Technical Assessment ETA-15/0440 of 6 July 2015

English translation prepared by DIBt



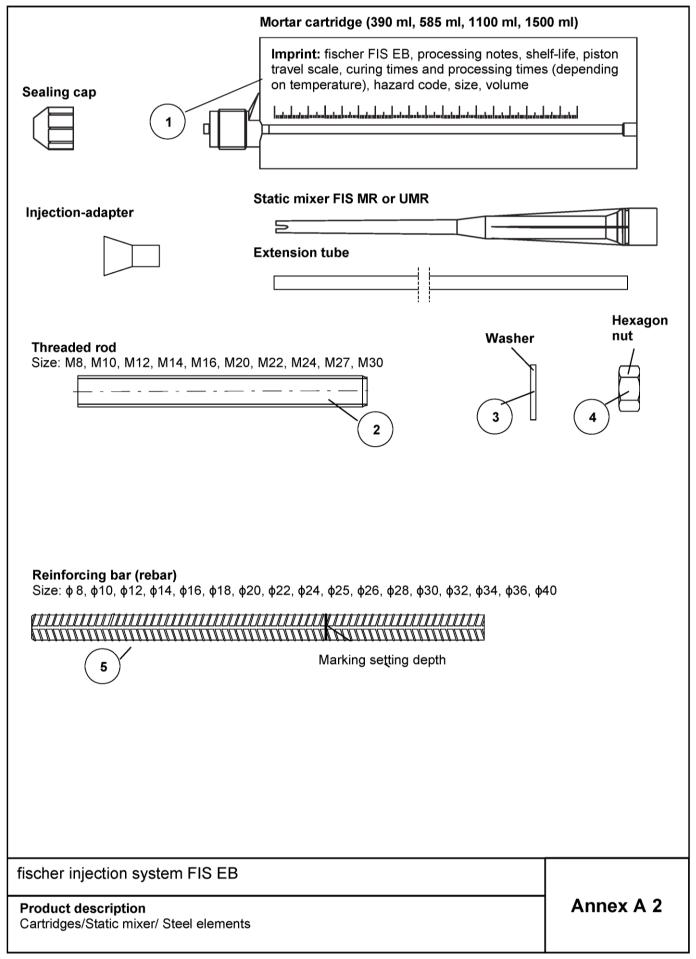



Table A1: Materials



| Part | Designation                                                 | Ma                                                                                                        | aterial                                                                                              |
|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1    | Mortar cartridge                                            | Mortar, ha                                                                                                | ardener, filler                                                                                      |
|      |                                                             | Steel, zinc plated                                                                                        | Stainless steel A4                                                                                   |
|      | Threaded rod                                                | Property class 5.8 or 8.8; EN<br>ISO 898-1: 2013                                                          | Property class 50, 70 or 80<br>EN ISO 3506:2009                                                      |
| 2    |                                                             | zinc plated ≥ 5µm,<br>EN ISO 4042:1999 A2K                                                                | 1.4401; 1.4404; 1.4578; 1.4571;<br>1.4439; 1.4362;                                                   |
| 2    |                                                             | or hot-dip galvanised<br>EN ISO 10684:2004                                                                | 1.4062<br>EN 10088-1:2014                                                                            |
|      |                                                             | $f_{uk} \le 1000 \text{ N/mm}^2$<br>A <sub>5</sub> > 12% fracture elongation                              | $f_{uk} \le 1000 \text{ N/mm}^2$<br>A <sub>5</sub> > 12% fracture elongation                         |
| 3    | Washer<br>ISO 7089:2000                                     | zinc plated ≥ 5µm,<br>EN ISO 4042:1999 A2K<br>or hot-dip galvanised<br>EN ISO 10684:2004                  | 1.4401; 1.4404; 1.4578;1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                  |
| 4    | Hexagon nut                                                 | Property class 5 or 8;<br>EN ISO 898-2:2013<br>zinc plated ≥ 5µm,<br>ISO 4042:1999 A2K                    | Property class 50, 70 or 80<br>EN ISO 3506:2009<br>1.4401; 1.4404; 1.4578; 1.4571;<br>1.4439; 1.4362 |
|      |                                                             | or hot-dip galvanised<br>EN ISO 10684:2004                                                                | EN 10088-1:2014                                                                                      |
| 5    | Reinforcing bar<br>EN 1992-1-1:2004 and<br>AC:2010, Annex C | Bars and de-coiled rods class<br>$f_{yk}$ and k according to NDP or<br>$f_{uk} = f_{tk} = k \cdot f_{vk}$ | B or C with<br>NCL of EN 1992-1-1/NA:2013                                                            |

fischer injection system FIS EB

#### Product description Materials

Annex A 3



| Specifications of                   | of intended u                                     | se (part 1)           |                           |                                                                          |                           |  |  |  |  |
|-------------------------------------|---------------------------------------------------|-----------------------|---------------------------|--------------------------------------------------------------------------|---------------------------|--|--|--|--|
| Table B1: Ove                       | rview use cat                                     | tegories and          | d performance             | categories                                                               |                           |  |  |  |  |
| Anchorages subje                    | ct to                                             |                       |                           | FIS EB w                                                                 | /ith                      |  |  |  |  |
|                                     |                                                   | Threa                 | aded rod                  | Reinforcing bar                                                          |                           |  |  |  |  |
|                                     |                                                   |                       |                           |                                                                          |                           |  |  |  |  |
| Hammer drilling                     |                                                   |                       |                           | all sizes                                                                |                           |  |  |  |  |
| Diamond drilling                    |                                                   |                       |                           | all sizes                                                                |                           |  |  |  |  |
| Static and quasi<br>static load, in | un-<br>cracked<br>concrete<br>cracked<br>concrete | all sizes             | Tables:<br>C1, C2, C5, C6 | all sizes                                                                | Tables:<br>C3, C4, C7, C8 |  |  |  |  |
| Seismic<br>performance              |                                                   |                       | Table C9                  | φ 10<br>-<br>φ 32                                                        | Table C10                 |  |  |  |  |
| category (only<br>hammer drilling)  | C2                                                | M12, M16,<br>M20, M24 | Table C11                 |                                                                          |                           |  |  |  |  |
| Use category                        | Dry or wet<br>concrete                            |                       |                           | all sizes                                                                |                           |  |  |  |  |
|                                     | Flooded hole                                      |                       |                           | all sizes                                                                |                           |  |  |  |  |
| Installation temper                 | rature                                            |                       |                           | +5°C to +40°                                                             | C                         |  |  |  |  |
| In-service<br>temperature           | Temperature<br>range                              | -40°                  | °C to +72°C               | (max. long term temperature +50°C and max. short term temperature +72°C) |                           |  |  |  |  |

### **Base materials:**

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2013
- Strength classes C20/25 to C50/60 according to EN 206-1:2013

### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

### fischer injection system FIS EB

Intended Use Specifications (part 1)



Specifications of intended use (part 2)

### Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
- EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer are not allowed.

#### Installation:

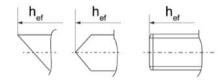
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth
- Overhead installation is allowed

# Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

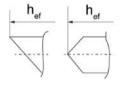
- Materials, dimensions and mechanical properties according to Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents should be stored
- Marking of embedment depth

### fischer injection system FIS EB

Intended Use Specifications (part 2)



