

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 17 June 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection System fischer FIS V
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	27 pages including 3 annexes
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-02/0024 issued on 7 January 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-02/0024

Page 2 of 27 | 17 June 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 17 June 2016

European Technical Assessment ETA-02/0024 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system fischer FIS V is a bonded anchor consisting of a cartridge with injection mortar fischer FIS V and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-02/0024

Page 4 of 27 | 17 June 2016

English translation prepared by DIBt

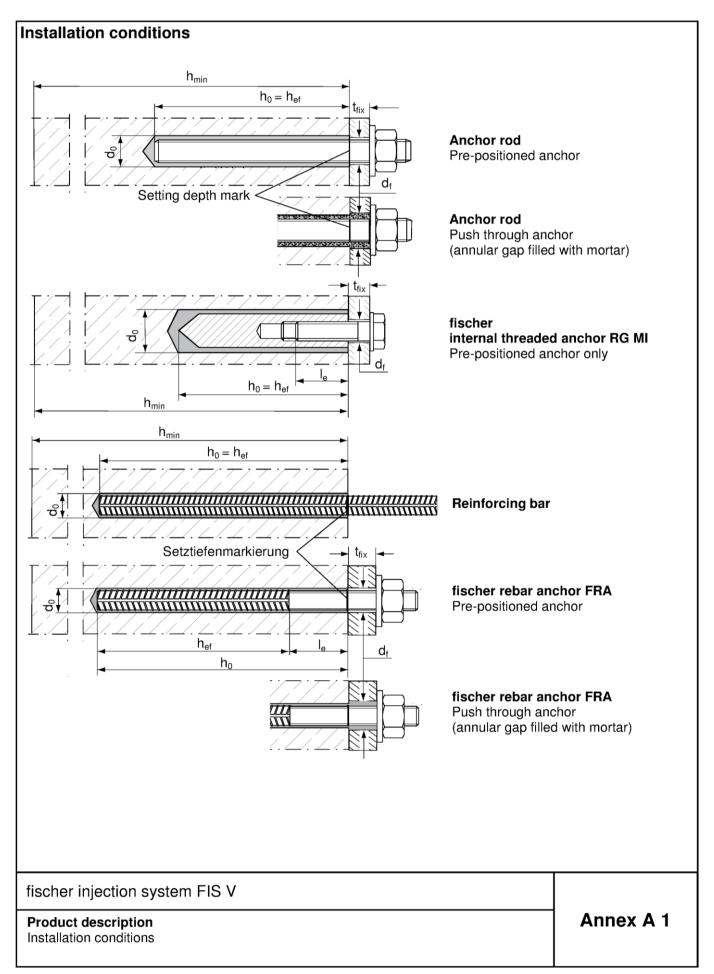
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

Technical details necessary for the implementation of the AVCP system, as provided for

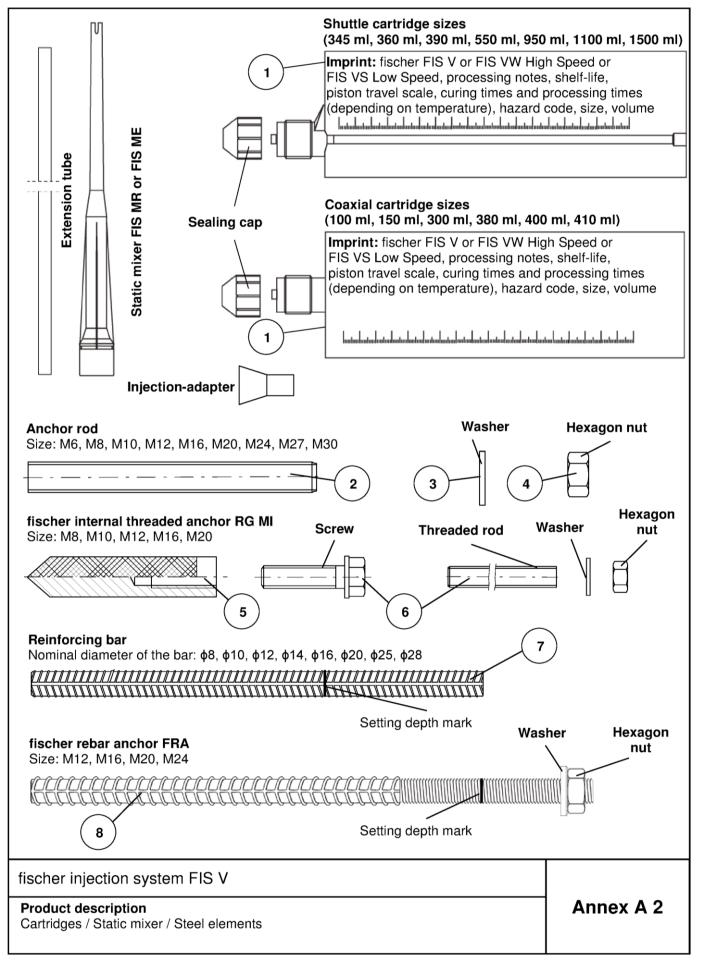
in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 17 June 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p. p. Head of Department

