

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0535 of 19 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Bonded anchor with anchor rod for use in concrete

Mungo srl Via Germania 23 35127 PADOVA ITALIEN

Mungo S.r.l.Manufacturing Plant 2

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0535

Page 2 of 27 | 19 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z60637.15 8.06.01-250/15

European Technical Assessment ETA-15/0535 English translation prepared by DIBt

Page 3 of 27 | 19 August 2015

Specific Part

1 Technical description of the product

"MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete" is a bonded anchor consisting of a cartridge with injection mortar MUNGO MIT RE ANCORANTE CHIMICO EPOSSI and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z60637.15 8.06.01-250/15

European Technical Assessment ETA-15/0535

Page 4 of 27 | 19 August 2015

English translation prepared by DIBt

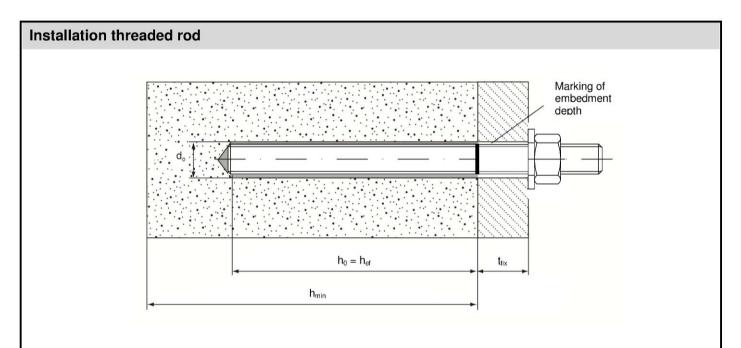
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

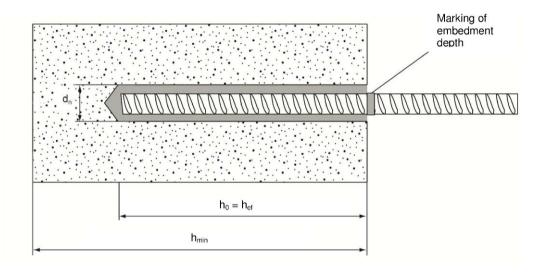
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 19 August 2015 by Deutsches Institut für Bautechnik