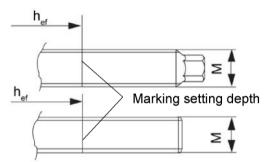

| Table B2: Ir                                       | nstallation                                    | parame                            | eters fo | r thre | aded | rods |     |                      |     |     |     |     |     |
|----------------------------------------------------|------------------------------------------------|-----------------------------------|----------|--------|------|------|-----|----------------------|-----|-----|-----|-----|-----|
| Size                                               |                                                |                                   |          | M8     | M10  | M12  | M14 | M16                  | M20 | M22 | M24 | M27 | M30 |
| Width across fla                                   | t                                              |                                   | SW       | 13     | 17   | 19   | 22  | 24                   | 30  | 32  | 36  | 41  | 46  |
| Nominal drill bit                                  | Nominal drill bit diameter d <sub>0</sub> [mm] |                                   |          |        | 14   | 14   | 16  | 18                   | 24  | 25  | 28  | 30  | 35  |
| Depth of drill ho                                  | [mm]                                           | $h_0 = h_{ef}$                    |          |        |      |      |     |                      |     |     |     |     |     |
| Effective anchor                                   | age                                            | $\mathbf{h}_{\mathrm{ef,min}}$    | [mm]     | 60     | 60   | 70   | 75  | 80                   | 90  | 93  | 96  | 108 | 120 |
| depth                                              |                                                | <b>h</b> <sub>ef,max</sub>        | [mm]     | 160    | 200  | 240  | 280 | 320                  | 400 | 440 | 480 | 540 | 600 |
| Minimum<br>spacing and<br>minimum<br>edge distance | Sn                                             | <sub>nin</sub> = c <sub>min</sub> | [mm]     | 40     | 45   | 55   | 60  | 65                   | 85  | 95  | 105 | 120 | 140 |
| Diameter of                                        | pre-<br>positioned<br>anchorage                | d <sub>f</sub>                    | [mm]     | 9      | 12   | 14   | 16  | 18                   | 22  | 24  | 26  | 30  | 33  |
| clearance hole<br>in the fixture <sup>1)</sup>     | push<br>through<br>anchorage                   | d <sub>f</sub>                    | [mm]     | 14     | 16   | 16   | 18  | 20                   | 26  | 28  | 30  | 33  | 40  |
| Minimum thickne<br>concrete membe                  | [mm]                                           | h <sub>ef</sub>                   | + 30 ≥′  | 100    |      |      | ł   | n <sub>ef</sub> + 2d | 0   |     |     |     |     |
| Maximum torque moment                              | Э                                              | T <sub>inst,max</sub>             | [Nm]     | 10     | 20   | 40   | 50  | 60                   | 120 | 135 | 150 | 200 | 300 |


<sup>1)</sup> For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

### fischer threaded rod:

Alternative point geometry threaded rod FIS A




Alternative point geometry threaded rod RGM



Marking (on random place): Property class 8.8, property class 80: • Stainless steel A4, property class 50: ••

fischer injection system FIS EB

Intended Use Installation parameters threaded rods Alternative head geometry threaded rod FIS A and RGM



### Deutsches Institut für Bautechnik

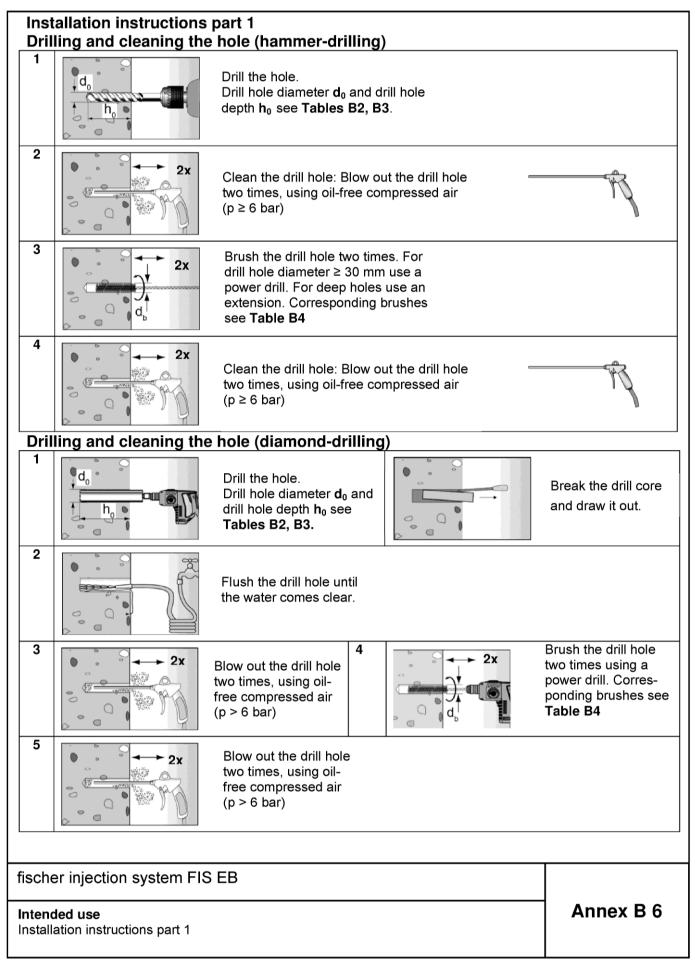
| -                                                                                            |                     | ф          | 8      | 10          | 12     | 14      | 16                   | 18     | 20  | 22  | 24  |
|----------------------------------------------------------------------------------------------|---------------------|------------|--------|-------------|--------|---------|----------------------|--------|-----|-----|-----|
| Nominal drill bit diameter                                                                   | d <sub>o</sub>      | [mm]       | 12     | 14          | 16     | 18      | 20                   | 25     | 25  | 30  | 30  |
| Drill hole depth                                                                             | h <sub>0</sub>      | [mm]       |        |             |        |         | $h_0 = h_{ef}$       |        |     |     |     |
|                                                                                              | h <sub>ef,min</sub> | [mm]       | 60     | 60          | 70     | 75      | 80                   | 85     | 90  | 94  | 98  |
| Effective anchorage depth                                                                    | h <sub>ef,max</sub> | [mm]       | 160    | 200         | 240    | 280     | 320                  | 360    | 400 | 440 | 480 |
| Minimum spacing and<br>minimum edge distance                                                 | $s_{min} = c_{min}$ | [mm]       | 40     | 45          | 55     | 60      | 65                   | 75     | 85  | 95  | 105 |
| Minimum thickness of<br>concrete member                                                      | h <sub>min</sub>    | [mm]       |        | ⊦ 30<br>I00 | 0      |         |                      |        |     |     |     |
| Reinforcing bar                                                                              |                     | ф          | 25     | 26          | 28     | 30      | 32                   | 34     | 36  | 40  |     |
| Nominal drill bit diameter                                                                   | d <sub>o</sub>      | [mm]       | 30     | 35          | 35     | 40      | 40                   | 40     | 45  | 55  |     |
| Drill hole depth                                                                             | h <sub>0</sub>      | [mm]       |        |             |        |         | $h_0 = h_{ef}$       |        |     |     | L   |
|                                                                                              | h <sub>ef,min</sub> | [mm]       | 100    | 104         | 112    | 120     | 128                  | 136    | 144 | 160 |     |
| Effective anchorage depth                                                                    | h <sub>ef,max</sub> | [mm]       | 500    | 520         | 560    | 600     | 640                  | 680    | 720 | 800 |     |
| Minimum spacing and<br>minimum edge distance                                                 | $s_{min} = c_{min}$ | [mm]       | 110    | 120         | 130    | 140     | 160                  | 170    | 180 | 200 |     |
| Minimum thickness of<br>concrete member                                                      | h <sub>min</sub>    | [mm]       |        |             |        |         | h <sub>ef</sub> + 2d | 0      |     |     |     |
| <ul> <li>Minimum value of</li> <li>The rib height h m</li> <li>(φ = nominal bar s</li> </ul> | nust be 0,05        | •          | ≤ 0,07 | • φ         | EN 199 | 2-1-1:2 | 004+A(               | C:2010 |     |     |     |
| (φ = horman bar s                                                                            | 5120, H = Hip I     | licigiti e |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |
|                                                                                              |                     |            |        |             |        |         |                      |        |     |     |     |