5


beglaubigt: Lange

Page 6 of European Technical Assessment ETA-02/0024 of 17 June 2016

labl	e A1: Materials				
Part	Designation		Mat	terial	
1	Mortar cartridge		Mortar, ha	rdener, filler	
	Steel grade	Steel, zinc plated		ess steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12 \%$ fracture elongation	50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4 1.4062, 1.4 EN 1008 $f_{uk} \le 100$ $A_5 >$	rty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362; 662, 1.4462 38-1:2014 00 N/mm ² 12 % elongation	$\begin{array}{l} \mbox{Property class} \\ 50 \mbox{ or } 80 \\ \mbox{EN ISO } 3506\mbox{-}1:2009 \\ \mbox{or property class } 70 \mbox{ with} \\ \mbox{f}_{yk}\mbox{= } 560 \mbox{ N/mm}^2 \\ \mbox{1.4565; } 1.4529 \\ \mbox{EN } 10088\mbox{-}1:2014 \\ \mbox{f}_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 12 \ \% \\ \mbox{fracture elongation} \end{array}$
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4578;1.4 1.4	; 1.4404; 571; 1.4439; 362 38-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014		Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	ty class 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$		1992-1-1:2004	
8	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods cla with f_{yk} and k according to N of EN 1992-1-1:2004+AC:2 $f_{uk} = f_{tk} = k \cdot f_{yk}$	NDP or NCL	,	s 70 or 80 -1:2009 9, 1.4401, 1.4404, 1.4571 9, 1.4362, 1.4062

fischer injection system FIS V

Product description

Materials

Chapification			out 1)						
Specification: Table B1: Ove				ategorie	S				
Anchorages subj	ect to				FIS	S V with			
		Ancho	or rod	internal t	ther threaded RG MI	Reinfor	cing bar	rebar a	cher anchor RA
				Ð					
Hammer drilling with standard drill bit	2444000000				all s	sizes		_	
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	Ī		No	minal drill	bit diamete	er (d₀) 12 r	mm to 35	i mm	
Static and quasi	uncracked concrete	all sizes	Tables: C1, C5,	all sizes	Tables: C2, C5,	all sizes	Tables C3, C5		Tables: C4, C5,
static load, in	cracked concrete	M10 to M30	C6, C10	not allowed	C7, C11	φ10 bis φ28	C8, C12		C9, C13
Use category	dry or wet concrete				all s	sizes			
000 000920,	flooded hole	M12 to	o M30	all s	izes	not al	llowed	not al	llowed
Installation temperature					-10 °C to	o +40 °C			
In-service	Temperature range I	-40 °C to	0 +80 °C	max. shor	t term tem	perature + perature +	-80 °C)		
temperature	Temperature range II	-40 °C to	+120 °C	(max. long max. shor	j term tem t term tem	perature + perature +	72 °C an 120 °C)	ıd	
fischer injectio	on system FI	SV						Annos	/ D 1
Intended Use Specifications (p	part 1)							Annex	ВТ

Specifications of intended use (part 2)

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

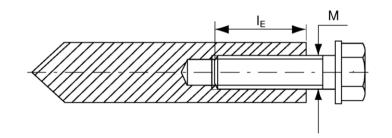
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- · Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS V

Intended Use Specifications (part 2) Annex B 2


Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill bit diameter		d ₀		8	10	12	14	18	24	28	30	35
Drill hole depth		ho						$h_0 = h_{ef}$				
Effective		h _{ef,min}		50	60	60	70	80	90	96	108	120
anchorage depth		h _{ef,max}		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance hole in -	pre- positioned anchorage	d _f		7	9	12	14	18	22	26	30	33
the fixture ¹⁾	push through anchorage	d _f		9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member		h _{min}		h _{ef} + 30 (≥ 100)							0	
Maximum installation torque		T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300
				Settin	g depth	mark		∕ Marking	9 4/25	77		
Marking (on rand Property class 8.8, Stainless steel A4, Or colour coding a	stainless sto property cla ccording to [eel, prop ss 50 a DIN 976	perty cla nd high -1	ass 80 o corrosi	on resis	stant ste	eel, proj	perty cla	ass 50:	••		
Commercial stand requirements are • Materials, dime • Inspection cert • Setting depth i	fulfilled: ensions and ificate 3.1 ad	mechar								ed		

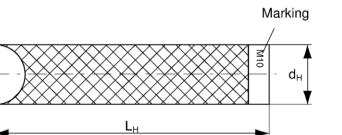


Table B3: Installation para	ameters	for fisc	her interna	al threaded	anchors R	G MI	
Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{ef}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size e.g.: M10

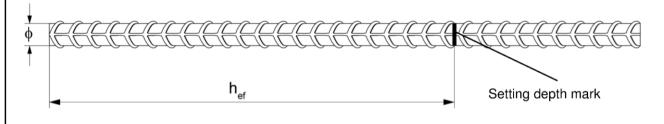
Stainless steel additional A4 e.g.: M10 A4

High corrosion resistant steel additional **C** e.g.: **M10 C**

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer ir	njection	system	FIS V
------------	----------	--------	-------

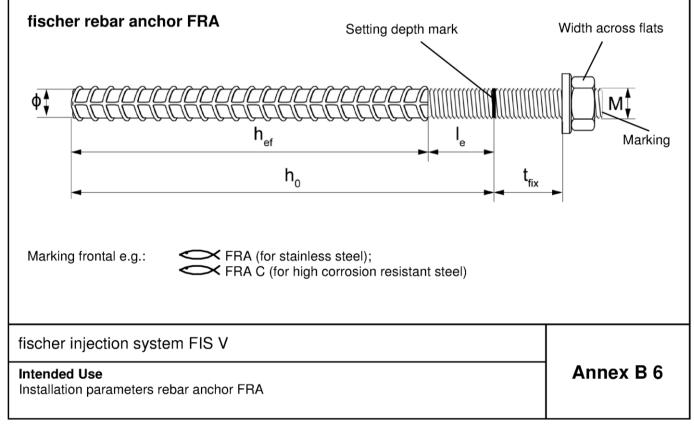
Intended Use


Installation parameters fischer internal threaded anchors RG MI

Annex B 4

Nominal diameter of the bar		φ	8	1)	10) ¹⁾	12	1)	14	16	20	25	28
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25	30	35
Drill hole depth	h ₀]							h ₀ =	h _{ef}			
Effective	$\mathbf{h}_{\mathrm{ef,min}}$]	6	0	6	0	7	0	75	80	90	100	112
anchorage depth	h _{ef,max}] [mm]	16	60	20	00	24	10	280	320	400	500	560
Minimum spacing and minimum edge distance	S _{min} = C _{min}		40		4	45		5	60	65	85	110	130
Minimum thickness of concrete member	h _{min}				_{∍f} + 3 ≥ 100					h	_{ef} + 2d ₀		