Andreas Schult p.p. Head of Department

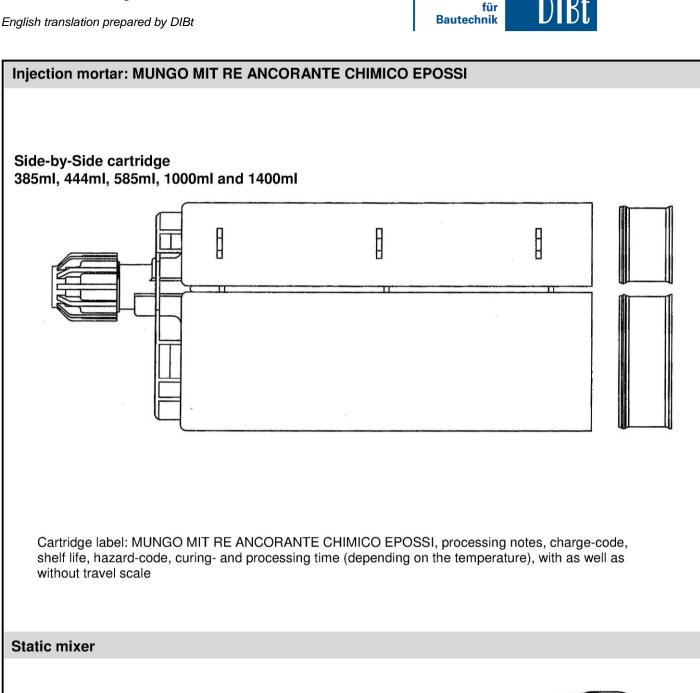

beglaubigt: Baderschneider

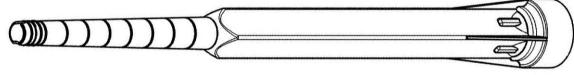
Z60637.15 8.06.01-250/15

Installation reinforcing bar

 d_0 = diameter of bore hole

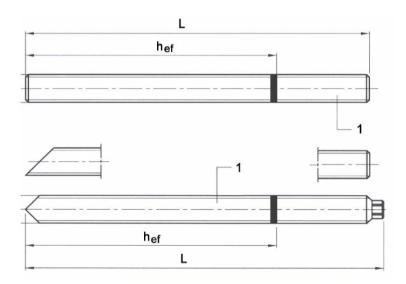
 t_{fix} = thickness of fixture

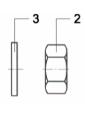

h_{ef} = effective anchorage depth


 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

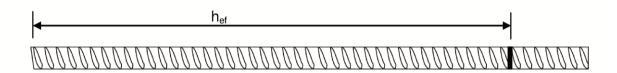
MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Product description Installed condition	Annex A 1





MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Product description Injection system	Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



8.06.01-250/15

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-12004+AC:2010 Rib hight of the bar shall be in the range $0.05 * d \le h_{rib} \le 0.07 * d$ (d = Nominal diameter of the rebar; h: Rib height of the bar)

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete Product description Threaded rod and reinforcing bar Annex A 3

Z62738.15

Table A1: Materials

Part	Designation	Material				
Steel	zinc plated ≥ 5 μm acc. to EN ISO 404	2 or Steel,				
hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009						
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009 A ₅ > 8% fracture elongation				
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised				
Stain	less steel					
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005				
High	corrosion resistance steel					
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005				
Reinf	orcing bars					
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$				

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- · Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

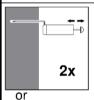
MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Enective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >				()			
THICKNESS OF HIXTURE	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Effective affichorage depth	$h_{ef,max}$ [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160


MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Intended Use Installation parameters	Annex B 2

Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).

--

Attention! Standing water in the bore hole must be removed before cleaning.

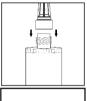
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

2x

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.

2b. Check brush diameter (Table B4) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B4).



2c. Finally blow the hole clean again with compressed air or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar.

In-flowing water must not contaminate the bore hole again.

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent colour.

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete Intended Use Installation instructions Annex B 3

Installation instructions (continuation)

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than Ø 20 mm a piston plug and extension nozzle (Annex B 5) shall be used. Observe the gel-/ working times given in Table B3.

7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 4

Table B4: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b.min} (mm)	Piston plug
				many.	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar)
Drill bit diameter (d₀): 10 mm to 40 mm

Intended Use

Cleaning and setting tools

Annex B 5

Table C1: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

in no	on-cracked co	ncrete	(Design	acco	rding	to TR	029)						
Anchor size threaded roo	ı			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure													
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Characteristic tension resistance, Steel, property class 5.8		N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280		
Characteristic tension resis Steel, property class 8.8	stance,	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension resis Stainless steel A4 and HC property class 50 (>M24) a	₹,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Combined pull-out and c	oncrete cone failure												
Characteristic bond resista	nce in non-cracked co	ncrete C20)/25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12		
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0		
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5		
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0		
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5		
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5		
	'	C30/37		1,04									
Increasing factors for conc Ψ_c	rete	C40/50	C40/50		1,08								
***		C50/60		1,10									
Splitting failure													
		ı	h / h _{ef} ≥ 2,0	1	,0 h _{ef}		h _{ef} ,0						
Edge distance	Edge distance		h / h _{ef} > 1,3	4,6 h	l _{ef} - 1,8 h		,3			,			
		h / h _{ef} ≤ 1,3		2,	2,26 h _{ef}			1 0.5	2.	26.h	C _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]						1,0·h _{ef} 2,26·h _{ef}				
Installation safety factor (d	y and wet concrete)	γ ₂			1,2			1,4					
Installation safety factor (fle	· · ·	γ ₂				-	1	,4		-			
, , , , , , , , , , , , , , , , , , , ,	,	,-		l			-	*					