¥

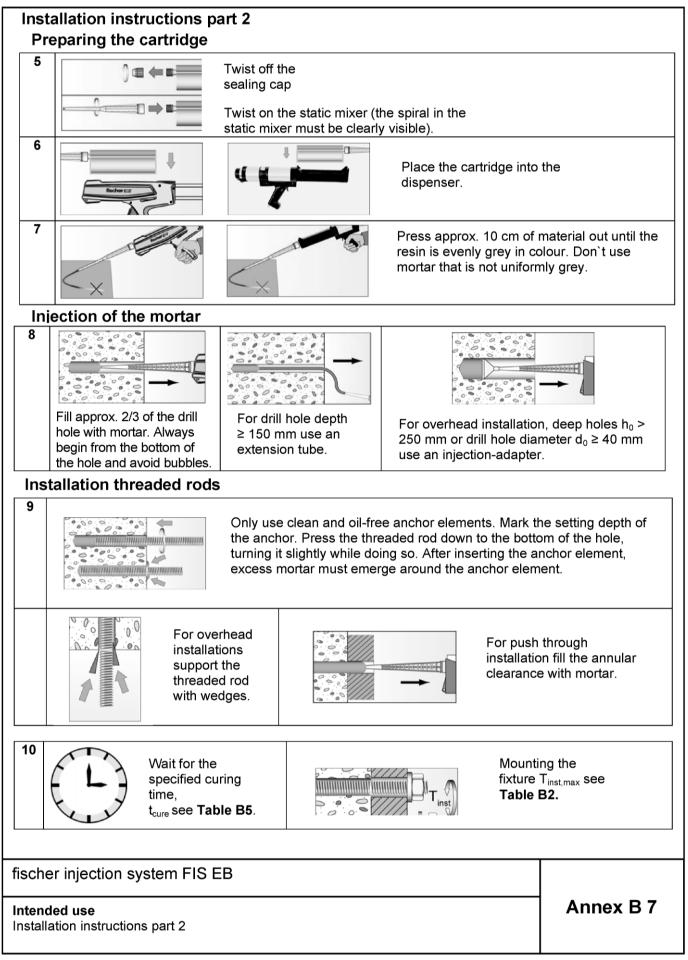


| Table B                                      | 4: Para | amete         | ers of        | steel                                   | brush                                  | FIS E             | BS Ø                                   |               |        |        |        |        |    |    |    |
|----------------------------------------------|---------|---------------|---------------|-----------------------------------------|----------------------------------------|-------------------|----------------------------------------|---------------|--------|--------|--------|--------|----|----|----|
| Drill bit<br>diameter                        | [mm]    | 12            | 14            | 16                                      | 18                                     | 20                | 24                                     | 25            | 28     | 30     | 32     | 35     | 40 | 45 | 55 |
| Steel<br>brush<br>diameter<br>d <sub>b</sub> | [mm]    | 14            | 16            | 2                                       | 20 25 26 27                            |                   | 27                                     | 30            | 40     |        |        | 42     | 47 | 58 |    |
|                                              | lik.    | . 1111a 1111a | 1110 1110 111 | 10. Illio Illio, 1                      | llia, illia, illia                     | 111111 111111 111 | la Illa Illa I                         | 110.1110.1110 | ıl     |        |        |        |    |    |    |
| ٩                                            |         |               |               | 9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | ////////////////////////////////////// |                   | ////////////////////////////////////// |               | $\sim$ | $\sim$ | $\sim$ | $\sim$ | X  |    |    |

### Table B5: Maximum processing time of the mortar and minimum curing time


| System temperature<br>[°C] | Maximum processing time<br>[minutes] | Minimum curing time <sup>1)</sup><br>[hours] |
|----------------------------|--------------------------------------|----------------------------------------------|
| +5 to +10                  | 120                                  | 45                                           |
| ≥ +10 to +20               | 30                                   | 22                                           |
| ≥ +20 to +30               | 14                                   | 12                                           |
| ≥ +30 to +40               | 7                                    | 6                                            |

<sup>1)</sup> In wet concrete or flooded holes the curing times must be doubled.


fischer injection system FIS EB

### Intended Use Cleaning tools Processing times and curing times











|    | llation instructions par<br>llation reinforcing bars |                                                                                                                                                                                                                            |
|----|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  |                                                      | Only use clean and oil-free reinforcing bars. Mark the setting depth of<br>the reinforcing bar. Using a turning movement, push the reinforcement<br>bar vigorously into the filled hole up to the insertion depth marking. |
|    |                                                      | When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole.                                                                                                                          |
| 10 |                                                      | for the specified curing time<br>ee <b>Table B5</b> .                                                                                                                                                                      |

fischer injection system FIS EB

Intended use Installation instructions part 3



| Table C1: Ch<br>cra                                        |                    |                  |                       | of resis<br>concret  |         | e for t | hread             | ed ro  | ds un               | der te            | ensior  | load | s in u | n-  |  |  |
|------------------------------------------------------------|--------------------|------------------|-----------------------|----------------------|---------|---------|-------------------|--------|---------------------|-------------------|---------|------|--------|-----|--|--|
| Size                                                       |                    |                  |                       |                      | M8      | M10     | M12               | M14    | M16                 | M20               | M22     | M24  | M27    | M30 |  |  |
| Installation                                               | -                  | nd wet<br>ncrete | γ <sub>2</sub>        | [-]                  |         |         | 1                 | ,0     |                     |                   |         | 1    | ,2     |     |  |  |
| safety factor                                              | floode             | d hole           | —<br>γinst            | [-]                  |         |         | 1,4 <sup>2)</sup> |        |                     |                   | 1,4     |      |        |     |  |  |
| Steel failure                                              |                    |                  |                       |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Characteristic resi                                        | istance            | Э                | $N_{Rk,s}$            | [kN]                 |         |         |                   |        | A <sub>s</sub> :    | κ f <sub>uk</sub> |         |      |        |     |  |  |
| Combined pullou                                            | it and             | concre           | ete cone              | failure              |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Diameter of calcul                                         |                    |                  | d                     | [mm]                 | 8       | 10      | 12                | 14     | 16                  | 20                | 22      | 24   | 27     | 30  |  |  |
| Characteristic bo                                          | ond re             | sistanc          | e in un-              | cracked              | concr   | ete C2  | 0/25              |        |                     |                   |         |      |        |     |  |  |
| hammer-drilling (d                                         |                    | l wet co         | ,                     |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,ucr}$       | [N/mm <sup>2</sup> ] | 11      | 10      | 10                | 9      | 9                   | 8                 | 8       | 8    | 7,5    | 7,5 |  |  |
| hammer-drilling (fl                                        |                    | l hole)          |                       |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,ucr}$       | [N/mm <sup>2</sup> ] | 11      | 10      | 10                | 9      | 8                   | 7,5               | 7       | 7    | 6      | 6   |  |  |
| diamond-drilling (d                                        |                    | d wet co         |                       |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,ucr}$       | [N/mm <sup>2</sup> ] | 11      | 10      | 8                 | 7,5    | 7,5                 | 7                 | 6       | 6    | 5,5    | 5,5 |  |  |
| diamond-drilling (f                                        | looded             | d hole)          |                       |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,ucr}$       | [N/mm <sup>2</sup> ] | 11      | 10      | 8                 | 7,5    | 7,5                 | 7                 | 6       | 6    | 5,5    | 5,5 |  |  |
| Factor for un-crac                                         | ked co             | oncrete          | $k_{ucr}$             | [-]                  |         |         |                   |        | 10                  | ),1               |         |      |        |     |  |  |
| Characteristic bo                                          | ond re             | sistanc          | e in cra              | cked con             | crete   | C20/2   | 5                 |        |                     |                   |         |      |        |     |  |  |
| hammer and diam                                            | ond d              | rilling (c       | lry and v             | vet concre           | ete)    |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,cr}$        | [N/mm <sup>2</sup> ] | 5       | 5       | 5                 | 5      | 4                   | 4                 | 5       | 5    | 5      | 5   |  |  |
| hammer and diam                                            | ond d              | rilling (f       | looded h              | ole)                 |         |         |                   |        |                     |                   |         |      |        |     |  |  |
| Temperature rang                                           | e <sup>1)</sup>    |                  | $\tau_{Rk,cr}$        | [N/mm <sup>2</sup> ] | 4       | 5       | 5                 | 5      | 4                   | 4                 | 4       | 4    | 4      | 4   |  |  |
| Factor for cracked                                         | l concr            | rete             | $k_{cr}$              | [-]                  |         |         |                   |        | 7                   | ,2                |         |      |        |     |  |  |
|                                                            |                    |                  | C25/30                | [-]                  |         |         |                   |        | 1,                  | 02                |         |      |        |     |  |  |
|                                                            |                    |                  | C30/37                | [-]                  |         |         |                   |        | 1,                  | 04                |         |      |        |     |  |  |
| Increasing factor                                          |                    |                  | C35/45                | [-]                  |         |         |                   |        | 1,                  | 06                |         |      |        |     |  |  |
| for $\tau_{Rk}$                                            |                    | $\Psi_{c}$ .     | C40/50                | [-]                  |         |         |                   |        | 1,                  | 07                |         |      |        |     |  |  |
|                                                            |                    |                  | C45/55                | [-]                  |         |         |                   |        | 1,                  | 08                |         |      |        |     |  |  |
|                                                            |                    |                  | C50/60                | [-]                  |         |         |                   |        | 1,                  | 09                |         |      |        |     |  |  |
| Splitting failure                                          |                    |                  |                       |                      |         |         |                   |        |                     |                   |         |      |        |     |  |  |
|                                                            |                    | h / h,           | <sub>∋f</sub> ≥2,0    | [mm]                 |         |         |                   |        | 1,0                 | h <sub>ef</sub>   |         |      |        |     |  |  |
| Edge distance                                              | C <sub>cr,sp</sub> | 2,0>h/           | ′h <sub>ef</sub> >1,3 | [mm]                 |         |         |                   | 4      | 1,6 h <sub>ef</sub> | – 1,8 ľ           | ו       |      |        |     |  |  |
|                                                            |                    | h / h,           | <sub>∍f</sub> ≤1,3    | [mm]                 |         |         |                   |        | 2,26                | 3 h <sub>ef</sub> |         |      |        |     |  |  |
| Axial distance                                             | S <sub>cr,sp</sub> |                  |                       | [mm]                 |         |         |                   |        | 2 c                 | cr,sp             |         |      |        |     |  |  |
| <sup>1)</sup> See Annex B<br><sup>2)</sup> For use in crac | 1<br>cked c        | oncrete          | e (floode             | d hole) the          | e insta | llation | safety            | factor | can be              | reduc             | ed to 1 | 1,2. |        |     |  |  |