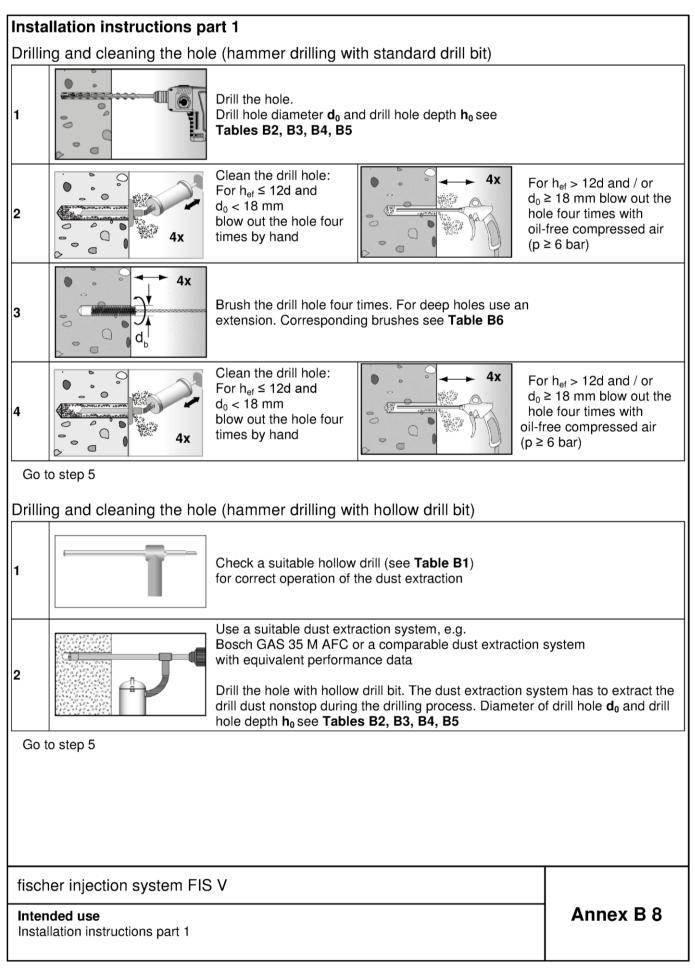
Reinforcing bar


- The minimum value of related rib area $f_{\text{R},\text{min}}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0,05 \cdot \varphi \le h_{rib} \le 0,07 \cdot \varphi$ (φ = Nominal diameter of the bar , h_{rib} = rib height)