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029

Annex C 1

Table C2:	Characteristic values of resistance for threaded rods under tension loads
	in cracked concrete (Design according to TR 029 and TR 045)

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30	
Steel failure										
Characteristic tension re Steel, property class 4.6		$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8	3	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	42	78	122	176	230	280	
Characteristic tension resistance, Steel, property class 8.8		$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	59	110	171	247	230	281	
Combined pull-out and	d concrete cone failure	9								
Characteristic bond resi	istance in cracked concr	ete C20/25								
		τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Performance Determined (NPD)				
40°C/24°C		τ _{Rk,cr}	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0	
		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,1	No Pe	No Performance Determined (NPD)			
		$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II:		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Performance Determined (NPD)				
60°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5	
		τ _{Rk,seis,C1}	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Pe	No Performance Determined (NPD			
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
Femperature range III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)	
72°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0	
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)	
Increasing factors for co	oncrete	C30/37				1,0)4			
only static or quasi-stat		C40/50				1,0)8			
Ψc		C50/60					0			
Installation safety factor	(dry and wet concrete)	γ2		1,2 1,4			,4			
Installation safety factor	(flooded bore hole)	γ ₂	1,4							

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045 $\,$

Annex C 2

Table C3:	Characteristic values of resistance for threaded rods under shear loads in
	cracked and non-cracked concrete (Design according to TR 029 and TR
	045)

045)										
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfo	ormance	14	27	42	56	72	88
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance [Determined	(NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo	ormance	18	34	53	70	91	111
71 1 2	$V_{\text{Rk,s,seis,C2}}$	[kN]	Determined (NPD)		17	31	No Performance Determined (NPI			
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk,s,seis,C1}}$	[kN]		ormance	30	55	85	111	145	177
	$V_{\text{Rk,s,seis,C2}}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance [Determined	(NPD)
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	$V_{\text{Rk,s,seis,C1}}$	[kN]		No Performance		48	75	98	91	111
property class 50 (>IM24) and 70 (\(\sime\) IM24)	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	24	44	No Per	formance [Determined	(NPD)
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			No Per	formance [) etermined	I (NPD)		
	$M^0_{Rk,s,seis,C2}$	[Nm]								
	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)							
	M ⁰ _{Rk,s,seis,C2}	[Nm]		No renomance Determined (NFD)						
Characteristic handing mamont	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Per	formance [Determined	I (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}				No Per	formance [Determined	(NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors			2,0							
Installation safety factor	γ2					1,	,0			
Concrete edge failure										
See section 5.2.3.4 of Technical Report TR 02	29 for the design	n of Bond	led Ancho	ors						
			I			1,				

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045

Annex C 3

Installation safety factor (flooded bore hole)

1,4

Anchor size reinforcing l	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	N _{Rk,s}	[kN]	$A_s \times f_{uk}$								
Combined pull-out and c	oncrete cone failure											
Characteristic bond resista	ance in non-cracked co	ncrete C20/	25									
Temperature range I:	dry and wet concrete	₹ _{Rk,ucr}	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II: 60°C/43°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	1,04									
Increasing factors for cond $\psi_{\text{\tiny C}}$	rete	C40/50		1,08								
		C50/60		1,10								
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 2,0					
Edge distance		2,0 > h	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h		1,3					
		h	h / h _{ef} ≤ 1,3		2,26 h _{ef}			1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}				
Axial distance		S _{cr,sp}	[mm]					2 C _{cr,sp}	1,0·h _{ef}	2,20	' ef	
Installation safety factor (d	rv and wet concrete)	γ2				1,2				1	.4	

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029	Annex C 4

Increasing factors for concrete (only static or quasi-static actions)

Installation safety factor (dry and wet concrete)

Installation safety factor (flooded bore hole)