fischer injection system FIS EB

**Performances** Design of bonded anchors Static or quasi-static action in tensions



| Size                                                                                                   |                              |      | M8                                   | M10 | M12 | M14 | M16     | M20                    | M22 | M24 | M27 | M30 |
|--------------------------------------------------------------------------------------------------------|------------------------------|------|--------------------------------------|-----|-----|-----|---------|------------------------|-----|-----|-----|-----|
| Installation safety factor                                                                             | $\gamma_2 = \gamma_{inst}$   | [-]  |                                      |     |     |     | 1       | 0                      |     |     |     |     |
| Steel failure without lever an                                                                         | n                            |      |                                      |     |     |     |         |                        |     |     |     |     |
| Characteristic resistance                                                                              | $V_{Rk,s}$                   | [kN] | 0,5 A <sub>s</sub> x f <sub>uk</sub> |     |     |     |         |                        |     |     |     |     |
| Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1                                          | k <sub>2</sub>               | [-]  | 0,8                                  |     |     |     |         |                        |     |     |     |     |
| Steel failure with lever arm                                                                           |                              |      |                                      |     |     |     |         |                        |     |     |     |     |
| Characteristic resistance                                                                              | ${\sf M}^{\sf O}_{\sf Rk,s}$ | [Nm] |                                      |     |     |     | 1,2 x V | $V_{el} \ge f_{ul}$    | (   |     |     |     |
| Concrete pryout failure                                                                                |                              |      |                                      |     |     |     |         |                        |     |     |     |     |
| Factor k acc. to TR029<br>Section 5.2.3.3 resp. $k_3$ acc.<br>to CEN/TS 1992-4-5:2009<br>Section 6.3.3 | k <sub>(3)</sub>             | [-]  | 2,0                                  |     |     |     |         |                        |     |     |     |     |
| Concrete edge failure                                                                                  |                              |      |                                      |     |     |     |         |                        |     |     |     |     |
| Effective length of anchor                                                                             | ۱ <sub>f</sub>               | [mm] |                                      |     |     | lf  | = min ( | (h <sub>ef</sub> ; 8 ( | d)  |     |     |     |
| Diameter of calculation                                                                                | d                            | [mm] | 8                                    | 10  | 12  | 14  | 16      | 20                     | 22  | 24  | 27  | 30  |

fischer injection system FIS EB

**Performances** Design of bonded anchors Static or quasi-static action under shear loads



| Table C3: Cha<br>un-c           | racteristic va<br>cracked conc          |                     |          |       |     | reinfo | rcing | bars u | Inder | tensio | n load | s in |
|---------------------------------|-----------------------------------------|---------------------|----------|-------|-----|--------|-------|--------|-------|--------|--------|------|
| Reinforcing bar                 |                                         |                     | ф        | 8     | 10  | 12     | 14    | 16     | 18    | 20     | 22     | 24   |
| Installation<br>safety factor   | dry and wet<br>concrete<br>flooded hole | γ2<br>=<br>γinst    | [-]      |       |     |        | 1,0   | 1,4    |       |        | 1      | ,2   |
| Combined pullout a              |                                         |                     |          |       |     |        |       | .,.    |       |        |        |      |
| Diameter of calculation         |                                         | [mn                 |          | 8     | 10  | 12     | 14    | 16     | 18    | 20     | 22     | 24   |
| Characteristic bond             |                                         | •                   | -        | concr | ete |        |       |        |       |        |        |      |
| hammer-drilling (dry            |                                         |                     |          |       |     |        |       |        |       |        |        |      |
| Temperature range <sup>1)</sup> | $	au_{Rk,ucr}$                          |                     | /mm²]    | 11    | 10  | 10     | 9     | 9      | 9     | 8      | 8      | 8    |
| hammer-drilling (floor          |                                         | <b>1</b>            | 1        |       |     |        | -     | -      | -     | -      | -      | -    |
| Temperature range <sup>1)</sup> | $\tau_{\rm Rk,ucr}$                     | [N                  | /mm²]    | 11    | 10  | 9      | 8     | 7,5    | 8     | 7,5    | 7      | 7    |
| Reinforcing bar                 | • RK, ucr                               |                     | <u>ф</u> | 25    | 26  | 28     | 30    | 32     | 34    | 36     | 40     |      |
|                                 |                                         |                     | Ψ        | 25    | 20  | 20     | 50    | 52     | 54    | 50     | 40     | -    |
| Installation                    | dry and wet<br>concrete                 | γ <sub>2</sub><br>= | [-]      |       |     |        | 1     | ,2     |       |        |        | -    |
| safety factor                   | flooded hole                            | γinst               | [-]      |       |     |        | 1     | ,4     |       |        |        | -    |
| Combined pullout a              | nd concrete co                          | one fa              | ilure    |       |     |        |       | -      |       |        |        |      |
| Diameter of calculation         | on d                                    | [mn                 | n]       | 25    | 26  | 28     | 30    | 32     | 34    | 36     | 40     | -    |
| Characteristic bond             | resistance in                           | un-cr               | acked    | concr | ete |        |       |        |       |        |        |      |
| hammer-drilling (dry            | and wet concret                         | te)                 |          |       |     |        |       |        |       |        |        |      |
| Temperature range <sup>1)</sup> | $	au_{Rk,ucr}$                          | [N                  | /mm²]    | 8     | 7,5 | 7,5    | 7,5   | 7,5    | 7,5   | 7,5    | 7      | -    |
| hammer-drilling (floo           |                                         |                     |          |       |     |        |       |        |       |        |        |      |
| Temperature range <sup>1)</sup> | $	au_{Rk,ucr}$                          | [N                  | /mm²]    | 6     | 6   | 6      | 6     | 5,5    | 5,5   | 5,5    | 5,5    | -    |
| <sup>1)</sup> See Annex B 1     |                                         |                     |          |       |     |        |       |        |       |        |        |      |
| fischer injection s             | system FIS E                            | В                   |          |       |     |        |       |        |       |        |        |      |