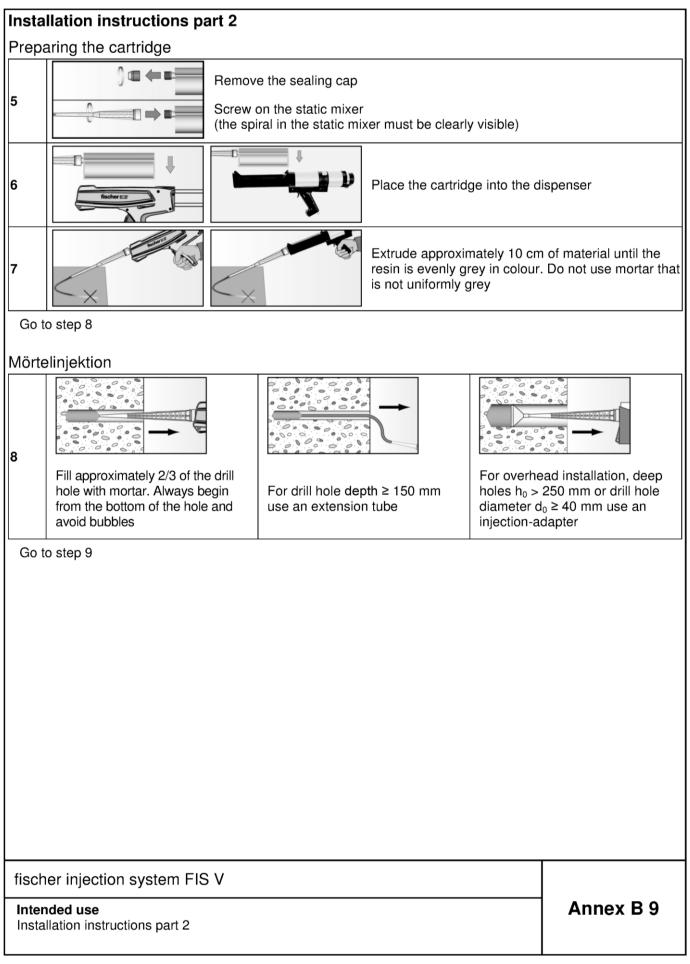
fischer injection system FIS V

Intended Use Installation parameters reinforcing bars Annex B 5

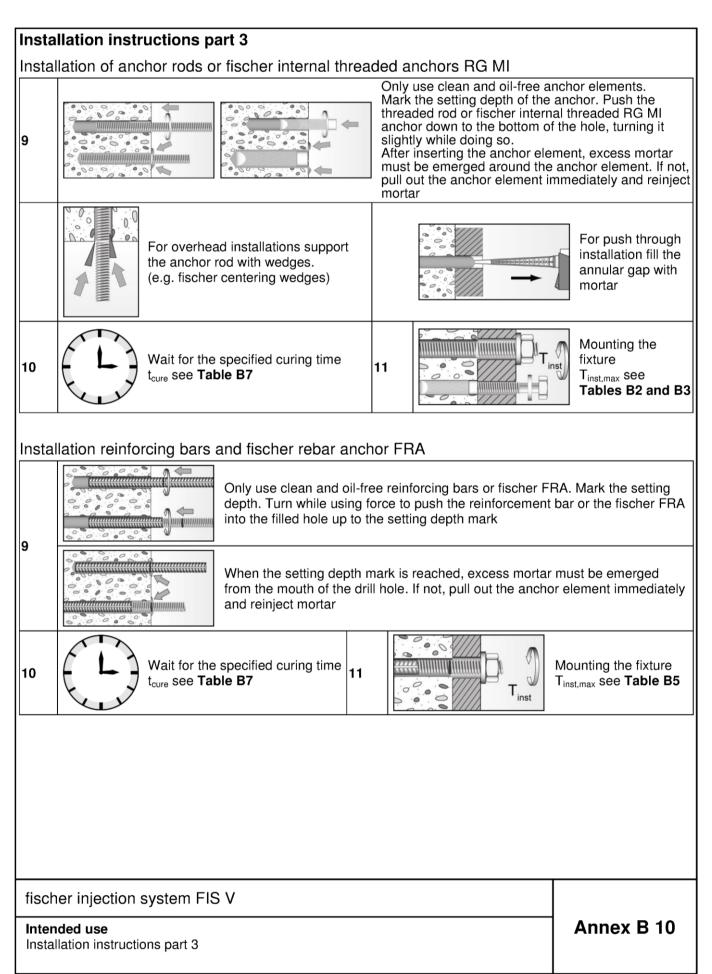
Size				M1	2 ¹⁾	M16	M20	M24	
Nominal diameter of the bar		ф		1	2	16	20	25	
Width across flats		SW		1	9	24	30	36	
Nominal drill bit diameter		d ₀		14	16	20	25	30	
Drill hole depth		h ₀				h _{ef}	+ l _e		
Effective		$\mathbf{h}_{\text{ef,min}}$			7	0	80	90	96
anchorage depth		h _{ef,max}		14	0	220	300	380	
Distance concrete surface to welded join		l _e	[mm]			100			
Minimum spacing and minimum edge distance		S _{min} = C _{min}		5	5	65	85	105	
Diameter of clearance hole in	pre- positioned anchorage	≤ d _f	≤ d _f	-	1	4	18	22	26
the fixture ²⁾	push through anchorage	≤ d _f		1	8	22	26	32	
Minimum thickness of concrete member		h _{min}		h₀ + 30 (≥ 100)		_	h ₀ + 2d ₀	_	
Maximum installation torque		T _{inst,max}	[Nm]	4	0	60	120	150	


Steel brush diameter d _b	[mm] 9	11 14	16	20) 25	25 26	27	30		
	Vestlestlestlestlesstles				I				4	10
P J		<u>A</u> MAMAN MANANAN				~~~	~~~	N -		
able B7: Maximur	m processing	time of the	e mortar	ar and m	minimum	n curinc	g time			
	he curing time of himum temperatu	f the mortar th	the concre	rete tempe		may not f			1e ¹⁾	
(During th listed mini System temperature	he curing time of himum temperatu Maxi	f the mortar th ure)	the concre	rete tempe		may not f	fall below	ring tim	ne ¹⁾	
(During th listed mini	he curing time of himum temperatu Maxi	f the mortar thure) timum proces [minutes	the concre ssing time s] FI	rete tempe	perature n	may not f	fall below imum cur t _{cure}	ring tim • tes]	FIS Low S	
(During th listed mini System temperature	ne curing time of nimum temperatu Maxi FIS VW	f the mortar thure) timum proces [minutes	the concre ssing time s] FI	rete tempe ne FIS VS	FIS High S	Mini	fall below imum cur t _{cure} [minut	ring tim • tes]	FIS	speed
(During th listed mini System temperature [°C]	FIS VW High Speed	f the mortar thure) timum proces t _{work} [minutes FIS V	the concre ssing time s] FI	rete tempe ne FIS VS ow Speed	FIS d High S 12 h	Mini Mini S VW Speed	fall below imum cur t _{cure} [minut FIS ^v	ring tim tes] V	FIS Low S	speed
(During th listed mini System temperature [°C] -10 to -5	FIS VW High Speed	f the mortar thure) timum proces [minutes FIS V	the concre ssing time s] FI	rete tempe ne FIS VS ow Speed 	FIS d High S 12 h 3 hc	Mini Mini S VW Speed hours	fall below imum cur t _{cure} [minut FIS ^v 	ring tim tes] V urs	FIS Low S 	speec
(During th listed mini System temperature [°C] -10 to -5 > -5 to ±0	FIS VW High Speed 5	f the mortar thure) imum proces [minutes FIS V 	the concre ssing time s] FI	rete tempe ne FIS VS bw Speed 	FIS d High S 12 h 3 hc 3 hc	Mini Mini S VW Speed hours hours	fall below imum cur t _{cure} [minut FIS 24 hou	ring tim etes] V urs urs	FIS Low S 	Speed ours
(During th listed mini System temperature [°C] -10 to $-5> -5 to \pm 0> \pm 0 to +5$	FIS VW High Speed 5 5	f the mortar thure) timum proces [minutes] FIS V 13	the concre ssing time s] FI	FIS VS w Speed 	FIS FIS High 5 12 h 3 ho 3 ho 5	Mini Mini S VW Speed hours nours	fall below imum cur [minut FIS ¹ 24 hou 3 hou	ring tim etes] V urs urs	FIS Low S 6 ho	ours
(During th listed mini System temperature [°C] -10 to $-5> -5 to \pm 0> \pm 0 to +5> \pm 5 to \pm 10$	he curing time of himum temperatu Maxi FIS VW High Speed 5 5 3	f the mortar thure) Finum proces [minutes] FIS V 13 9	the concre ssing time s] FI	rete tempe ne FIS VS ow Speed 20	FIS d High S 12 h 3 hc 5 3	Mini Mini S VW Speed hours nours 50	fall below imum cur [minut FIS ^ 24 hou 3 hou 90	ring tim etes] V urs urs	FIS Low S 6 ho 3 ho	ours ours