1,08

1,10

1,4

1,4

1,2

Anchor size reinforcing	cked concrete	(Doorgin)	1000	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Characteristic tension res	sistance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]	$A_s \times f_{uk}$						
Combined pull-out and	concrete cone failure	.								
Characteristic bond resist	tance in cracked concr	ete C20/25								
	dry and wet	τ _{Rk,cr}	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I: 40°C/24°C	concrete	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
	n to the control of	$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$ au_{ ext{Rk,seis,C1}}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	a labora bala	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
emperature range II:	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
		C30/37					1,04			

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045	Annex C 5

C40/50

C50/60

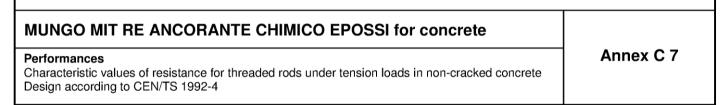
γ2

γ2

Table C6: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]	$0,50 \times A_s \times f_{uk}$								
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)	0,44 x A _s x f _{uk}						
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 ⋅W _{el} ⋅ f _{uk}								
	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Re TR 029 for the design of bonded anchors	eport		2,0								
Installation safety factor	γ2		1,0								
Concrete edge failure											
See section 5.2.3.4 of Technical Report 1	R 029 for the de	esign of I	Bonded A	Anchors							
Installation safety factor	γ2		1,0								

Performances


Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045 $\,$

Annex C 6

Table C7: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

oncre	te (Des	sign acc	coraii	ng to	CEN	15 19	192-4)			
			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
	Neka	[kN]	18	29	42	78	122	176	230	280
	N _{Rk,s}	[KN]	29	46	67	125	196	282	368	449
	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
concrete	C20/25									
rete	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12
9	$ au_{Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
rete	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
Э	$ au_{Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
rete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
Э	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
	C30/37					1,	04			
6.2.2.3	K ₈	[-]				10),1			
6.2.3.1	k _{ucr}	[-]				10),1			
	C _{cr,N}	[mm]				1,5	h _{ef}			
	S _{cr,N}	[mm]				3,0	h _{ef}			
	h	/ h _{ef} ≥ 2,0	1,0) h _{ef}						
	2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef} - 1,8 h							
	h	/ h _{ef} ≤ 1,3	2,2	6 h _{ef}			1,0·h.	, 2.26	c _c	r,sp
	S _{cr,sp}	[mm]				2 c		,		
)	γinst		1,2 1,4			,4				
	γinst		1,4							
		NRK,s NRK,ucr TRK,ucr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M 8 M 10 M 12	M 8 M 10 M 12 M 16	M 8 M 10 M 12 M 16 M 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N _{Fik,6} [kN]

Table C8: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6		$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	34	63	98	141	184	224
Characteristic tension resist Steel, property class 5.8		$N_{Rk,s} = N_{Rk,seis}$	[kN]	42	78	122	176	230	280
Characteristic tension resist Steel, property class 8.8		$N_{Rk,s} = N_{Rk,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	3,	$N_{\text{Rk,s}} = N_{\text{Rk,seis}}$	[kN]	59	110	171	247	230	281
Combined pull-out and co	ncrete failure								
Characteristic bond resistar	nce in cracked concrete Ca	20/25							
		$ au_{Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		τ _{Rk,seis,C2}	[N/mm²]	2,4	2,2	No Per	formance l	Determine	(NPD)
40°C/24°C		$ au_{Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$ au_{Rk,seis,C2}$	[N/mm²]	2,4	2,1	No Per	formance I	Determine	(NPD)
		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Per	formance l	Determine	(DPD)
60°C/43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	26 230 28 368 27 230 28 5,5 28 5,5 29 5,5 20 20 20 20 20 20 20 20 20 20 20 20 20 2	3,5
		τ _{Rk,seis,C2}	[N/mm²]	1,4	1,4	No Per	formance I	(NPD)	
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Per	formance I	Determine	d (NPD)
72°C/43°C		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,seis,C2}	[N/mm²]	1,3	1,2	No Per	formance I	Determine	d (NPD)
Increasing factors for concre	ete	C30/37				1,	04		
(only static or quasi-static a		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 6.2.2.3	3 1992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 6.2.3.1	S 1992-4-5 Section	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Installation safety factor (dry	y and wet concrete)	γinst							
Installation safety factor (flo	oded bore hole)	γ inst				1	,4		