electronic copy of the eta by dibt: eta-15/0440



| Table C3.1:                        | Characteristic v<br>un-cracked con |                        |      |       | nce fo<br>nond-c |     | orcing | bars | under | tensio | n load | s in |
|------------------------------------|------------------------------------|------------------------|------|-------|------------------|-----|--------|------|-------|--------|--------|------|
| Reinforcing bar                    |                                    |                        | φ    | 8     | 10               | 12  | 14     | 16   | 18    | 20     | 22     | 24   |
| Installation                       | dry and wet<br>concrete            | γ2<br>=                | [-]  |       |                  |     | 1,0    |      |       |        | 1      | ,2   |
| safety factor                      | flooded hole                       | γinst                  | [-]  |       |                  |     |        | 1,4  |       |        |        |      |
|                                    | ond resistance in                  |                        | cked | concr | ete C20          | /25 |        |      |       |        |        |      |
|                                    | dry and wet concre                 | ,                      |      |       |                  |     |        |      |       |        |        |      |
| Temperature range                  |                                    | [N/r                   | nm²] | 11    | 10               | 8   | 7,5    | 7,5  | 7     | 7      | 6      | 6    |
| diamond-drilling (                 |                                    |                        |      |       |                  |     |        |      |       |        |        |      |
| Temperature range                  | $	au_{Rk,ucr}$                     | [N/r                   | nm²] | 11    | 10               | 8   | 7,5    | 7,5  | 7     | 7      | 6      | 6    |
| Reinforcing bar                    |                                    |                        | ф    | 25    | 26               | 28  | 30     | 32   | 34    | 36     | 40     | -    |
| Installation                       | dry and wet<br>concrete            | γ2<br>=                | [-]  |       |                  |     | 1      | ,2   |       |        |        | -    |
| safety factor                      | flooded hole                       | $\gamma_{\text{inst}}$ | [-]  |       |                  |     | 1      | ,4   |       |        |        | -    |
| Characteristic be                  | ond resistance in                  | un-cra                 | cked | concr | ete C20          | /25 |        |      |       |        |        |      |
| diamond-drilling (                 | dry and wet concre                 | te)                    |      |       |                  |     |        |      |       |        |        |      |
| Temperature range                  | 1) $	au_{Rk,ucr}$                  | [N/r                   | nm²] | 6     | 5,5              | 5,5 | 5,5    | 5,5  | 5     | 5      | 5      | -    |
| diamond-drilling (                 | flooded hole)                      |                        |      |       |                  |     |        |      |       |        |        |      |
| Temperature range                  | 1) $	au_{Rk,ucr}$                  | [N/r                   | nm²] | 6     | 5,5              | 5,5 | 5,5    | 5,5  | 5     | 5      | 5      | -    |
| Factor for un-<br>cracked concrete | k <sub>ucr</sub>                   | [-]                    |      |       |                  |     |        | 10,1 |       |        |        |      |
| <sup>1)</sup> See Annex B          | 1                                  |                        |      |       |                  |     |        |      |       |        |        |      |

fischer injection system FIS EB

**Performances** Design of bonded anchors Static or quasi-static action in tension



|                                  | acteristic v<br>icked conc |                        |         |        |      |     | -   |                      | unde | r tens | ion loa | ads |
|----------------------------------|----------------------------|------------------------|---------|--------|------|-----|-----|----------------------|------|--------|---------|-----|
| Reinforcing bar                  |                            |                        | ф       | 8      | 10   | 12  | 14  | 16                   | 18   | 20     | 22      | 24  |
| dr<br>Installation               | y and wet<br>concrete      | γ2                     | [-]     | -      |      |     | 1   | ,0                   |      |        | 1       | ,2  |
| safety factor flo                | oded hole                  | =<br>γ <sub>inst</sub> | [-]     | -      |      |     | 1,2 |                      |      |        | 1,4     |     |
| Characteristic bond resi         | stance in cr               |                        | concr   | ete C2 | 0/25 |     |     |                      |      |        |         |     |
| hammer and diamond drill         | ing (dry and               | l wet c                | oncrete | e)     |      |     |     |                      |      |        |         |     |
| Temperature range <sup>1)</sup>  | $	au_{Rk,cr}$              | ٩]                     | l/mm²]  | 5      | 5    | 5   | 5   | 4                    | 4    | 4      | 5       | 5   |
| hammer and diamond drill         |                            | l hole)                |         |        |      |     |     |                      |      |        |         |     |
| Temperature range <sup>1)</sup>  | $\tau_{Rk,cr}$             | ۱]                     | l/mm²]  | 4      | 4,5  | 4,5 | 4   | 4                    | 4    | 4      | 4       | 4   |
| Reinforcing bar                  |                            |                        | ф       | 25     | 26   | 28  | 30  | 32                   | 34   | 36     | 40      |     |
| dr<br>Installation               | y and wet<br>concrete      | γ <sub>2</sub><br>=    | [-]     |        |      |     | 1   | ,2                   |      |        |         | -   |
| safety factor flo                |                            | -<br>γ <sub>inst</sub> | [-]     |        |      |     | 1   | 4                    |      |        |         | -   |
| Characteristic bond resi         |                            |                        |         | ete C2 | 0/25 |     |     |                      |      |        |         |     |
| hammer and diamond drill         | ing (dry and               | wet co                 | oncrete | )      |      |     |     |                      |      |        |         |     |
| Temperature range <sup>1)</sup>  | $\tau_{Rk,cr}$             | ۸]                     | l/mm²]  | 5      | 5    | 5   | 5   | 3,5                  | 3,5  | 3,5    | 3,5     | -   |
| hammer and diamond drill         |                            | hole)                  |         |        |      |     |     |                      |      |        |         |     |
| Temperature range <sup>1)</sup>  | $	au_{Rk,cr}$              | ٩]                     | l/mm²]  | 4      | 4    | 4   | 4   | 3,5                  | 3,5  | 3,5    | 3,5     | -   |
| Factor for cracked concret       | е                          | $k_{cr}$               | [-]     |        |      |     |     | 7,2                  |      |        |         |     |
|                                  |                            | 5/30                   | [-]     |        |      |     |     | 1,02                 |      |        |         |     |
|                                  |                            | 0/37                   | [-]     |        |      |     |     | 1,04                 |      |        |         |     |
| Increasing factor for $\Psi_{c}$ |                            | 5/45                   | [-]     |        |      |     |     | 1,06                 |      |        |         |     |
| τ <sub>Rk</sub>                  |                            | 0/50                   | [-]     |        |      |     |     | 1,07                 |      |        |         |     |
|                                  |                            | 5/55<br>0/60           | [-]     |        |      |     |     | 1,08                 |      |        |         |     |
| Splitting failure                | 050                        | J/6U                   | [-]     |        |      |     |     | 1,09                 |      |        |         |     |
|                                  | h/h <sub>ef</sub> 2        | ≥2.0                   | [mm]    |        |      |     |     | 1,0 h <sub>ef</sub>  |      |        |         |     |
| Edge distance c <sub>cr.sp</sub> | 2,0>h/h <sub>ef</sub> >    |                        | [mm]    |        |      |     | 4,6 | h <sub>ef</sub> – 1  |      |        |         |     |
|                                  | h/h <sub>ef</sub> s        |                        | [mm]    |        |      |     |     | 2,26 h <sub>e</sub>  |      |        |         |     |
| Axial distance                   | 5                          | S <sub>cr,sp</sub>     | [mm]    |        |      |     |     | 2 c <sub>cr,sp</sub> |      |        |         |     |
| <sup>1)</sup> See Annex B 1      |                            |                        |         |        |      |     |     |                      |      |        |         |     |

fischer injection system FIS EB

**Performances** Design of bonded anchors Static or quasi-static in tension



| Reinforcing bar                                                                                         |                                   | φ    | 8  | 10 | 12 | 14        | 16                    | 18                | 20 | 22 | 24 |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|------|----|----|----|-----------|-----------------------|-------------------|----|----|----|
| Diameter of calculation                                                                                 | d                                 | [mm] | 8  | 10 | 12 | 14        | 16                    | 18                | 20 | 22 | 24 |
| Reinforcing bar                                                                                         |                                   | ф    | 25 | 26 | 28 | 30        | 32                    | 34                | 36 | 40 |    |
| Diameter of calculation                                                                                 | d                                 | [mm] | 25 | 26 | 28 | 30        | 32                    | 34                | 36 | 40 | -  |
| Installation safety factor                                                                              | $\gamma_2 = \gamma_{\text{inst}}$ | [-]  |    |    |    |           | 1,0                   |                   |    |    |    |
| Steel failure without lever                                                                             | ' arm                             |      |    |    |    |           |                       |                   |    |    |    |
| Characteristic resistance                                                                               | $V_{Rk,s}$                        | [kN] |    |    |    | 0         | ,5 A <sub>s</sub> x ' | f <sub>uk</sub>   |    |    |    |
| Ductility factor acc. to<br>CEN/TS 1992-4-5:2009<br>Section 6.3.2.1                                     | k <sub>2</sub>                    | [-]  |    |    |    |           | 0,8                   |                   |    |    |    |
| Steel failure with lever arr                                                                            | n                                 |      |    |    |    |           |                       |                   |    |    |    |
| Characteristic resistance                                                                               | M <sup>0</sup> <sub>Rk,s</sub>    | [Nm] |    |    |    | 1,2       | x W <sub>el</sub> x   | k f <sub>uk</sub> |    |    |    |
| Concrete pryout failure                                                                                 |                                   |      |    |    |    |           |                       |                   |    |    |    |
| Factor k acc. to TR029<br>Section 5.2.3.3 resp. $k_3$<br>acc. to CEN/TS 1992-4-<br>5:2009 Section 6.3.3 | k <sub>(3)</sub>                  | [-]  |    |    |    |           | 2,0                   |                   |    |    |    |
| Concrete edge failure                                                                                   |                                   |      |    |    |    |           |                       |                   |    |    |    |
| Effective length of anchor                                                                              | lf                                | [mm] |    |    |    | $I_f = r$ | nin (h <sub>ef</sub>  | 8 d)              |    |    |    |