fischer injection system FIS V


Intended Use

Cleaning tools Processing times and curing times Annex B 7



Size					M6	M8	M10	M12	M16	M20	M24	M27	M30
Bearir	ng capacity under	r tensile loa	id, ste	el fail	ure								
0	Staal zine plated		5.8		10	19	29	43	79	123	177	230	281
arin I _{Rk,s}	Steel zinc plated		8.8]	16	29	47	68	126	196	282	368	449
t.be	Stainless steel	Property	50	[kN]	10	19	29	43	79	123	177	230	281
Charact.bearing capacity N _{Rk,s}	A4 and High corrosion	class	70		14	26	41	59	110	172	247	322	393
ü ö	resistant steel C		80		16	30	47	68	126	196	282	368	449
Partia	I safety factors ¹⁾												
			5.8						1,50				
safety Y _{Ms,N}	Steel zinc plated		8.8						1,50				
artial safet factor γ _{Ms,N}	Stainless steel	Property	50	[-]					2,86				
Partial factor	A4 and High corrosion	class	70					1,	50 ²⁾ / 1,	87			
ш	resistant steel C		80						1,60				
Bearir	ng capacity under	r shear load	d, stee	l failu	re								
	ut lever arm					-	_				_		
ຍເ	Steel zinc plated		5.8		5	9	15	21	39	61	89	115	141
earir V _{Rk.}			8.8		8	15	23	34	63	98	141	184	225
haract.be	Stainless steel	Property class	50	[kN]	5	9	15	21	39	61	89	115	141
	A4 and High corrosion	01233	70		7	13	20	30	55	86	124	161	197
	resistant steel C		80		8	15	23	34	63	98	141	184	225
with le	ever arm												
int	Steel zinc plated		5.8		7	19	37	65	166	324	560	833	1123
'act. moment		_	8.8		12	30	60	105	266	519	896	1333	1797
Charact.	Stainless steel	Property class	50	[Nm]	7	19	37	65	166	324	560	833	1123
, OC	High corrosion		70		10	26	52	92	232	454	784	1167	1573
be	resistant steel C		80		12	30	60	105	266	519	896	1333	1797
Partia	I safety factors ¹⁾												
	Steel zinc plated		5.8						1,25				
safety `Y ^{Ms,V}		_	8.8						1,25				
artial safet actor γ _{Ms,V}	Stainless steel A4 and	Property class	50	[-]					2,38				
Partial factor	righ conosion		70					1,2	25 ²⁾ / 1,	56			
	resistant steel C		80						1,33				
¹⁾ In a ²⁾ On	absence of other n Iy admissible for s	ational regu teel C, with	lations f _{yk} / f _{uk}	≥ 0,8	and A_5	> 12 %	o (e.g. fi	scher a	nchor r	ods)			
fisch	er injection syst	tem FIS V											
Perfo	ormances										An	nex C	21

Size					М8	M10	M12	M16	M20	
Bearing capacity	/ unde	r tensile loa	ad, ste	el fail	ure					
		Property	5.8		19	29	43	79	123	
Characteristic	NI	class	8.8		29	47	68	108	179	
bearing capacity with screw	$N_{Rk,s}$	Property	A4	[kN]	26	41	59	110	172	
		class 70	С		26	41	59	110	172	
Partial safety fac	tors ¹⁾									
		Property	5.8				1,50			
Partial safety		class	8.8	[-]			1,50			
factor	γMs,N	Property	A4	[-]			1,87			
		class 70	С				1,87			
Bearing capacity	/ unde	r shear loa	d, stee	l failu	re					
without lever arr	n									
Characteristic		Property	5.8		9,2	14,5	21,1	39,2	62,0	
bearing capacity	Vera	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0	
with screw	• HK,S	Property	A4		12,8	20,3	29,5	54,8	86,0	
		class 70	С		12,8	20,3	29,5	54,8	86,0	
with lever arm										
Characteristic		Property	5.8		20	39	68	173	337	
bending moment	M ⁰ Bks	class	8.8	[Nm]	30	60	105	266	519	
with screw	110,0	Property	A4		26	52	92	232	454	
		class 70	С		26	52	92	232	454	
Partial safety fac	ctors"									
		Property	5.8				1,25			
Partial safety	γMs,V	class	8.8	[-]			1,25		1,25 / 1,502	
factor	/ IVIS, V	Property	A4				1,56			
		class 70	С		1,56					