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Annex C 8

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	13	25	No Peri	formance [Determined	(NPD)
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	18	34	53	70	91	111
,,	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance [Determined	(NPD)
	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\rm Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Peri	formance [Determined	(NPD)
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	$V_{Rk,s,seis,C1}$	[kN]	-	ormance	26	48	75	98	91	111
, , , , , , , , , , , , , , , , , , , ,	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	24	44	No Peri	formance [Determined	(NPD)
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	.8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)							
, pp,	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Fello	illiance L	Jeterriirie	d (NFD)		
Ohann darlatia harritana arang	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]						, a (i ii b)		1
Characteristic handing mamont	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
	M ⁰ _{Rk,s,seis,C2}	[Nm]						,		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	ed (NPD)		
property diases so (210124) and 70 (210124)	M ⁰ _{Rk,s,seis,C2}	[Nm]								
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	,0			
Installation safety factor	γinst					1,	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]				$l_t = min(h$	ef; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst		1,0							

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Annex C 9

Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)

								1					
Anchor size reinforcing I	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure													
Characteristic tension resis	stance	$N_{Rk,s}$	[kN]					$A_s \ x \ f_{uk}$					
Combined pull-out and c	oncrete failure												
Characteristic bond resista	ance in non-cracked concr	ete C20/2	25										
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11	
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5	
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0	
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0	
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5	
		C30/37						1,04					
ncreasing factors for concrete		C40/50						1,08					
		C50/60						1,10					
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]					10,1					
Concrete cone failure													
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]	10,1									
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}									
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting failure													
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}						
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3						
		h	/ h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0·h _{ef}	2,26	⊹h _{ef}	C _{cr,sp}	
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}									
Installation safety factor (d	ry and wet concrete)	γinst		1,2 1,4									
Installation safety factor (fl	ooded bore hole)	γinst			1,4								

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 10

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Table C11: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure				٠.2	~ 1-7	2.13	220	2 23	220	202
Characteristic tension resi	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				A _s x f _{uk}			
Combined pull-out and o	concrete failure									
Characteristic bond resista	ance in cracked concre	ete C20/25								
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	$ au_{Rk,seis,C1}$	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	flooded bone bala	$ au_{Rk,cr}$	[N/mm ²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$ au_{ m Rk,seis,C1}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet		[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	τ _{Rk,seis,C1}	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C		$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing factors for cond	crete	C30/37	•				1,04			
(only static or quasi-static	actions)	C40/50					1,08			
Ψc		C50/60					1,10			
Factor according to CEN/TS 1992-4-5 Section	1 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	1 6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]	3,0 h₀f						
Installation safety factor (c	dry and wet concrete)	γinst		1,2 1,4						
Installation safety factor (f	looded bore hole)	γinst		1,4						

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045 Annex C 11

Table C12: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Ohana ataulatia ahaan masiatamaa	$V_{Rk,s}$	[kN]				0,5	50 x A _s x	f _{uk}	f_{uk}		
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	No Performance Determined (NPD) 0,44 x A _s x f _{uk}			0,8 1.2 ·W _{el} · f _{uk}					
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 ⋅W _{el} ⋅ f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Pe	No Performance Determined (NPD)					
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γ inst						1,0				
Concrete edge failure											
Effective length of anchor	If	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	γinst						1,0				

MUNGO MIT RE ANCORANTE	CHIMICO EPOSSI for concrete
-------------------------------	------------------------------------