fischer injection system FIS EB

**Performances** Design of bonded anchors Static or quasi-static action under shear loads



| Table C5: Displacements                                                                                 | s under tension           | load f | or threa | aded r | ods <sup>1)</sup> |      |      |      |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|---------------------------|--------|----------|--------|-------------------|------|------|------|------|--|--|--|--|
| Size M8 M10 M12 M16 M20 M24 M27 M30                                                                     |                           |        |          |        |                   |      |      |      |      |  |  |  |  |
| Un-cracked and cracked concrete; temperature range                                                      |                           |        |          |        |                   |      |      |      |      |  |  |  |  |
| Displacement δ <sub>N0</sub> - Factor [mm/(N/mm <sup>2</sup> )] 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,13 |                           |        |          |        |                   |      |      |      |      |  |  |  |  |
| Displacement $\delta_{N^{\infty}}$ - Factor                                                             | [mm/(N/mm <sup>2</sup> )] | 0,13   | 0,14     | 0,15   | 0,17              | 0,17 | 0,18 | 0,19 | 0,19 |  |  |  |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - \text{Factor} \cdot \tau$ 

 $\delta_{N\infty} = \delta_{N\infty} - Factor \cdot \tau$ 

( $\tau$ : design bond strength)

Table C6: Displacements under shear load for threaded rods<sup>1)</sup>

| Size          |                          |                   | M8      | M10  | M12  | M16  | M20  | M24  | M27  | M30  |
|---------------|--------------------------|-------------------|---------|------|------|------|------|------|------|------|
| Un-cracked an | d cracked co             | ncrete; temperatu | re rang | je   |      |      |      |      |      |      |
| Displacement  | $\delta_{V0}$ - Factor   | [mm/kN]           | 0,18    | 0,15 | 0,12 | 0,09 | 0,07 | 0,06 | 0,05 | 0,05 |
| Displacement  | δ <sub>∨∞</sub> - Factor | [mm/kN]           | 0,27    | 0,22 | 0,18 | 0,14 | 0,11 | 0,09 | 0,08 | 0,07 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - Factor \cdot V$ 

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$  - Factor V (V: design shear resistance)

Performances Displacements threaded rods



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size                                                                                                     |                                          |           | φ      | 8      | 10     | 12    | 14   | 16   | 20     | 25     | 28   | 32   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|--------|--------|--------|-------|------|------|--------|--------|------|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jn-cracked and                                                                                           | cracked conc                             | rete      |        | I      |        |       |      | _    |        |        |      |      |
| <sup>1)</sup> Calculation of the displacement<br>$\delta_{N0} = \delta_{N0} - Factor \cdot \tau$<br>$\delta_{N\infty} = \delta_{N\infty} - Factor \cdot \tau$<br>( $\tau$ : design bond strength)<br><b>Table C8:</b> Displacements under shear load for reinforcing bars <sup>1)</sup><br><b>Size</b> $\phi$ 8 10 12 14 16 20 25 28 32<br><b>Un-cracked and cracked concrete</b><br>Displacement $\delta_{V0} - Factor$ [mm/kN] 0,18 0,15 0,12 0,10 0,09 0,07 0,06 0,05 0,05<br>Displacement $\delta_{V\infty} - Factor$ [mm/kN] 0,27 0,22 0,18 0,16 0,14 0,11 0,09 0,08 0,06<br><sup>1)</sup> Calculation of the displacement<br>$\delta_{V0} = \delta_{V0} - Factor V$<br>$\delta_{V\infty} = \delta_{V\infty} - Factor V$ | Displacement                                                                                             | $\delta_{N0}$ - Factor                   | [mm/(N/m  | 1m²)]  | 0,07   | 0,08   | 0,09  | 0,09 | 0,10 | 0,11   | 0,12   | 0,13 | 0,13 |
| $\begin{split} & \delta_{N0} = \delta_{N0} - Factor \cdot \tau \\ & \delta_{N\infty} = \delta_{N\infty} - Factor \cdot \tau \\ & (\tau: design bond strength) \end{split}$ <b>Fable C8:</b> Displacements under shear load for reinforcing bars <sup>1)</sup> <b>Size \$\phi\$ 8 10 12 14 16 20 25 28 32 Un-cracked and cracked concrete</b> Displacement $\delta_{V0} - Factor [mm/kN] 0,18 0,15 0,12 0,10 0,09 0,07 0,06 0,05 0,05 0,05 0,05 0,06 0,05 0,02 0,18 0,16 0,14 0,11 0,09 0,08 0,06 0,06 0,05 0,05 0,05 0,05 0,05 0,05$                                                                                                                                                                                          | )isplacement                                                                                             | δ <sub>N∞</sub> - Factor                 | [mm/(N/m  | 1m²)]  | 0,12   | 0,13   | 0,13  | 0,15 | 0,16 | 6 0,16 | 6 0,18 | 0,20 | 0,20 |
| Un-cracked and cracked concrete<br>Displacement $\delta_{V0}$ - Factor [mm/kN] 0,18 0,15 0,12 0,10 0,09 0,07 0,06 0,05 0,05<br>Displacement $\delta_{V\infty}$ - Factor [mm/kN] 0,27 0,22 0,18 0,16 0,14 0,11 0,09 0,08 0,06<br><sup>1)</sup> Calculation of the displacement $\delta_{V0} = \delta_{V0}$ - Factor V<br>$\delta_{V\infty} = \delta_{V\infty}$ - Factor V                                                                                                                                                                                                                                                                                                                                                      | $\delta_{N\infty} = \delta_{N\infty} - F$<br>( $\tau$ : design bo                                        | Factor. τ<br>ond strength)               | under she | ar loa | id for | reinfo | rcing | bars | 1)   |        |        |      |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Size                                                                                                     |                                          | φ         | 8      | 10     | 1:     | 2     | 14   | 16   | 20     | 25     | 28   | 32   |
| Displacement $\delta_{V^{\infty}}$ - Factor [mm/kN] 0,27 0,22 0,18 0,16 0,14 0,11 0,09 0,08 0,06<br><sup>1)</sup> Calculation of the displacement $\delta_{V0} = \delta_{V0}$ - Factor V $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ - Factor V                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jn-cracked and                                                                                           | d cracked con                            | crete     |        |        |        |       |      |      |        |        |      |      |
| <sup>1)</sup> Calculation of the displacement<br>$\delta_{V0} = \delta_{V0}$ - Factor V<br>$\delta_{V\infty} = \delta_{V\infty}$ - Factor V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Displacement                                                                                             | $\delta_{V0}$ - Factor                   | [mm/kN]   | 0 10   |        |        |       |      |      |        |        |      |      |
| $\begin{array}{l} \delta_{V0} = & \delta_{V0} - \text{Factor} \cdot V \\ \delta_{V\infty} = & \delta_{V\infty} - \text{Factor} \cdot V \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N' 1                                                                                                     |                                          |           | 0,10   | 0,1    | 5 0,1  | 12 0  | ,10  | 0,09 | 0,07   | 0,06   | 0,05 | 0,05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1)</sup> Calculation ( $\delta_{V0} = \delta_{V0} - F$<br>$\delta_{V\infty} = \delta_{V\infty} - F$ | of the displacem<br>factor V<br>factor V | [mm/kN]   | -      | -      | ·      |       | -    |      |        |        | ,    |      |