fischer injection system FIS V

Performances

Characteristic steel bearing capacity of fischer internal threaded anchors RG MI

Bearing capacity under tensile load, steel failure Characteristic bearing capacity N _{Rk,s} [kN] A _s · f _{uk} ¹⁾ Bearing capacity under shear load, steel failure without lever arm Characteristic bearing capacity V _{Rk,s} [KN] 0,5 · A _s · f _{uk} ¹⁾ Ductility factor acc. to CEN/TS K2 [-] 0,8 1992-4-5:2009 Section 6.3.2.1 K2 [-] 0,8 with lever arm Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹⁾ ⁻¹ f _{uk} or f _{yk} respectively must be taken from the specifications of the reinforcing bar	
Characteristic bearing capacity N _{Rk,s} [kN] A _s \cdot f _{uk} ¹⁾ Bearing capacity under shear load, steel failure without lever arm Characteristic bearing capacity V _{Rk,s} [kN] 0,5 \cdot A _s \cdot f _{uk} ¹⁾ Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1 k ₂ [-] 0,8 with lever arm 0,8 1,2 \cdot W _{el} \cdot f _{uk} ¹⁾ 0,8 Characteristic bending moment M ^o _{Rk,s} [Nm] 1,2 \cdot W _{el} \cdot f _{uk} ¹⁾ ¹⁾ f _{uk} or f _{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA Size M12 M16 M20 M	
without lever arm Characteristic bearing capacity $V_{Rk,s}$ $[kN]$ $0,5 \cdot A_s \cdot f_{uk}^{1)}$ Ductility factor acc. to CEN/TS k_2 [-] $0,8$ 1992-4-5:2009 Section 6.3.2.1 k_2 [-] $0,8$ with lever arm Characteristic bending moment $M^0_{Rk,s}$ $[Nm]$ $1,2 \cdot W_{el} \cdot f_{uk}^{1)}$ ^1) f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA Size M12 M16 M20 M	
Characteristic bearing capacity $V_{Rk,s}$ [kN] $0,5 \cdot A_s \cdot f_{uk}^{(1)}$ Ductility factor acc. to CEN/TS k_2 [-] $0,8$ 1992-4-5:2009 Section 6.3.2.1 k_2 [-] $0,8$ with lever arm $0,8$ $1,2 \cdot W_{el} \cdot f_{uk}^{(1)}$ Characteristic bending moment $M^0_{Rk,s}$ [Nm] $1,2 \cdot W_{el} \cdot f_{uk}^{(1)}$ ^1) f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA M12 M16 M20 M	
Ductility factor acc. to CEN/TS k2 [-] 0,8 1992-4-5:2009 Section 6.3.2.1 k2 [-] 0,8 with lever arm Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹⁾ ¹⁾ f _{uk} or f _{yk} respectively must be taken from the specifications of the reinforcing bar 1 1 Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA M12 M16 M20 M	
1992-4-5:2009 Section 6.3.2.1 K2 [-] 0,8 with lever arm Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹⁾ ¹⁾ f _{uk} or f _{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA Size M12 M16 M20 M	
Characteristic bending moment M ⁰ _{Rk,s} [Nm] 1,2 · W _{el} · f _{uk} ¹⁾ ¹⁾ f _{uk} or f _{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA Size M12 M16 M20 M	
 ¹⁾ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA Size M12 M16 M20 	
Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRASizeM12M16M20M	
Bearing canacity under tensile load, steel failure	124
bearing capacity under tensile road, steer fundre	
	270
Partial safety factors ¹⁾	
Partial safety factor γ _{Ms,N} [-] 1,4	
Bearing capacity under shear load, steel failure	
without lever arm	
	24
with lever arm	
	785
Partial safety factors ¹⁾	
Partial safety factor $\gamma_{Ms,V}$ [-] 1,56 ¹⁾ In absence of other national regulations 1,56	

fischer injection system FIS V

Performances

Characteristic steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

	eneral design fa near load; uncrac				•		/ unde	er tens	ile /			
Size								All size	s			
Bearing capao	ity under tensile lo	ad										
	D CEN/TS 1992-4:20		ction 6	.2.2.3								
Uncracked con	crete	k _{ucr}						10,1				
Cracked concre	ete	k _{cr}	[-]					7,2				
Factors for the	e compressive stre	ngth o	f conc	rete > (C20/25							
	C25/30							1,05				
	C30/37							1,10				
Increasing factor	C35/45	щ	[1]					1,15				
for τ_{Bk}	C40/50	$\Psi_{\sf c}$	[-]					1,19				
	C45/55							1,22				
	C50/60							1,26				
Splitting failur	e											
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0 > h / h _{ef} > 1,3	$\mathbf{C}_{cr,sp}$	[mm]				4,6	6 h _{ef} - 1	,8 h			
	h / h _{ef} ≤ 1,3		[]					2,26 h _€				
Spacing		S _{cr,sp}						2 c _{cr,sp}				
	e failure acc. to CEN	I/TS 1	992-4-{	5:2009	Sectior	1 6.2.3.	2					
Edge distance		$\mathbf{C}_{cr,N}$	[mm]					1,5 h _{ef}				
Spacing		S _{cr,N}	[]					2 c _{cr,N}				
	ity under shear loa	d										
Installation sa	fety factors											
		γ_2						1.0				
All installation of	conditions	= γ _{inst}	[-]					1,0				
Concrete pry-	out failure	Inst										
Factor k acc. to	TR029 3 resp. k_3 acc. to	k ₍₃₎	[-]					2,0				
Concrete edge	e failure											
The value of h _e under shear loa			[mm]				mi	in (h _{ef} ; a	Bd)			
Calculation dia	meters								_	_	-	
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
fischer anchor standard thread		d		6	8	10	12	16	20	24	27	30
fischer internal threade	ed anchors RG MI	d	[mm]		12	16	18	22	28			
fischer rebar ar	nchors FRA	d					12	16	20	25		
Nominal diame	ter of the bar		ф	8	10	12	1.	4	16	20	25	28
Reinforcing bar	•	d	[mm]	8	10	12	1	4	16	20	25	28
fischer injec	tion system FIS \	/								Δn	nex C	24