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Annex C 12

Table C13: Di	isplacements u	nder tension	load ¹	(threa	aded r	od)				
Anchor size threa	aded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked con	crete C20/25 unde	r static and qua	asi-stati	c actio	n					
40°C/24°C	δ _{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40 0/24 0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050 0,060		0,070	0,091	0,111	0,131	0,146	0,161
72°C/43°C	δ _{N0} – factor	[mm/(N/mm²)]	0,013 0,015		0,018	0,023	0,028	0,033	0,037	0,043
72°0/43°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete C20/25 under static, quasi-static and seismic C1 action										
40°C/24°C	δ _{N0} – factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ _{N0} – factor	[mm/(N/mm²)]	No Perfo	ormance mined	0,037	0,043	0,049	0,055	0,061	0,067
60°0/43°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
72 0/43 0	$\delta_{N\infty} - factor$	[mm/(N/mm²)]			0,24	0,24	0,24	0,24	0,24	0,24
Cracked concrete	e C20/25 under sei	smic C2 action								
40°C/24°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]			0,03	0,05				
40 0/24 0	$\delta_{\text{N,seis(ULS)}} - \text{factor}$	[mm/(N/mm²)]			0,06	0,09				
60°C/43°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]	No Perfo	ormance mined	0,03	0,05	No Porf	ormance l	Determine	d (NDD)
00 0/43 0	$\delta_{\text{N,seis(ULS)}} - \text{factor}$	[mm/(N/mm²)]		PD)	0,06	0,09	INO FEID	omance l	Je le i i i i i i e	a (INFD)
72°C/43°C	$\delta_{\text{N,seis}(\text{DLS})} - \text{factor}$	[mm/(N/mm²)]			0,03	0,05				
72 0/43 0	$\delta_{N,seis(ULS)}-factor$	[mm/(N/mm²)]			0,06	0,09				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

$$\begin{split} \delta_{\text{N,seis(DLS)}} &= \delta_{\text{N,seis(DLS)}}\text{-factor} \quad \cdot \ \tau; \\ \delta_{\text{N,seis(ULS)}} &= \delta_{\text{N,seis(ULS)}}\text{-factor} \quad \cdot \ \tau; \end{split}$$
 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$; (τ: action bond strength)

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Non-cracked and	Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action											
All tomporatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
All temperatures $\delta_{V_{\infty}}$ – factor		[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
Cracked concrete	Cracked concrete C20/25 under seismic C2 action											
All temperatures	[mm/kN]	No Perfo		0,2	0,1	No Porf	ormanco [Ootormino	4 (VIBD)			
$\delta_{V,seis(ULS)} - factor$		[mm/kN]	Determined (NPD)		0,2	0,1	No Performance Determined			d (INFD)		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{\text{V,seis}(\text{DLS})} = \delta_{\text{V,seis}(\text{DLS})}\text{-factor} \ \cdot \ \text{V}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$; $\delta_{\text{V,seis(ULS)}} = \delta_{\text{V,seis(ULS)}}\text{-factor} \quad \text{V}$ (V: action shear load)

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete

Performances

Displacements (threaded rods)

Annex C 13

Anchor size	reinforcing b	oar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	concrete C2	20/25 under sta	tic and	quasi-s	tatic act	ion					
4000/0400	δ _{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°0/43°0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked con	crete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	ion				
40°C/24°C	δ_{N0} – factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]		ormance mined	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]		PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24
72°C/43°C	δ_{N0} – factor	[mm/(N/mm²)]		·		0,040	0,043	0,049	0,056	0,063	0,070
12 0/43 0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]				0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - factor \cdot \tau;$

(τ: action bond strength)

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot \tau;$

Table C16: Displacement under shear load (rebar)

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
For concrete C20/25 under static, quasi-static and seismic C1 action												
All temperatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0} - factor \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty} - factor \cdot V; \end{split}$$

(V: action shear load)

MUNGO MIT RE ANCORANTE CHIMICO EPOSSI for concrete		
Performances Displacements (rebar)	Annex C 14	