fischer injection system FIS EB

**Performances** Displacements reinforcing bars



| Table C9A            |                          | Characteristic values of<br>under seismic action p |                     |         |          |        |         |          |     |     |     |     |     | Μ   |
|----------------------|--------------------------|----------------------------------------------------|---------------------|---------|----------|--------|---------|----------|-----|-----|-----|-----|-----|-----|
| Size                 |                          |                                                    |                     |         | M8       | M10    | M12     | M14      | M16 | M20 | M22 | M24 | M27 | M30 |
| Installation         | dry and wet<br>concrete  |                                                    | γ <sub>2</sub><br>= | [-]     |          |        | 1       | ,0       |     |     |     | . 1 | ,2  |     |
| safety factor        | flooded hole             | e                                                  | $\gamma_{inst}$     | [-]     |          |        | 1,2     |          |     |     |     | 1,4 |     |     |
| Characteristi        | c resistance             | tension                                            | ension load, steel  |         | l failur | e      |         |          |     |     |     |     |     |     |
|                      | Zinc plated              | Propert                                            | у                   | 5.8     | -        | 29     | 43      | 58       | 79  | 123 | 152 | 177 | 230 | 281 |
| N <sub>Rk,s,C1</sub> | steel                    | class                                              |                     | 8.8     | -        | 47     | 68      | 92       | 126 | 196 | 243 | 282 | 368 | 449 |
|                      | Otainlass                | Duomout                                            | Property 50         |         | -        | 29     | 43      | 58       | 79  | 123 | 152 | 177 | 230 | 281 |
| [kN]                 | Stainless<br>steel A4    | class                                              | roperty 70          |         | -        | 41     | 59      | 81       | 110 | 172 | 212 | 247 | 322 | 393 |
|                      |                          |                                                    | 80                  | -       | 47       | 68     | 92      | 126      | 196 | 243 | 282 | 368 | 449 |     |
| Characteristi        | bond resistance, combine |                                                    | ined p              | oullout | and c    | oncret | e cone  | e failur | e   |     |     |     |     |     |
| (dry and wet c       | concrete)                |                                                    |                     |         |          |        |         |          |     |     |     |     |     |     |
| Temperature          | range <sup>2)</sup>      | τ <sub>Rk,C1</sub> [N/r                            |                     | mm²]    | -        | 4,9    | 4,9     | 4,6      | 4,0 | 4,0 | 4,6 | 4,6 | 4,6 | 4,6 |
| (flooded hole)       |                          |                                                    |                     |         |          |        |         |          |     |     |     |     |     |     |
| Temperature          | range 2)                 | $\tau_{\rm Rk,C1}$                                 | [N/                 | mm²]    | -        | 4,7    | 4,7     | 4,5      | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 | 4,0 |
| Characteristi        | c resistance             | shear lo                                           | ad, s               | steel f | ailure   | withou | ıt leve | r arm    |     |     |     |     |     |     |
|                      | Zinc plated              | Property                                           | /                   | 5.8     | -        | 15     | 21      | 29       | 39  | 61  | 76  | 89  | 115 | 141 |
| V <sub>Rk,s,C1</sub> | steel                    | class                                              |                     | 8.8     | -        | 23     | 34      | 46       | 63  | 98  | 122 | 141 | 184 | 225 |
|                      | Stainless                | Bronort                                            | ,                   | 50      | -        | 15     | 21      | 29       | 39  | 61  | 76  | 89  | 115 | 141 |
| [kN]                 | steel A4                 | Property<br>class                                  | /                   | 70      | -        | 20     | 30      | 40       | 55  | 86  | 107 | 124 | 161 | 197 |
|                      |                          | 0.000                                              |                     | 80      | -        | 23     | 34      | 46       | 63  | 98  | 122 | 141 | 184 | 225 |
| Installation sa      | fety factor              | $\gamma_2$                                         | =γ <sub>inst</sub>  | [-]     |          |        |         |          | 1,  | 0   |     |     |     |     |

 $^{1)}$  For fischer threaded rods FIS A / RGM the factor for steel ductility is 1,0  $^{2)}$  See Annex B 1

## fischer injection system FIS EB

Performances Design of bonded anchors Seismic performances C1



| Table C9B: Characteristic values of reaction performance cate |                                                                             |              |       |                                      |         |         |     |        |        | ods ur | nder s | eismi | С   |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|-------|--------------------------------------|---------|---------|-----|--------|--------|--------|--------|-------|-----|--|
| Size                                                          |                                                                             |              |       | M8 M10 M12 M14 M16 M20 M22 M24 M27 M |         |         |     |        |        |        |        |       |     |  |
| Installatior                                                  | n safety factor                                                             |              |       |                                      |         |         | S   | ee Ta  | ble C9 | A      |        |       |     |  |
| Characteri<br>failure                                         | stic resistance to                                                          | ension load, | steel |                                      |         |         | S   | ee Ta  | ble C9 | A      |        |       |     |  |
|                                                               | haracteristic bond resistance, combined<br>ullout and concrete cone failure |              |       |                                      |         |         | S   | ee Tal | ble C9 | A      |        |       |     |  |
| Characteri                                                    | haracteristic resistance shear load, steel f                                |              |       |                                      | vithout | t lever | arm |        |        |        |        |       |     |  |
|                                                               | Zinc plated Property 5.8                                                    |              |       | -                                    | 11      | 15      | 20  | 27     | 43     | 53     | 62     | 81    | 99  |  |
| V <sub>Rk,s,C1</sub>                                          | steel                                                                       | class        | 8.8   | -                                    | 16      | 24      | 32  | 44     | 69     | 85     | 99     | 129   | 158 |  |
|                                                               |                                                                             |              | 50    | -                                    | 11      | 15      | 20  | 27     | 43     | 53     | 62     | 81    | 99  |  |
| [kN]                                                          |                                                                             | Property     | 70    | -                                    | 14      | 21      | 28  | 39     | 60     | 75     | 87     | 113   | 138 |  |
|                                                               | steel A4                                                                    | 01033        | 80    | -                                    | 16      | 24      | 32  | 44     | 69     | 85     | 99     | 129   | 158 |  |
| Installation                                                  | nstallation safety factor $\gamma_2 = \gamma_{inst}$ [-]                    |              | -     |                                      |         |         |     | 1,0    |        |        |        |       |     |  |

fischer injection system FIS EB

**Performances** Design of bonded anchors Seismic performances C1



| Table C1               | 0: Characteristic<br>performance |                          |                |        |         |        | -        | s und | er sei | smica | action |     |
|------------------------|----------------------------------|--------------------------|----------------|--------|---------|--------|----------|-------|--------|-------|--------|-----|
| Reinforcing            | bar                              |                          | φ              | 8      | 10      | 12     | 14       | 16    | 18     | 20    | 22     | 24  |
| Installation           | dry and wet<br>concrete          | γ <sub>2</sub><br>=      | [-]            | -      |         |        | 1        | ,0    |        |       | 1      | ,2  |
| safety factor          | flooded hole                     | —<br>γinst               | [-]            | -      |         |        | 1,2      |       |        |       | 1,4    |     |
|                        | ic resistance tens               | ion load, s              | steel failur   | e      |         |        |          |       |        |       |        |     |
| N <sub>Rk,s, C1</sub>  |                                  |                          | [kN]           | -      | 44      | 63     | 85       | 111   | 140    | 173   | 209    | 249 |
|                        | ic bond resistanc                | e, combine               | ed pullout     | and co | oncret  | e cone | e failur | e     |        |       |        |     |
| (dry and wet           | ,                                |                          |                |        |         |        |          |       |        |       |        |     |
| Temperature            | -                                | $\tau_{\rm Rk,C1}$       | [N/mm²]        | -      | 4,9     | 4,9    | 4,6      | 4,0   | 4,0    | 4,0   | 4,6    | 4,6 |
| (flooded hole          |                                  |                          |                |        |         |        |          |       |        |       |        |     |
| Temperature            | range ''                         | τ <sub>Rk,C1</sub>       | [N/mm²]        | -      | 4,7     | 4,7    | 4,1      | 4,1   | 4,0    | 4,0   | 4,0    | 4,0 |
|                        | ic resistance shea               | ar load, ste             | el failure     | withou | ıt leve | r arm  |          |       |        |       |        |     |
| V <sub>Rk,s,C1</sub>   |                                  |                          | [kN]           | -      | 15      | 22     | 30       | 39    | 49     | 61    | 74     | 88  |
| Installation sa        | afety factor                     | $\gamma_2 = \gamma_{ir}$ | nst <b>[-]</b> |        |         |        |          | 1,0   |        |       |        |     |
| Reinforcing            | bar                              |                          | φ              | 25     | 26      | 28     | 30       | 32    | 34     | 36    | 40     | -   |
| Installation           | dry and wet<br>concrete          | γ <sub>2</sub><br>=      | [-]            |        |         |        | 1        | ,2    |        |       |        | -   |
| safety factor          | flooded hole                     | —<br>γinst               | [-]            |        |         |        | 1        | ,4    |        |       |        | -   |
| Characterist           | ic resistance tens               | ion load, s              | steel failur   | e      |         |        |          |       |        | _     |        |     |
| N <sub>Rk,s,C1</sub>   |                                  |                          | [kN]           | 270    | 292     | 339    | 389      | 443   | -      | -     | -      | -   |
| Characterist           | ic bond resistanc                | e, combine               | ed pullout     | and co | oncret  | e cone | e failur | e     |        |       |        |     |
| (dry and wet           | ,                                |                          |                |        |         |        |          |       |        |       |        |     |
| Temperature            | range <sup>1)</sup>              | $\tau_{\rm Rk,C1}$       | [N/mm²]        | 4,6    | 4,6     | 4,6    | 4,6      | 3,4   | -      | -     | -      | -   |
| (flooded hole)         | /                                |                          |                |        |         |        |          |       |        |       |        |     |
| Temperature            | range <sup>1)</sup>              | $\tau_{\rm Rk,C1}$       | [N/mm²]        | 4,0    | 4,0     | 4,0    | 4,0      | 3,4   | -      | -     | -      | -   |
| Characterist           | ic resistance shea               | ar Ioad, ste             | el failure     | withou | ıt leve | r arm  |          | _     |        | _     | _      |     |
| V <sub>Rk,s,C1</sub>   |                                  |                          | [kN]           | 95     | 102     | 119    | 137      | 155   | -      | -     | -      | -   |
| Installation sa        | afety factor                     | $\gamma_2 = \gamma_{ir}$ | nst <b>[-]</b> |        |         |        |          | 1,0   |        |       |        |     |
| <sup>1)</sup> See Anne | x B 1                            |                          |                |        |         |        |          |       |        |       |        |     |
|                        |                                  |                          |                |        |         |        |          |       |        |       |        |     |