General design factors relating to the characteristic bearing capacity under

tensile / shear load

Table C		Characteristic v hreaded rods											
Size					M6	M8	M10	M12	M16	M20	M24	M27	M30
Combine	d pu	llout and concr	ete cone	e failure				-					
Calculatio	n dia	ameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracke	ed co	oncrete											
Characte	risti	c bond resistan	ce in un	cracked of	concre	te C20/	25						
Hammer-	drillir	ng with standard	drill bit o	r hollow d	rill bit (d	dry and	wet co	<u>ncrete)</u>					
Tem-		50 °C / 72 °C		[] [] [] [] [] [] [] [] [] [] [] [] [] [9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature - range	11:	72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
-	drillir	ng with standard	drill bit o	r hollow d	rill bit (1	looded	hole) ¹⁾						
Tem-		50 °C / 72 °C						9,5	8,5	8,0	7,5	7,0	7,0
perature -		72 °C / 120 °C	$\tau_{\rm Rk,ucr}$	[N/mm ²]				,		-			6,0
range								7,5	7,0	6,5	6,0	6,0	6,0
Dry and w		afety factors							1.0				
Flooded h		DUCLETE	$\gamma_2 = \gamma_{inst}$	[-]					1,0	1	2 ¹⁾		
Cracked		arata								١,	۷ ۲		
		c bond resistan	ce in cr	ocked cor	oroto	C20/25							
		ng with standard					wet co	ncrete)					
Tem-		50 °C / 72 °C					6,0	6,0	6,0	5,5	4,5	4,0	4,0
perature -			$\tau_{\rm Rk,cr}$	[N/mm ²]			,		,			,	,
range		72 °C / 120 °C					5,0	5,0	5,0	5,0	4,0	3,5	3,5
Hammer-	drillir	ng with standard	drill bit o	<u>r hollow d</u>	rill bit (1	looded	hole) ¹⁾						
Tem-	I:	50 °C / 72 °C		[N]/ma.ma ²]				5,0	5,0	4,5	4,0	3,5	3,5
perature - range	11:	72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]				4,0	4,0	4,0	3,5	3,0	3,0
	on s	afety factors											
Dry and w		-							1,0				
Flooded h	ole		$\gamma_2 = \gamma_{inst}$	[-]						1,	2 ¹⁾		
¹⁾ Only v	vith c	coaxial cartridges	:: 380 ml	, 400 ml, 4	410 ml								
Perform Characte	ance	ction system F es values for static and standard thre	or quas						cher		Anı	nex C	;5

8.06.01-268/15

Size			M8	M10	M12	M16	M20
Combined pullout and concr	ete cone	e failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Jncracked concrete							
Characteristic bond resistan	ce in un	cracked (concrete C2	0/25			
Hammer-drilling with standard	drill bit o	r hollow d	lrill bit (dry an	id wet concre	<u>te)</u>		
Tem- I: 50 °C / 72 °C	-	[N/mm ²]	10,5	10,0	9,5	9,0	8,5
ange II: 72 °C / 120 °C	$\tau_{\rm Rk,ucr}$		9,0	8,0	8,0	7,5	7,0
Hammer-drilling with standard	drill bit o	r hollow d	Irill bit (floode	d hole) ¹⁾			
Tem- I: 50 °C / 72 °C	_	[N/mm ²]	10,0	9,0	9,0	8,5	8,0
erature	$\tau_{\rm Rk,ucr}$	[IN/IIIII]	7,5	6,5	6,5	6,0	6,0
nstallation safety factors							
Dry and wet concrete					1,0		
-looded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1 ,2 ¹⁾		

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

fischer injection system FIS V

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI (uncracked concrete)

Table C8: Characteristic valid in hammer drilled							е			
Nominal diameter of the bar		φ	8	10	12	14	16	20	25	28
Combined pullout and concrete	e cone	failure								
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked concrete										
Characteristic bond resistance	in und	racked o	concret	e C20/25	5					
Hammer-drilling with standard dri	ill bit or	hollow d	rill bit (d	ry and w	et concr	ete)				
Tem- perature	-	[N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	Rk,ucr	[14/11111]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation safety factor										
Dry and wet concrete γ_2	$= \gamma_{inst}$	[-]				1,	,0			
Cracked concrete										
Characteristic bond resistance	in cra	cked cor	ncrete C	20/25						
Hammer-drilling with standard dri	ill bit or	hollow d	rill bit (d	ry and w	et concr	<u>ete)</u>				
Tem- perature I: 50 °C / 72 °C	-	[N/mm²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
range II: 72 °C / 120 °C	τ _{Rk,cr}	[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation safety factor										
Dry and wet concrete γ_2	$= \gamma_{inst}$	[-]				1,	,0			
	•									

fischer injection system FIS V

Performances

Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)

Size		M12	M16	M20	M24
Combined pullout and concrete	e cone failure				
Calculation diameter	d [mm]	12	16	20	25
Uncracked concrete					
Characteristic bond resistance	in uncracked	concrete C20/2	5		
Hammer-drilling with standard dri	ll bit or hollow	drill bit (dry and w	vet concrete)		
Tem- I: 50 °C / 72 °C	[N]/ma.ma ²	11,0	10,0	9,5	9,0
perature	Rk,ucr [N/mm ²	9,0	8,5	8,0	7,5
Installation safety factor	-				
Dry and wet concrete γ_2	$= \gamma_{\text{inst}}$ [-]		1,	0	
Cracked concrete					
Characteristic bond resistance	in cracked co	oncrete C20/25			
Hammer-drilling with standard dri	ll bit or hollow	drill bit (dry and w	vet concrete)		
Tem- I: 50 °C / 72 °C	τ _{Bk.cr} [N/mm ²	5,0	5,0	4,5	4,0
range II: 72 °C / 120 °C	r _{Rk,cr} [IN/mm ⁻	4,5	4,5	4,0	3,5
Installation safety factor					
Dry and wet concrete γ_2	$= \gamma_{inst}$ [-]		1.	0	

fischer injection system FIS V

Performances

Characteristic values for static or quasi-static action under tensile load for fischer rebar anchors FRA (uncracked or cracked concrete)