fischer injection system FIS EB

**Performances** Design of bonded anchors Seismic performances C1



| Size                                |                                                                                                                              |                  |                           |                      | M8       | M10                                                          | M12                                                       | M14                            | M16                                                | M20      | M22     | M24      | M27    | M30 |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|----------------------|----------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|----------------------------------------------------|----------|---------|----------|--------|-----|
| 0.20                                |                                                                                                                              |                  |                           |                      |          |                                                              |                                                           |                                |                                                    |          |         |          |        |     |
| Installation safety                 | dry and wet<br>concrete                                                                                                      |                  | γ <sub>2</sub><br>=       | [-]                  | -        | -                                                            | 1,0                                                       | -                              | 1,0                                                | 1,0      | -       | 1,2      | -      | -   |
| factor                              | flooded hole                                                                                                                 |                  | γinst                     | [-]                  | -        | -                                                            | 1,2                                                       | -                              | 1,2                                                | 1,4      | -       | 1,4      | -      | -   |
| Characteris                         | stic resistance                                                                                                              | e ter            | nsion le                  | oad, stee            | el failu | ire                                                          |                                                           |                                |                                                    |          |         |          |        |     |
|                                     | Zinc plated                                                                                                                  | Pro              | operty                    | 5.8                  | -        | -                                                            | 39                                                        |                                | 72                                                 | 108      | -       | 177      | -      | -   |
| N <sub>Rk,s, C2</sub>               | steel                                                                                                                        | cla              | SS                        | 8.8                  | -        | -                                                            | 61                                                        | -                              | 116                                                | 173      | -       | 282      | -      | -   |
|                                     | Staiplage                                                                                                                    | Dre              |                           | 50                   | -        | -                                                            | 39                                                        | -                              | 72                                                 | 108      | -       | 177      | -      | -   |
| [kN]                                | Stainless<br>steel A4                                                                                                        | cla              | operty<br>ss              | 70                   | -        | -                                                            | 53                                                        | -                              | 101                                                | 152      | -       | 247      | -      | -   |
|                                     |                                                                                                                              |                  |                           | 80                   | -        | -                                                            | 61                                                        | -                              | 116                                                | 173      | -       | 282      | -      | -   |
|                                     | stic bond resi                                                                                                               |                  |                           |                      | pullou   | t and o                                                      | -                                                         | ete cor                        |                                                    | <u> </u> | / and \ | 1        | ncrete | )   |
| Temperatur                          | -                                                                                                                            |                  |                           | [N/mm²]              | -        | -                                                            | 1,5                                                       | -                              | 2,5                                                | 1,3      | -       | 1,7      | -      | -   |
|                                     | stic bond resi                                                                                                               |                  | -                         |                      | pullou   | t and o                                                      |                                                           | ete cor                        |                                                    | · ·      | oded I  | <u>,</u> |        |     |
| Temperatur                          | e range "                                                                                                                    | $\tau_{\rm F}$   | Rk,C2                     | [N/mm²]              | -        | -                                                            | 1,6                                                       | -                              | 2,5                                                | 1,3      | -       | 1,4      | -      | -   |
| Displaceme                          | ents                                                                                                                         |                  |                           |                      |          |                                                              |                                                           |                                |                                                    |          |         |          |        |     |
| $\delta_{N,(DLS)}$ - Fac            |                                                                                                                              |                  | [mm/(                     | N/mm²)]              | -        | -                                                            | 0,09                                                      | _                              | 0,10                                               | 0,11     | -       | 0,12     | -      | -   |
| $\delta_{N,(ULS)}$ - Fac            |                                                                                                                              |                  |                           | N/mm <sup>2</sup> )] | -        | -                                                            | 0,15                                                      | -                              | 0,17                                               | 0,17     | _       | 0,18     | -      | -   |
| UN,(ULS) 140                        |                                                                                                                              |                  | [                         |                      |          |                                                              | 0,10                                                      |                                | •,                                                 | 0,       |         | 0,10     |        |     |
| Characteris                         | stic resistance                                                                                                              | e sh             | ear loa                   | d, steel             | failure  | witho                                                        | ut lev                                                    | er arm                         |                                                    |          |         |          |        |     |
|                                     | Zinc plated                                                                                                                  | Pro              | operty                    | 5.8                  | -        | -                                                            | 14                                                        | -                              | 27                                                 | 43       | -       | 62       | -      | -   |
| V <sub>Rk,s, C2</sub> <sup>2)</sup> | steel                                                                                                                        | cla              | SS                        | 8.8                  | -        | -                                                            | 22                                                        | -                              | 44                                                 | 69       | -       | 99       | -      | -   |
|                                     | Stainless                                                                                                                    | Pro              | operty                    | 50                   | -        | -                                                            | 14                                                        | -                              | 27                                                 | 43       | -       | 62       | -      | -   |
| [kN]                                | steel A4                                                                                                                     | cla              |                           | 70                   | -        | -                                                            | 20                                                        | -                              | 39                                                 | 60       | -       | 87       | -      | -   |
|                                     |                                                                                                                              |                  |                           | 80                   | -        | -                                                            | 22                                                        | -                              | 44                                                 | 69       | -       | 99       | -      | -   |
| Installation s                      | safety factor                                                                                                                |                  | $\gamma_2 = \gamma_{ins}$ | <sub>t</sub> [-]     | -        | -                                                            | 1,0                                                       | -                              | 1,0                                                | 1,0      | -       | 1,0      | -      | -   |
| Displaceme                          |                                                                                                                              |                  |                           |                      |          |                                                              |                                                           |                                |                                                    |          |         |          |        |     |
| $\delta_{V,(DLS)}$ - Fac            |                                                                                                                              |                  | [                         | [mm/kN]              | -        | -                                                            | 0,18                                                      | -                              | 0,10                                               | 0,07     | -       | 0,06     | -      | -   |
| $\delta_{V,(ULS)}$ - Fac            | tor <sup>4)</sup>                                                                                                            |                  | [                         | [mm/kN]              | -        | -                                                            | 0,25                                                      | -                              | 0,14                                               | 0,11     | -       | 0,09     | -      | -   |
| <sup>3)</sup> Calculati             | ex B 1<br>ler threaded ro<br>on for displace<br>$\delta_{N(DLS)}$ -Factor •<br>$\delta_{N(ULS)}$ -Factor •<br>n bond strengt | emer<br>τ;<br>τ; |                           | RGM the              |          | <sup>4)</sup> Calc<br>δ <sub>V(DL</sub><br>δ <sub>V(UL</sub> | ulation<br>_s) = δ <sub>V(</sub><br>s) = δ <sub>V(l</sub> | for dis<br><sub>DLS</sub> )-Fa | 1,0<br>placem<br>actor • \<br>ctor • \<br>resistar | √;<br>′; |         |          |        |     |
| $\delta_{N(ULS)} = \delta$          |                                                                                                                              |                  |                           |                      |          |                                                              |                                                           |                                |                                                    |          |         |          |        |     |