Size		M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ment-Factors	for tensil	e load ¹⁾						-	
Uncracke	ed concrete; T	emperatu	ure range	I, II						
$\delta_{N0-Faktor}$	[mm/(N/mm ²)]-	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δ _{N∞-Faktor}		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Ten	nperature	range I, I	I						
$\delta_{N0-Faktor}$	[mm/(N/mm²)]			0,12	0,12	0,13	0,13	0,13	0,14	0,15
δ _{N∞-Faktor}				0,27	0,30	0,30	0,30	0,35	0,35	0,40
Displace	ment-Factors	for shear	load ²⁾							
Uncracke	ed or cracked	concrete	; Tempera	ature rang	ge I, II					
$\delta_{V0-Faktor}$	[mm/k/l]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δ _{V∞-Faktor}	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calculation of effective displacement: ²⁾ Calculation of effective displacement:										
8	S				5		· · \/_ ·			

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, V_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C11: Displacements for fischer internal threaded anchors RG MI

Size	M8	M10	M12	M16	M20						
Displacement-Factors	for tensile load ¹⁾			-							
Uncracked concrete; Temperature range I, II											
$\frac{\delta_{N0-Faktor}}{M}$ [mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14						
δ _{N∞-Faktor}	0,13	0,14	0,15	0,16	0,18						
Displacement-Factors for shear load ²⁾											
Uncracked concrete; 1	Femperature rang	je I, II									
δ _{V0-Faktor}	0,12	0,12	0,12	0,12	0,12						
$\delta_{V_{\infty}-Faktor}$ [mm/kN]	0,14	0,14	0,14	0,14	0,14						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

$$\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \, \cdot \, V_{\text{Ed}}$

 $(V_{Ed}: Design value of the applied shear force)$

fischer injection system FIS V

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

²⁾ Calculation of effective displacement:

Deutsches Institut für Bautechnik

Nominal diameter φ of the bar	8	10	12	14	16	20	25	28
Displacement-Factors	for tensile	load ¹⁾						
Uncracked concrete;	Femperatu	re range I,	II					
$\frac{\delta_{N0-Faktor}}{[mm/(N/mm^2)]}$	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
δ _{N∞-Faktor} [[[]]]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
Cracked concrete; Ter	mperature	range I, II		_				
$\frac{\delta_{N0-Faktor}}{[mm/(N/mm^2)]}$		0,12	0,12	0,13	0,13	0,13	0,13	0,14
δ _{N∞-Faktor}		0,27	0,30	0,30	0,30	0,30	0,35	0,37
Displacement-Factors	for shear	load ²⁾						
Uncracked or cracked	concrete;	Temperatu	ure range I,	, 11				
δ _{V0-Faktor} [mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
δv∞-Faktor	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09
¹⁾ Calculation of effect	ive displace	ement:		²⁾ Calcu	lation of eff	ective displ	acement:	
$\delta_{\rm N0} = \delta_{\rm N0-Factor} \cdot \tau_{\rm Ed} \qquad \qquad$								
$\delta_{N_{00}} = \delta_{N_{00}}$ Eactor $\cdot \tau_{Ed}$				$\delta_{Vm} =$	δyre Factor · V	'Ed		

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$ (τ_{Ed} : Design value of the applied tensile stress) $\delta_{\mathsf{V}\infty} = \delta_{\mathsf{V}\infty\text{-}\mathsf{Factor}} \cdot \mathsf{V}_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

(V_{Ed}: Design value of the applied shear force)

Table C13: Displacements for fischer rebar anchors FRA

Size		M12	M16	M20	M24				
Displacement-F	actors f	or tensile load ¹⁾							
Uncracked cond	rete; Te	emperature range I, I	I						
$\frac{\delta_{N0-Faktor}}{Mm}$ [mm/(N/	(mm^2)	0,10	0,10	0,10	0,10				
δ _{N∞-Faktor}		0,12	0,12	0,12	0,13				
Cracked concre	te; Tem	perature range I, II							
$\frac{\delta_{N0-Faktor}}{M}$ [mm/(N/	(mm^2)	0,12	0,13	0,13	0,13				
δ _{N∞-Faktor}		0,30	0,30	0,30	0,35				
Displacement-F	actors f	or shear load ²⁾							
Uncracked or cr	acked c	concrete; Temperatu	ire range I, II						
δ _{V0-Faktor}		0,10	0,10	0,09	0,09				
$\delta_{V_{\infty}-Faktor}$ [mm/		0,11	0,11	0,10	0,10				
¹⁾ Calculation of	⁾ Calculation of effective displacement: ²⁾ Calculation of effective displacement:								
$\delta_{\text{N0}} = \delta_{\text{N0-Factor}}$	$\cdot \tau_{Ed}$		$\delta_{V0} =$	$\delta_{V0-Factor} \cdot V_{Ed}$					
$\delta_{N\infty} = \delta_{N\infty\text{-}Facto}$	$r \cdot \tau_{Ed}$		$\delta_{V\infty} =$	$\delta_{V^{\infty}\text{-}Factor}\cdotV_{Ed}$					

(τ_{Ed} : Design value of the applied tensile stress)

fischer injection system FIS V

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA